Assessing Large-Scale Flood Risks: A Multi-Source Data Approach
Abstract
:1. Introduction
- (1)
- It constructs a large-scale flood disaster risk assessment framework based on multi-source heterogeneous data, covering natural, social, and economic dimensions, and proposes a risk indicator system for large-scale rainstorm-type floods suitable for the Loess Plateau region.
- (2)
- It introduces a new flood risk assessment model (LS-FRAM) that systematically combines soil erosion models with multi-criteria decision analysis, enabling a more detailed analysis of the geographic factors influencing flood occurrence and their feedback mechanisms with soil loss, thereby improving the accuracy of disaster prediction and assessment.
2. Study Area and Multi-Source Data
3. Methodology
3.1. Large-Scale Flood Disaster Risk Assessment Framework
- (1)
- Hazard
- (2)
- Exposure
- (3)
- Vulnerability
- (4)
- Coping capacity
3.2. Determining the Indicator Weights for Large-Scale Flood Disaster Risk Assessment
3.3. Fuzzy Comprehensive Evaluation of Large-Scale Flood Disaster Risk
- (1)
- Factor set: Based on the evaluation system established previously, the factor set was determined, and the second category indicators were used as the factor set U = {u1, u2, u3, …, un}, n = 1, 2, 3, …, 12.
- (2)
- Comments collection: The assessment of risk levels was generally divided into 5 categories: very low, low, medium, high, and very high.
- (3)
- Weight set: The weight set used to assess the risk based on the weights calculated in the preceding section was determined as . The weight set for vulnerability, exposure, and coping capacity was calculated as . Where represents the set of secondary indicator weight vectors corresponding to hazard, exposure, vulnerability, and coping capacity, respectively.
- (4)
- Classification criteria and membership functions: The natural discontinuity method was employed to classify the normalized data. The expression of the membership function is given through Equations (15)–(19). Where un is the evaluation set constructed by the secondary indicators, where n is the secondary indicators. unvl refers to the membership degree of the n-th secondary indicator to the evaluation set v1, l = 1, 2, …, 5. Before calculating the membership degree, the dataset of each secondary indicator must be divided by the discontinuity points ei (i = 1, 2, …, 5), which serve as the defining points for the five membership degree levels. The membership function can be expressed as follows:
- ①
- v1 can be determined as follows:
- ②
- v2 can be computed as follows:
- ③
- v3 can be obtained as follows:
- ④
- v4 can be calculated as follows:
- ⑤
- v5 can be achieved as follows:
- (5)
- Membership levels across different levels: The established membership function was implemented using the Con function in the grid calculator, determining 5 membership levels based on the specified level discontinuity points. The evaluation level was determined through the principle of maximum membership degree. The different membership levels of hazard, exposure, vulnerability, and coping capacity layers can be calculated using Equation (20).
- (6)
- Disaster risk assessment results: Based on the fuzzy matrix calculation and membership degree layer analysis, the evaluation result matrix for the 4 primary indicators, namely hazard, exposure, vulnerability, and coping capacity, has been derived. The grid layer containing 4 primary indicator factors and 5 levels of membership degrees, along with the weight of the primary indicator, is fully determined by applying Equation (1) to finalize the calculation of the risk of rainstorm-induced flood disasters.
4. Experimental Results and Analysis
4.1. Index Weight Calculation and Risk Classification
- (1)
- The risk assessment in this model framework involves the weighted multiplication of hazard, exposure, vulnerability, and coping capacity. In Equation (1), are the weights of the primary indicators, determined through AHP. The specific calculation results are shown in Table 4.
- (2)
- The normalized data for classification criteria and membership functions were classified using the natural discontinuity method, and the classification values are detailed in Table 5.
4.2. Extraction of Indicator Layer Elements and Comprehensive Calculation Results
4.3. Comprehensive Risk Assessment of Large-Scale Flood Disaster
4.4. Validation of Flood Risk Assessment Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Office for Disaster Risk Reduction. Global Assessment Report on Disaster Risk Reduction 2022: Our World at Risk: Transforming Governance for a Resilient Future; UN: New York, NY, USA, 1901. [Google Scholar]
- Clima, T.; Te, W. State of the Climate in Asia; WMO: Geneva, Switzerland, 2024. [Google Scholar]
- Zhang, W.; Zhou, T.; Ye, W.; Zhang, T.; Zhang, L.; Wolski, P.; Risbey, J.; Wang, Z.; Min, S.-K.; Ramsay, H.; et al. A Year Marked by Extreme Precipitation and Floods: Weather and Climate Extremes in 2024. Adv. Atmos. Sci. 2025, 42, 1045–1063. [Google Scholar] [CrossRef]
- Waleed, M.; Sajjad, M. High-Resolution Flood Susceptibility Mapping and Exposure Assessment in Pakistan: An Integrated Artificial Intelligence, Machine Learning and Geospatial Framework. Int. J. Disaster Risk Reduct. 2025, 121, 105442. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, H.; Liang, Q.; Xia, X.; Xu, J.; Hoey, T.; Barrett, B.; Renaud, F.G.; Bosher, L.; Zhou, X. Large-scale flood risk assessment under different development strategies: The Luanhe River Basin in China. Sustain. Sci. 2021, 17, 1365–1384. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Song, C.; Sun, S.; Ma, J.; Wang, Y.; Guo, L.; Li, D. Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers. Nat. Commun. 2024, 15, 722. [Google Scholar] [CrossRef]
- Mahabaleshwara, H.; Nagabhushan, H.M. A study on soil erosion and its impacts on floods and sedimentation. Int. J. Res. Eng. Technol. 2014, 3, 443–451. [Google Scholar]
- Li, X.; Wei, X. Analysis of the relationship between soil erosion risk and surplus floodwater during flood season. J. Hydrol. Eng. 2014, 19, 1294–1311. [Google Scholar] [CrossRef]
- Yang, B.; Jiao, J.; Ma, X.; Zhao, W.; Ling, Q.; Zhang, X.; Han, J.; Du, P.; Chen, Y.; Chen, H. Distribution and formation of soil balls under heavy rainstorm conditions in the northern Loess Plateau. J. Hydrol. 2023, 625, 130103. [Google Scholar] [CrossRef]
- Wu, L.; Jiang, J.; Li, G.-X.; Ma, X.-Y. Characteristics of pulsed runoff-erosion events under typical rainstorms in a small watershed on the Loess Plateau of China. Sci. Rep. 2018, 8, 3672. [Google Scholar] [CrossRef]
- Dong, X.; Wang, X.; Yang, L.; Zhao, Z.; Van Balen, R.; Miao, X.; Liu, T.; Vandenberghe, J.; Pan, B.; Gibling, M.; et al. Quantitative assessment of the erosion and deposition effects of landslide-dam outburst flood, Eastern Himalaya. Sci. Rep. 2024, 14, 7038. [Google Scholar] [CrossRef]
- Paszkowski, A.; Laurien, F.; Mechler, R.; Hall, J. Quantifying community resilience to riverine hazards in Bangladesh. Glob. Environ. Change 2024, 84, 102778. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Wang, Y.; Zhang, Q.; Lin, K.; Liu, Z.; Liang, Y.S.; Liu, Y.; Li, C. A novel framework for urban flood risk assessment: Multiple perspectives and causal analysis. Water Res. 2024, 256, 121591. [Google Scholar] [CrossRef] [PubMed]
- UNDRR. Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- Lee, S. Determination of priority weights under multiattribute decision-making situations: AHP versus fuzzy AHP. J. Constr. Eng. Manag. 2015, 141, 05014015. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Engel, B.A.; Yu, T.; Zhang, X.; Qian, Y. A probabilistic assessment of urban flood risk and impacts of future climate change. J. Hydrol. 2023, 618, 129267. [Google Scholar] [CrossRef]
- Salem, S.; Siam, A.; El-Dakhakhni, W.; Tait, M. Probabilistic resilience-guided infrastructure risk management. J. Manag. Eng. 2020, 36, 04020073. [Google Scholar] [CrossRef]
- Benito, G.; Lang, M.; Barriendos, M.; Llasat, M.C.; Francés, F.; Ouarda, T.; Thorndycraft, V.; Enzel, Y.; Bardossy, A.; Coeur, D.; et al. Use of Systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of Scientific Methods. Nat. Hazards 2004, 31, 623–643. [Google Scholar] [CrossRef]
- Nott, J. Extreme Events: A Physical Reconstruction and Risk Assessment; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Shi, Y.; Zhai, G.; Zhou, S.; Lu, Y.; Chen, W.; Deng, J. How can cities respond to flood disaster risks under multi-scenario simulation? A case study of Xiamen, China. Int. J. Environ. Res. Public Health 2019, 16, 618. [Google Scholar] [CrossRef]
- Nobile, E.G.; Figueiredo, R.; Arrighi, C.; Romão, X.; Martina, M.L. Flood risk assessment of cultural heritage across countries and spatial scales. Int. J. Disaster Risk Reduct. 2025, 118, 105236. [Google Scholar] [CrossRef]
- Kappes, M.S.; Keiler, M.; von Elverfeldt, K.; Glade, T. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef]
- Mastrantoni, G.; Masciulli, C.; Marini, R.; Esposito, C.; Mugnozza, G.S.; Mazzanti, P. A novel model for multi-risk ranking of buildings at city level based on open data: The test site of Rome, Italy. Geomat. Nat. Hazards Risk 2023, 14, 2275541. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, X.; Shu, H. Hazard assessment of debris flow by using FLO-2D and hazard matrix: A case study of Qingshui Gully in the southern Gansu Province, China. Desalin. Water Treat. 2023, 315, 650–662. [Google Scholar] [CrossRef]
- Zhang, H. Study on grades of freeway meteorological disasters by risk matrix. Appl. Mech. Mater. 2012, 178–181, 2788–2792. [Google Scholar] [CrossRef]
- Kovačević, N.; Stojiljković, A.; Kovač, M. Application of the matrix approach in risk assessment. Oper. Res. Eng. Sci. Theory Appl. 2019, 2, 55–64. [Google Scholar] [CrossRef]
- Dumbravă, V.; Iacob, V.S. Using probability–impact matrix in analysis and risk assessment projects. Journal of Knowledge Management. Econ. Inf. Technol. 2013, 42, 76–96. [Google Scholar]
- Rehman, A.; Song, J.; Haq, F.; Mahmood, S.; Ahamad, M.I.; Basharat, M.; Sajid, M.; Mehmood, M.S. Multi-Hazard Susceptibility Assessment Using the Analytical Hierarchy Process and Frequency Ratio Techniques in the Northwest Himalayas, Pakistan. Remote Sens. 2022, 14, 554. [Google Scholar] [CrossRef]
- Pham, B.T.; Luu, C.; Van Dao, D.; Van Phong, T.; Nguyen, H.D.; Van Le, H.; von Meding, J.; Prakash, I. Flood risk assessment using deep learning integrated with multi-criteria decision analysis. Knowl. Based Syst. 2021, 219, 106899. [Google Scholar] [CrossRef]
- Wang, G.; Liu, L.; Shi, P.; Zhang, G.; Liu, J. Flood Risk Assessment of Metro System Using Improved Trapezoidal Fuzzy AHP: A Case Study of Guangzhou. Remote Sens. 2021, 13, 5154. [Google Scholar] [CrossRef]
- Cardoso, M.A.; Almeida, M.C.; Brito, R.S.; Gomes, J.L.; Beceiro, P.; Oliveira, A. 1D/2D stormwater modelling to support urban flood risk management in estuarine areas: Hazard assessment in the Dafundo case study. J. Flood Risk Manag. 2020, 13, e12663. [Google Scholar] [CrossRef]
- Bennett, G.L.; Panici, D.; Rengers, F.K.; Kean, J.W.; Rathburn, S.L. Landslide-channel feedbacks amplify channel widening during floods. npj Nat. Hazards 2025, 2, 7. [Google Scholar] [CrossRef]
- Bullen, J.; Miles, A. Exploring local perspectives on flood risk: A participatory GIS approach for bridging the gap between modelled and perceived flood risk zones. Appl. Geogr. 2024, 163, 103176. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Zhang, Y.; Chen, Y.; Yan, J. Urban flood resilience evaluation based on GIS and multi-source data: A case study of Changchun city. Remote Sens. 2023, 15, 1872. [Google Scholar] [CrossRef]
- Liu, J.; Shi, X.-Z.; Yang, L.; Liu, C.-Y.; Wang, J.-C.; Zhu, R.-M.; Shi, X.-L.; Liu, Q.-F. Assessment of climate damage in China based on integrated assessment framework. Adv. Clim. Change Res. 2024, 15, 124–133. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Y.; Zhang, J.; Lang, Q.; Chen, Y.; Wan, Z.; Liu, H. Geographic-information-system-based risk assessment of flooding in Changchun urban rail transit system. Remote Sens. 2023, 15, 3533. [Google Scholar] [CrossRef]
- Dai, K.; Shen, S.; Cheng, C.; Song, Y. Integrated evaluation and attribution of urban flood risk mitigation capacity: A case of Zhengzhou, China. J. Hydrol. Reg. Stud. 2023, 50, 101567. [Google Scholar] [CrossRef]
- Rehman, A.; Song, J.; Haq, F.; Ahamad, M.I.; Sajid, M.; Zahid, Z. Geo-physical hazards microzonation and suitable site selection through multicriteria analysis using geographical information system. Appl. Geogr. 2021, 135, 102550. [Google Scholar] [CrossRef]
- Fernández, D.S.; Lutz, M.A. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Eng. Geol. 2010, 111, 90–98. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Didan, K. MOD13A3 MODIS/Terra Vegetation Indices Monthly L3 Global 1 km SIN Grid V006; NASA EOSDIS LP DAAC: Sioux Falls, SD, USA, 2015; Volume 10.
- Liu, Y.; Zhong, Y.; Ma, A.; Zhao, J.; Zhang, L. Cross-resolution national-scale land-cover mapping based on noisy label learning: A case study of China. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103265. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Zhao, T.; Gao, Y.; Chen, X.; Mi, J. GISD30: Global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform. Earth Syst. Sci. Data 2022, 14, 1831–1856. [Google Scholar] [CrossRef]
- Dobson, J.E.; Bright, E.A.; Coleman, P.R.; Durfee, R.C.; Worley, B.A. LandScan: A global population database for estimating populations at risk. Photogramm. Eng. Remote Sens. 2000, 66, 849–857. [Google Scholar]
- Zhao, N.; Liu, Y.; Cao, G.; Samson, E.L.; Zhang, J. Forecasting China’s GDP at the pixel level using nighttime lights time series and population images. GISci. Remote Sens. 2017, 54, 407–425. [Google Scholar] [CrossRef]
- Boussadia-Omari, L.; Ouillon, S.; Hirche, A.; Salamani, M.; Guettouche, M.S.; Ihaddaden, A.; Nedjraoui, D. Contribution of phytoecological data to spatialize soil erosion: Application of the RUSLE model in the Algerian atlas. Int. Soil Water Conserv. Res. 2021, 9, 502–519. [Google Scholar] [CrossRef]
- Angima, S.; Stott, D.; O’neill, M.; Ong, C.; Weesies, G. Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agric. Ecosyst. Environ. 2003, 97, 295–308. [Google Scholar] [CrossRef]
- Farsana, F.; Varughese, A.; Joseph, A. Soil Erosion Estimation of Kunthippuzha Watershed Using GIS and RUSLE Model. Int. J. Environ. Clim. Change 2023, 13, 2956–2967. [Google Scholar] [CrossRef]
- Biswas, J.; Giri, B. RUSLE and AHP based soil erosion risk mapping for Jalpaiguri district of West Bengal, India. Proc. Indian Natl. Sci. Acad. 2023, 89, 869–883. [Google Scholar] [CrossRef]
- Hu, J.; Liu, Y.; Sang, Y.F.; Liu, C.; Singh, V.P. Precipitation variability and its response to urbanization in the Taihu Lake Basin, China. Theor. Appl. Climatol. 2021, 144, 1205–1218. [Google Scholar] [CrossRef]
- Lyu, H.M.; Shen, J.S.; Arulrajah, A. Assessment of geohazards and preventative countermeasures using AHP incorporated with GIS in Lanzhou, China. Sustainability 2018, 10, 304. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making—The Analytic Hierarchy and Network Processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Hategekimana, Y.; Yu, L.; Nie, Y.; Zhu, J.; Liu, F.; Guo, F. Integration of multi-parametric fuzzy analytic hierarchy process and GIS along the UNESCO World Heritage: A flood hazard index, Mombasa County, Kenya. Nat. Hazards 2018, 92, 1137–1153. [Google Scholar] [CrossRef]
- Cai, T.; Li, X.; Ding, X.; Wang, J.; Zhan, J. Flood risk assessment based on hydrodynamic model and fuzzy comprehensive evaluation with GIS technique. Int. J. Disaster Risk Reduct. 2019, 35, 101077. [Google Scholar] [CrossRef]
- Lv, C.; Gong, H.L. Snow Disaster Risk Assessment in China with the Multi-Layer Fuzzy Comprehensive Evaluation Method. Adv. Mater. Res. 2013, 726, 913–916. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Z.; Liu, Y.; Huang, Y.; Yang, F. Urban Flood risk assessment based on dynamic population distribution and fuzzy comprehensive evaluation. Int. J. Environ. Res. Public Health 2022, 19, 16406. [Google Scholar] [CrossRef] [PubMed]
- Hinojos, S.; McPhillips, L.; Stempel, P.; Grady, C. Social and environmental vulnerability to flooding: Investigating cross-scale hypotheses. Appl. Geogr. 2023, 157, 103017. [Google Scholar] [CrossRef]
- Zhu, H.; Yao, J.; Meng, J.; Cui, C.; Wang, M.; Yang, R. A Method to Construct an Environmental Vulnerability Model Based on Multi-Source Data to Evaluate the Hazard of Short-Term Precipitation-Induced Flooding. Remote Sens. 2023, 15, 1609. [Google Scholar] [CrossRef]
- Ministry of Emergency Management of the People’s Republic of China. The Emergency Management Department Released the Top Ten Natural Disasters in China in 2021 [EB/OL]. Available online: https://www.mem.gov.cn/xw/yjglbgzdt/202201/t20220123_407199.shtml (accessed on 25 January 2022).
- SL 579-2012; Flood Disaster Assessment Standard. Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2012.
- Wang, T.; Wang, H.; Wang, Z.; Huang, J. Dynamic risk assessment of urban flood disasters based on functional area division—A case study in Shenzhen, China. J. Environ. Manag. 2023, 345, 118787. [Google Scholar] [CrossRef]
- Amen, A.R.M.; Mustafa, A.; Kareem, D.A.; Hameed, H.M.; Mirza, A.A.; Szydłowski, M.; Saleem, B.K.M. Mapping of Flood-Prone Areas Utilizing GIS Techniques and Remote Sensing: A Case Study of Duhok, Kurdistan Region of Iraq. Remote Sens. 2023, 15, 1102. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, H.; Hu, L.; Meng, J.; Sun, F. Analysis of short-term heavy rainfall-based urban flood disaster risk assessment using integrated learning approach. Sustainability 2024, 16, 8249. [Google Scholar] [CrossRef]
- Shikhteymour, S.R.; Borji, M.; Bagheri-Gavkosh, M.; Azimi, E.; Collins, T.W. A novel approach for assessing flood risk with machine learning and multi-criteria decision-making methods. Appl. Geogr. 2023, 158, 103035. [Google Scholar] [CrossRef]
Original Data | Indicators | Resolution | Data Resource |
---|---|---|---|
DEM | Slope | 30 m | Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn, accessed on 1 January 2024.) |
Slope length | 30 m | ||
ECV | 30 m | ||
Relief amplitude | 30 m | ||
Drainage density | 30 m | ||
Precipitation in 2010–2020 | Precipitation variability | 1 km | National Earth System Science Data Center, National Science and Technology Infrastructure of China (http://www.geodata.cn, accessed on 1 January 2024.) |
Rainfall Erosivity | 1 km | ||
Monthly precipitation in 2010–2020 [42] | Flood season precipitation | 1 km | |
Soil types | Soil erodibility | 1 km | Harmonized World Soil Database (https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/, accessed on 1 February 2024) |
NDVI [43] | Cover and management factor | 1 km | NASA (https://search.earthdata.nasa.gov/search, accessed on 1 February 2024) |
Land utilization [44] | Cultivated land | 30 m | ESRI (https://www.arcgis.com/apps/instant/media/index.html, accessed on 1 February 2024) |
Factors of soil and water conservation measures | 30 m | ||
Impervious surface [45] | Impervious areas | 30 m | Zenodo (https://zenodo.org/record/5220816#.YrUCEPnraly, accessed on 1 February 2024) |
Population [46] | Population density | 1 km | ORNL (https://landscan.ornl.gov, accessed on 1 February 2024) |
Economy [47] | GDP density | 30 m | GitHub (https://github.com/thestarlab/ChinaGDP, accessed on 1 February 2024) |
POI | Emergency shelter | - | Amap (https://lbs.amap.com/, accessed on 1 January 2024) |
Medical institutions | - | ||
Road | Road network density | - | OpenStreeMap (https://www.openstreetmap.org, accessed on 1 January 2024) |
Daily precipitation in 2010–2020 | Rainstorm days | - | NOAA (https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/, accessed on 1 January 2024) |
Order/t | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI | 0.52 | 0.89 | 1.12 | 1.26 | 1.36 | 1.41 | 1.46 | 1.49 | 1.52 | 1.54 | 1.56 | 1.58 | 1.59 |
First Index | S-Index | Index Attribute | ||||
---|---|---|---|---|---|---|
Index | Weight | Index | FAHP Weight | Entropy Weight | Integrated Weight | |
Hazard | 30.05% | Precipitation variability/% (u1) | 0.2500 | 0.1392 | 22.45% | positive |
Soil erosion (u2) | 0.4000 | 0.8137 | 49.50% | positive | ||
Drainage density/km/km2 (u3) | 0.3500 | 0.0471 | 28.04% | positive | ||
Exposure | 23.69% | ECV (u4) | 0.2833 | 0.5206 | 33.78% | negative |
Relief amplitude (u5) | 0.3334 | 0.1408 | 28.91% | negative | ||
Impervious surface/% (u6) | 0.3833 | 0.3385 | 37.30% | positive | ||
Vulnerability | 26.52% | Population density/person/km2 (u7) | 0.3933 | 0.4289 | 40.15% | positive |
GDP density/ten thousand/km2 (u8) | 0.2858 | 0.4553 | 32.48% | positive | ||
Cultivated land/% (u9) | 0.3208 | 0.1159 | 27.38% | positive | ||
Coping capacity | 19.74% | Emergency shelter(u10) | 0.2800 | 0.5796 | 34.88% | negative |
Medical institutions(u11) | 0.4000 | 0.3105 | 37.94% | negative | ||
Road network density/km/km2 (u12) | 0.3200 | 0.1099 | 27.17% | negative |
Items | Eigenvector | Weight | Maximum Eigenvalue | CI |
---|---|---|---|---|
Hazard | 1.202 | 30.050% | 4.031 | 0.01 |
Exposure | 0.947 | 23.686% | ||
Vulnerability | 1.061 | 26.521% | ||
Coping capacity | 0.790 | 19.742% |
Indicators | e1 | e2 | e3 | e4 | e5 |
---|---|---|---|---|---|
Relief amplitude | 0.7255 | 0.8157 | 0.8824 | 0.9373 | 1.0000 |
ECV | 0.0000 | 0.5412 | 0.5608 | 0.7333 | 1.0000 |
Precipitation variability | 0.2745 | 0.4001 | 0.5529 | 0.7725 | 1.0000 |
Soil erosion | 0.0157 | 0.0627 | 0.1843 | 0.4667 | 1.0000 |
Drainage density | 0.3412 | 0.4824 | 0.5922 | 0.7216 | 1.0000 |
Impervious surface | 0.0000 | 0.0039 | 0.0118 | 0.0314 | 1.0000 |
Population density | 0.0157 | 0.0941 | 0.2745 | 0.6275 | 1.0000 |
GDP density | 0.0078 | 0.0667 | 0.2039 | 0.4588 | 1.0000 |
Cultivated land | 0.1200 | 0.3500 | 0.6100 | 0.8700 | 1.0000 |
Emergency shelter | 0.2510 | 0.5137 | 0.7490 | 0.9216 | 1.0000 |
Medical institutions | 0.4510 | 0.7451 | 0.8980 | 0.9686 | 1.0000 |
Road network density | 0.4000 | 0.6157 | 0.7686 | 0.8902 | 1.0000 |
Items | Severity Level | Shanxi | Shaanxi | Henan | |||
---|---|---|---|---|---|---|---|
Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | ||
Hazard | Very low | 2667.01 | 1.70 | 3666.22 | 1.78 | 80.74 | 0.05 |
Low | 53,490.24 | 34.14 | 32,021.72 | 15.56 | 3870.08 | 2.32 | |
Medium | 76,128.85 | 48.58 | 85,196.55 | 41.40 | 36,598.48 | 21.92 | |
High | 23,445.10 | 14.96 | 73,519.40 | 35.72 | 106,357.71 | 63.69 | |
Very high | 968.81 | 0.62 | 11,396.10 | 5.54 | 20,092.99 | 12.03 | |
Exposure | Very low | 25,956.39 | 16.56 | 52,056.58 | 25.29 | 26,735.01 | 16.01 |
Low | 38,967.11 | 24.87 | 40,950.65 | 19.90 | 35,108.72 | 21.02 | |
Medium | 31,733.26 | 20.25 | 35,425.34 | 17.21 | 38,418.36 | 23.01 | |
High | 29,278.62 | 18.68 | 34,923.59 | 16.97 | 36,888.42 | 22.09 | |
Very high | 30,764.61 | 19.63 | 42,443.84 | 20.62 | 29,849.49 | 17.87 | |
Vulnerability | Very low | 58,097.27 | 37.08 | 10,2830.61 | 49.97 | 22,338.97 | 13.38 |
Low | 20,471.05 | 13.06 | 26,772.34 | 13.01 | 5933.84 | 3.55 | |
Medium | 65,528.18 | 41.82 | 61,642.86 | 29.95 | 74,800.75 | 44.79 | |
High | 5945.73 | 3.79 | 6325.28 | 3.07 | 34,453.71 | 20.63 | |
Very high | 6657.77 | 4.25 | 8228.90 | 4.00 | 29,472.73 | 17.65 | |
Coping capacity | Very low | 11,841.65 | 7.56 | 64,872.84 | 31.52 | 12,996.47 | 7.78 |
Low | 47,292.01 | 30.18 | 65,719.83 | 31.93 | 20,033.37 | 12.00 | |
Medium | 36,053.07 | 23.01 | 35,728.91 | 17.36 | 36,378.46 | 21.78 | |
High | 37,681.82 | 24.05 | 24,982.11 | 12.14 | 52,348.06 | 31.35 | |
Very high | 23,831.45 | 15.21 | 14,496.30 | 7.04 | 45,243.64 | 27.09 | |
Flood risk | Very low | 33,778.97 | 21.56 | 22,658.55 | 11.01 | 5360.03 | 3.21 |
Low | 52,316.41 | 33.39 | 61,378.43 | 29.82 | 23,819.26 | 14.26 | |
Medium | 42,085.88 | 26.86 | 56,437.62 | 27.42 | 47,458.54 | 28.42 | |
High | 23,003.19 | 14.68 | 43,459.82 | 21.12 | 52,733.37 | 31.58 | |
Very high | 5515.56 | 3.52 | 21,865.58 | 10.62 | 37,628.81 | 22.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhu, H.; Yao, J.; Hu, L.; Kang, H.; Qian, A. Assessing Large-Scale Flood Risks: A Multi-Source Data Approach. Sustainability 2025, 17, 5133. https://doi.org/10.3390/su17115133
Wang M, Zhu H, Yao J, Hu L, Kang H, Qian A. Assessing Large-Scale Flood Risks: A Multi-Source Data Approach. Sustainability. 2025; 17(11):5133. https://doi.org/10.3390/su17115133
Chicago/Turabian StyleWang, Mengyao, Hong Zhu, Jiaqi Yao, Liuru Hu, Haojie Kang, and An Qian. 2025. "Assessing Large-Scale Flood Risks: A Multi-Source Data Approach" Sustainability 17, no. 11: 5133. https://doi.org/10.3390/su17115133
APA StyleWang, M., Zhu, H., Yao, J., Hu, L., Kang, H., & Qian, A. (2025). Assessing Large-Scale Flood Risks: A Multi-Source Data Approach. Sustainability, 17(11), 5133. https://doi.org/10.3390/su17115133