Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,014)

Search Parameters:
Keywords = flavor enhancers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3447 KiB  
Article
The Effect of Longan Peel and Seed on Wheat Starch and the Quality of Longan Cake
by Yi-Shan Chen, Yang Xiao, Heng-Yu Liang, Nan Chen, Hao-Xiang Gao and Wei-Cai Zeng
Polymers 2025, 17(16), 2259; https://doi.org/10.3390/polym17162259 - 21 Aug 2025
Viewed by 47
Abstract
In the present study, the effects of longan peel and seed on the quality of longan cake were determined, and the effects of longan peel extract (LPE) and longan seed extract (LSE) on the physicochemical properties of wheat starch were also measured. Furthermore, [...] Read more.
In the present study, the effects of longan peel and seed on the quality of longan cake were determined, and the effects of longan peel extract (LPE) and longan seed extract (LSE) on the physicochemical properties of wheat starch were also measured. Furthermore, the phenolic profile and antioxidant activities of these extracts were observed. The results showed that both longan peel and seed could improve the color, texture, and volatile flavor compounds of longan cake. In addition, the properties of wheat starch, including gelatinization characteristics, thermogravimetric analysis, rheological properties, solubility, swelling power, water/oil-holding capacity and iodine binding ability, were all affected by LPE and LSE significantly. Both LPE and LSE had high contents of total phenols (LPE: 71.05 ± 2.57 mg/g, LSE: 78.49 ± 5.21 mg/g) and total flavonoids (LPE: 286.27 ± 6.04 mg/g, LSE: 423.21 ± 7.69 mg/g). Gallic acid, ellagic acid, and ellagic acid 4-O-α-l-arabinofuranoside were identified as the main phenolic compounds of LPE, while those of LSE were gallic acid, ellagic acid, ellagic acid 4-O-α-l-arabinofuranoside and (-)-epicatechin. Furthermore, LPE and LSE both exhibited good antioxidant activities to scavenge free radicals and showed high reducing power. All results suggest that longan peel and seed are rich in phenols and can improve the properties of starch so as to enhance the quality of starch product, which shows their potential application in food and chemical industries. Full article
(This article belongs to the Special Issue Advanced Polymers in Food Science)
Show Figures

Figure 1

17 pages, 8767 KiB  
Article
Investigation on Precursor Aromas and Volatile Compounds During the Fermentation of Blackened Pear Vinegar
by Shangjing Chen, Yuxiao Wang, Xin Sun, Zhizhen Han, Qiyong Jiang, Lin Gao and Rentang Zhang
Foods 2025, 14(16), 2905; https://doi.org/10.3390/foods14162905 - 21 Aug 2025
Viewed by 26
Abstract
The acetic acid fermentation stage is a key determinant of fruit vinegar’s aroma profile. Therefore, this study employed GC-MS, HPLC, E-nose and E-tongue techniques, in conjunction with multivariate statistical analysis, to investigate the dynamic changes of compounds during the acetic acid fermentation process [...] Read more.
The acetic acid fermentation stage is a key determinant of fruit vinegar’s aroma profile. Therefore, this study employed GC-MS, HPLC, E-nose and E-tongue techniques, in conjunction with multivariate statistical analysis, to investigate the dynamic changes of compounds during the acetic acid fermentation process of blackened pear vinegar (BPV), as well as the transformation of volatile and non-volatile aroma-active compounds. Results revealed accumulation of organic acids and esters alongside declines in alcohols, aldehydes, and ketones. Isoamyl acetate, benzaldehyde, and nonanal (OAV > 1) were identified as key aroma contributors (VIP > 1, p < 0.05). Total organic acids significantly increased from 4.82 ± 0.53 mg/mL to 10.29 ± 2.38 mg/mL. Correlation analysis revealed a negative relationship between amino acids and volatile compounds, and this negative correlation suggests a possible precursor–product relationship between them. These findings provide theoretical support for the enhancement of fruit vinegar flavor, as well as the application of blackened fruits. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

16 pages, 1589 KiB  
Article
Effects of Rhizopus oligosporus-Mediated Solid-State Fermentation on the Protein Profile and α-Glucosidase Inhibitory Activity of Selenium-Biofortified Soybean Tempeh
by Chengying Wang, Changli Hu, Xin Li, Ruizhe Shen, Liwei Yin, Qiguo Wu and Ting Hu
Foods 2025, 14(16), 2899; https://doi.org/10.3390/foods14162899 - 21 Aug 2025
Viewed by 102
Abstract
Solid-state fermentation (SSF) enhances the nutritional profile of legumes. This study evaluated Rhizopus oligosporus-mediated SSF for selenium (Se) biofortification in soybean tempeh (a traditional Southeast Asian food), assessing the effects of selenate and selenite (0–60 mg kg−1) on R. oligosporus [...] Read more.
Solid-state fermentation (SSF) enhances the nutritional profile of legumes. This study evaluated Rhizopus oligosporus-mediated SSF for selenium (Se) biofortification in soybean tempeh (a traditional Southeast Asian food), assessing the effects of selenate and selenite (0–60 mg kg−1) on R. oligosporus growth, substrate consumption, mycelium morphology, and Se speciation in tempeh. Selenium supplementation at 18–24 mg kg−1 reduced soybean protein content by 9.4~13.8% relative to the protein content of the Se-free fermented tempeh (control group, 19.85%) and significantly promoted proteolysis. Higher concentrations (48–60 mg kg−1) restored protein levels to control values (19%), indicating concentration-dependent regulation of protein stability. Selenate at 42 mg kg−1 significantly increased the levels of flavor amino acids (e.g., glutamate, aspartate), essential amino acids, and total amino acids in tempeh. In contrast, selenite showed no significant improvement in amino acid content and even reduced non-essential amino acids (e.g., alanine, glycine) at high concentrations (42 mg kg−1). Selenium biofortification converted selenate to selenomethionine (SeMet) and Se(VI), but transformed selenite into methylselenocysteine (MeSeCys), selenocystine (SeCys2), and SeMet. Fermented Se-tempeh demonstrated potent α-glucosidase inhibition (IC50 values ranging from 1.66 ± 0.05 to 2.89 ± 0.03 mg mL−1), suggesting Se-enriched soybean tempeh could be considered a promising blood-sugar-friendly food. Thus, developing soybean-based functional foods via co-inoculation of R. oligosporus with inorganic Se is a promising way to enhance tempeh bioactivity. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

19 pages, 2451 KiB  
Article
The Hydrochar Pre-Coupled Butyrate-Degrading Microbiome Assists the Bioenergy Production from Brewing Wastewater
by Xiaoyong Li, Zhi Wang, Xi Wang, Caihong Shen, Yun He, Shiru Li, Jinmeng Chen, Shilei Wang, Wei Zhuang, Xingyao Meng, Yafan Cai, Jingliang Xu and Hanjie Ying
Processes 2025, 13(8), 2634; https://doi.org/10.3390/pr13082634 - 20 Aug 2025
Viewed by 153
Abstract
Butyric acid is one of the main volatile fatty acids (VFAs) in Maotai-flavor liquor wastewater (MFLW), and its degradation process exhibits a positive Gibbs free energy, making it prone to accumulation during high-load anaerobic digestion (AD), which can lead to system instability or [...] Read more.
Butyric acid is one of the main volatile fatty acids (VFAs) in Maotai-flavor liquor wastewater (MFLW), and its degradation process exhibits a positive Gibbs free energy, making it prone to accumulation during high-load anaerobic digestion (AD), which can lead to system instability or even failure. In this study, hydrochar (HTC) was prepared from rice husk obtained from distiller’s grains, and butyrate-degrading microbiomes were selectively enriched under acidic conditions with butyric acid as the sole carbon source. Through co-incubation, the butyrate-degrading microbiomes were successfully pre-coupled with HTC, forming a “hydrochar–microbe” composite, which was then applied to the AD of MFLW. The experimental results demonstrated that this composite enhanced system performance. The hydrochar–butyrate pre-coupling group (HBA-C) showed a 15.48% increase in methane yield compared to the control group (CK), with a soluble chemical oxygen demand (sCOD) removal rate of 75.02%, effectively mitigating VFA accumulation. Microbial community analysis indicated higher bacterial and archaeal diversity indices in the HBA-C group. qPCR results showed that the bacterial and archaeal copy numbers in the HBA-C group were 22.06-times and 13.80-times higher than those in the CK group, respectively. Moreover, the relative abundance of the genes for the key enzymes methylmalonyl-CoA carboxyltransferase (EC: 2.1.3.1) and succinate dehydrogenase (EC: 1.3.5.1) was significantly increased, indicating that the “hydrochar–microbe” coupling enhanced carbon flow distribution efficiency and energy metabolism by optimizing metabolic pathways. This study provides an innovative strategy for MFLW treatment and offers practical value for anaerobic digestion optimization and high-strength wastewater management. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 3328 KiB  
Article
Widely Targeted Metabolomics Decodes Metabolic Remodeling and Functional Shifts in Ganoderma lucidum-Fermented Green Tea Infusion
by Xuzhou Liu, Ying Ju, Shuai Wen, Hongzhe Zeng, Chao Wang, Mingguo Jiang, Bingchuan Tian, Jianan Huang and Zhonghua Liu
Foods 2025, 14(16), 2855; https://doi.org/10.3390/foods14162855 - 18 Aug 2025
Viewed by 299
Abstract
This study used a targeted metabolomics approach to examine changes in metabolites within green tea infusions fermented by G. lucidum (TFG) and evaluate the in vitro antioxidant and lipid-lowering properties of TFG. Fermentation decreased tea polyphenols, flavonoids, caffeine, soluble sugars, theaflavins, and catechins, [...] Read more.
This study used a targeted metabolomics approach to examine changes in metabolites within green tea infusions fermented by G. lucidum (TFG) and evaluate the in vitro antioxidant and lipid-lowering properties of TFG. Fermentation decreased tea polyphenols, flavonoids, caffeine, soluble sugars, theaflavins, and catechins, while increasing free amino acids and theabrownins. The microbial bioconversion process led to the generation of decorated flavonoids, phenolic acids, terpenoids, alkaloids, nucleotides, and amino acids. This process shifted the tea’s taste from bitter and astringent to mellow, primarily due to the transformation of flavonoid glycosides, caffeine, catechins, 5′-guanosine monophosphate, 5′-uridine monophosphate, and theabrownins. Volatile metabolites added woody, floral, sweet, and fruity aromas. Reduced gallic acid and catechins lowered antioxidant activity, whereas increased theabrownins enhanced lipid-lowering activity and imparted a reddish-brown color. These findings indicate that fermentation significantly affects the flavor, aroma, and lipid-lowering ability of green tea infusion. Full article
Show Figures

Figure 1

20 pages, 9076 KiB  
Article
Effects of Sugar Impregnation Methods on Physicochemical Properties and Flavor Profiles of Prune Preserves Using GC-IMS and Electronic Tongue
by Qingping Du, Rui Yang, Wei Wang, Wei Li, Tongle Sun, Shihao Huang, Xinyao Han and Mingxun Ai
Foods 2025, 14(16), 2852; https://doi.org/10.3390/foods14162852 - 18 Aug 2025
Viewed by 303
Abstract
Thermal impregnation (TI) is a traditional method of sugar infusion, but it has disadvantages such as long processing time and uneven sugar distribution. Therefore, developing sugar impregnation methods to enhance product flavor, nutritional value, and processing efficiency is critical for addressing potential quality [...] Read more.
Thermal impregnation (TI) is a traditional method of sugar infusion, but it has disadvantages such as long processing time and uneven sugar distribution. Therefore, developing sugar impregnation methods to enhance product flavor, nutritional value, and processing efficiency is critical for addressing potential quality loss and efficiency bottlenecks in traditional preserve processing technologies. This study took the TI process widely adopted in Xinjiang over the long term as a reference and systematically compared the effects of vacuum impregnation (VI) and ultrasonic-assisted impregnation (UI) on the flavor characteristics and physicochemical properties of plum preserves. Volatile organic compounds (VOCs) were identified using gas chromatography–ion mobility spectrometry (GC-IMS) coupled with multivariate analysis, while taste attributes were quantified via electronic tongue (E-tongue). Physicochemical parameters, including titratable acidity (TA), browning index (BI), color parameters (L*, a*, b*), total polyphenol content (TPC), total flavonoid content (TFC), and texture profile analysis (TPA), were also evaluated. GC-IMS identified 60 VOCs, predominantly comprising aldehydes (20), alcohols (10), ketones (6), acids (4), esters (3), furans (3), ketols (2), and unidentified compounds (12). The VI-treated samples exhibited distinct aromatic profiles, retaining a higher proportion of key volatile compounds. E-tongue results showed that VI significantly enhanced sourness, umami, and aftertaste complexity compared with UI and TI (p < 0.05). Physicochemical analyses showed that VI maximally preserved bioactive compounds, with a TPC of 1.23 ± 0.07 mg GAE/g and TFC of 17.55 ± 0.81 mg RE/g. Additionally, VI minimized enzymatic browning (BI: 0.37 ± 0.03), maintained color brightness (L*: 31.85 ± 1.56), maintained favorable textural properties (hardness: 187.63 ± 4.04 N), and retained the highest TA content (0.77 ± 0.05%). In contrast, UI and TI led to significant quality degradation, characterized by pronounced browning and texture deterioration: the BI values were 0.61 ± 0.02 (UI) and 0.83 ± 0.03 (TI), and hardness values were 176.53 ± 5.81 N (UI) and 156.25 ± 4.55 N (TI). These findings provide critical references for sugar impregnation techniques and a scientific basis for flavor regulation in prune preserve production. Full article
Show Figures

Figure 1

23 pages, 1659 KiB  
Article
Fermentation with Pectin Trans-Eliminase to Reduce Cadmium Levels in Nacional and CCN-51 Cocoa Bean Genotypes
by Wiston Javier Morales-Rodriguez, Jaime Morante-Carriel, Mercedes Carranza-Patiño, Darko Ormaza-Vásquez, María Concepción Ayuso-Yuste and María Josefa Bernalte-García
Plants 2025, 14(16), 2553; https://doi.org/10.3390/plants14162553 - 16 Aug 2025
Viewed by 274
Abstract
Cocoa represents a crucial source of income in coastal regions of Ecuador, where the product is exported for the production of high-value chocolates. However, elevated levels of cadmium (Cd) in cocoa beans, attributable to volcanic soils, have the potential to impede international trade, [...] Read more.
Cocoa represents a crucial source of income in coastal regions of Ecuador, where the product is exported for the production of high-value chocolates. However, elevated levels of cadmium (Cd) in cocoa beans, attributable to volcanic soils, have the potential to impede international trade, particularly in accordance with European Union regulations. The main objective of this study was to reduce Cd concentrations in cocoa beans of two genotypes, Nacional and CCN-51, by applying different doses of pectin trans-eliminase (PTE) enzyme during the fermentation process in conjunction with mucilage washing techniques, pre-drying resting periods, and various drying methods. To this end, a Taguchi orthogonal design (L9) was employed to evaluate nine treatments per genotype, complemented with two controls. The most efficacious treatment for Nacional was identified as T7, involving a 0.30 mL·kg−1 PTE dose, the absence of mucilage washing, a 48 h resting period, and drying in a marquee. This treatment resulted in a 68.6% reduction in Cd concentration (from 0.28 to 0.09 mg·kg−1). For CCN-51, T3 (0.10 mL·kg−1 PTE, complete washing, 48 h resting, and splint drying) yielded a 26.4% reduction in Cd (from 0.42 to 0.31 mg·kg−1). It is noteworthy that none of the treatments exceeded the EU regulatory threshold of 0.8 mg·kg−1. A physico-chemical analysis was conducted, which revealed significant treatment effects on pH (ranging from 5.63 to 6.85) and acidity (0.02% to 0.03%). Sensory evaluation indicated enhancements in cocoa and nutty flavors, along with a reduction in undesirable astringency and bitterness, particularly in Nacional samples. The findings of this study demonstrate that the combination of enzyme-assisted fermentation and optimized postharvest techniques represents a pragmatic approach to the mitigation of cadmium in cocoa, while simultaneously preserving or enhancing product quality. Full article
Show Figures

Figure 1

16 pages, 3190 KiB  
Article
GC-MS Non-Target Metabolomics-Based Analysis of the Volatile Aroma in Cerasus humilis After Grafting with Different Rootstocks
by Gaixia Qiao, Jun Xie, Chun’e Zhang, Yujuan Liu, Xiaojing Guo, Qiaoxia Jia, Caixia Zhang and Meilong Xu
Horticulturae 2025, 11(8), 972; https://doi.org/10.3390/horticulturae11080972 - 16 Aug 2025
Viewed by 252
Abstract
C. humilis is a small shrub belonging to the Rosaceae family, and grafting is one of the main ways for propagation. However, the influence of different rootstocks on volatile aroma is still unclear. In this study, an untargeted metabolomics approach based on gas [...] Read more.
C. humilis is a small shrub belonging to the Rosaceae family, and grafting is one of the main ways for propagation. However, the influence of different rootstocks on volatile aroma is still unclear. In this study, an untargeted metabolomics approach based on gas chromatography–mass spectrometry (GC-MS) was utilized to analyze the volatile differential metabolites between the rootstock–scion combinations and self-rooted seedlings. Furthermore, metabolic pathway enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In total, 191,162 and 150 volatile differential metabolites were identified in different rootstock–scion combinations. The rootstock–scion combinations of ZG/MYT and ZG/BT could improve the volatile aroma in the fruit of C. humilis and made significant contributions to the rose and fruity flavors. KEGG pathway analysis indicated that the differential metabolites were mainly enriched in the butanoate metabolism and glycolysis/gluconeogenesis pathways, showing an increasing trend. Prunus tomentosa and Amygdalus communis can serve as preferred rootstocks for enhancing the aroma quality of C. humilis fruits. These results provide new insight into rootstock-based propagation and breeding and also offer some guidance for graft-based fruit production. Full article
(This article belongs to the Special Issue Genetic Breeding and Germplasm Resources of Fruit and Vegetable Crops)
Show Figures

Figure 1

15 pages, 1143 KiB  
Article
Development and Characterization of Pistachio Yogurt Analog: A Healthy, Sustainable, and Innovative Plant-Based Alternative
by Inés M. Ramos, Samuel Rodríguez García and Justa M. Poveda
Fermentation 2025, 11(8), 467; https://doi.org/10.3390/fermentation11080467 - 15 Aug 2025
Viewed by 441
Abstract
Plant-based yogurts are increasingly recognized as sustainable and health-conscious alternatives to dairy-based products, driven by environmental, ethical, and nutritional motivations. Pistachio milk, derived from an efficient and resilient crop, emerges as a promising raw material for yogurt production, offering unique sensory qualities and [...] Read more.
Plant-based yogurts are increasingly recognized as sustainable and health-conscious alternatives to dairy-based products, driven by environmental, ethical, and nutritional motivations. Pistachio milk, derived from an efficient and resilient crop, emerges as a promising raw material for yogurt production, offering unique sensory qualities and a dense nutritional profile. Rich in unsaturated fatty acids, bioactive compounds, and essential nutrients, pistachios are ideal for fermentation with lactic acid bacteria (LAB). In this study, a novel pistachio-based yogurt analog (PBYA) was developed using lactic acid fermentation, with a yogurt commercial starter, of pistachio milk. The production process was optimized to create an additive-free, clean-label formulation without the use of stabilizers or thickeners. The physicochemical, microbiological, and sensory properties of the PBYA were evaluated over refrigerated storage. The final product exhibited high levels of protein (5.6%), fat (5.4–6.8%), and total solids (20.5–21.4%), along with desirable texture and flavor characteristics. Notably, PBYA presented significantly higher concentrations of total free amino acids (754 mg/L) compared to commercial soy (557 mg/L) and cow’s milk yogurts (390 mg/L), particularly in essential amino acids such as lysine, methionine, and tryptophan. This enhanced free amino acid profile contributes to the product’s functional and nutritional value. Sensory analysis revealed good acceptance of the product, with improvements in viscosity and firmness over time, likely due to microbial exopolysaccharide production. Overall, the findings highlight the feasibility and commercial potential of PBYA as a clean-label, plant-based fermented product that meets current consumer demands for sustainability, nutrition, and sensory quality. Full article
Show Figures

Figure 1

27 pages, 1732 KiB  
Review
Modern Palatant Strategies in Dry and Wet Pet Food: Formulation Technologies, Patent Innovations, and Market Evolution
by Phatthranit Klinmalai, Pitiya Kamonpatana, Janenutch Sodsai, Khwanchat Promhuad, Atcharawan Srisa, Yeyen Laorenza, Attawit Kovitvadhi, Sathita Areerat, Anusorn Seubsai and Nathdanai Harnkarnsujarit
Foods 2025, 14(16), 2824; https://doi.org/10.3390/foods14162824 - 14 Aug 2025
Viewed by 452
Abstract
Palatability is a critical determinant of pet food performance, directly influencing voluntary intake, nutrient utilization, and therapeutic efficacy. In this systematic review, we examine peer-reviewed research publications, patent filings, and commercial product data pertaining to palatant technologies in dry and wet pet food [...] Read more.
Palatability is a critical determinant of pet food performance, directly influencing voluntary intake, nutrient utilization, and therapeutic efficacy. In this systematic review, we examine peer-reviewed research publications, patent filings, and commercial product data pertaining to palatant technologies in dry and wet pet food from 2014 to 2024. Major palatant classes—including fats, proteins, yeast extracts, and novel plant-derived or insect-based hydrolysates—are evaluated for their physicochemical properties, flavor-release mechanisms, and stability during processing. We analyze formulation techniques such as microencapsulation, Maillard-reaction enhancement, and multilayer coating systems, focusing on their impact on aromatic compound retention and palatability consistency. Patent landscape assessment identifies over 15 key innovations in delivery systems, life-stage-specific palatant modulation, and dual-phase release architectures. Dual-phase release architectures are defined as systems that deliver active compounds in two sequential phases, such as immediate and sustained release. Sensory evaluation methodologies—ranging from multivariate preference mapping to descriptive analysis—are critically appraised to correlate human-panel metrics with canine and feline feeding behavior. We also discuss strategic integration of palatants at different processing stages (pre-conditioning, extrusion, and post-extrusion) and the challenges of balancing taste masking with nutritional requirements, particularly in formulations containing alternative proteins for sustainability. Despite rapid market growth in functional palatant-infused products, peer-reviewed literature remains relatively limited, suggesting opportunities for further research on species-specific flavor drivers, synbiotic flavor–nutrient interactions, and novel delivery platforms. This comprehensive overview of palatant science, patent innovations, and market evolution provides evidence-based guidance for researchers, formulators, and veterinarians seeking to optimize organoleptic properties and consumer acceptance of next-generation pet foods. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

12 pages, 690 KiB  
Article
A Comparative Analysis of Fruit Quality and Flavor in Capsicum chinense and Capsicum annuum from Myanmar, Peru, and Japan
by Claudia F. Ortega Morales, Kenji Irie and Makoto Kawase
Int. J. Plant Biol. 2025, 16(3), 90; https://doi.org/10.3390/ijpb16030090 - 14 Aug 2025
Viewed by 175
Abstract
Chili peppers, a staple spice in global cuisine, hold substantial economic value due to their diverse pungency levels and distinctive aromatic profiles. In addition to their sensory attributes, Capsicum fruits exhibit notable morphological diversity and potential health benefits. While contemporary Capsicum breeding efforts [...] Read more.
Chili peppers, a staple spice in global cuisine, hold substantial economic value due to their diverse pungency levels and distinctive aromatic profiles. In addition to their sensory attributes, Capsicum fruits exhibit notable morphological diversity and potential health benefits. While contemporary Capsicum breeding efforts have focused on the yield, shelf life, and resistance to biotic and abiotic stresses, comparatively less emphasis has been placed on the fruit quality and flavor traits increasingly valued by consumers seeking novel flavors and functional foods. We evaluated seven underutilized Capsicum landraces collected from Peru, Myanmar, and Japan and conducted an integrative analysis of their morphological traits, nutritional composition, pungency, and volatile compounds. Our findings highlight C. chinense from Myanmar and Peru as a particularly diverse species, encompassing accessions with mild to very highly pungent, elevated antioxidant content, and significant contributions to fruity aromatic notes. These findings support the development of flavor-driven chili-pepper-based food products with enhanced nutritional value and tailored pungency. Our identification of beneficial alleles also offers opportunities for interspecific breeding to produce novel cultivars aligned with evolving consumer preferences, thereby supporting the commercialization of traditional varieties, conserving genetic resources, and expanding the market potential of new cultivars. Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
Show Figures

Figure 1

11 pages, 1967 KiB  
Article
Exogenous Melatonin Affects Fruit Enlargement and Sugar Metabolism in Melt Peach
by Yanfei Guo, Baoxin Jiang, Qinghao Wang, Huilian Xu and Wangshu Zhang
Horticulturae 2025, 11(8), 964; https://doi.org/10.3390/horticulturae11080964 - 14 Aug 2025
Viewed by 233
Abstract
Peach (Prunus persica (L.)) fruits are abundant in nutrients, with fruit shape and sugar content serving as critical indicators of fruit quality. Melatonin plays a pivotal role in peach fruit development; however, the mechanisms by which it regulates fruit shape development, sugar [...] Read more.
Peach (Prunus persica (L.)) fruits are abundant in nutrients, with fruit shape and sugar content serving as critical indicators of fruit quality. Melatonin plays a pivotal role in peach fruit development; however, the mechanisms by which it regulates fruit shape development, sugar metabolism, and secondary metabolites remain largely unknown. In this study, peach trees were sprayed with 150 µM melatonin 20 days after pollination. Traditional methods were used to investigate fruit morphology, total soluble solids (TSSs), and titratable acidity content (TAC), while liquid chromatography–mass spectrometry (LC-MS) was employed to analyze sugar metabolites during fruit development. The results indicated that melatonin treatment augmented the transverse and longitudinal diameters of peach fruits by 12% and 6%, respectively, and elevated the contents of soluble solids and titratable acid by 7% and 6%, respectively. The single fruit weight experienced a significant increase of 29.4%, whereas fruit firmness at maturity remained unchanged. Metabolite analysis demonstrated that melatonin decreased the levels of sucrose and D-sorbitol in mature fruits but enhanced the accumulation of D-fructose, L-rhamnose, and xylose. Significantly, melatonin expedited the degradation of galactose, D-mannose, and methyl-D-pyranogalactoside prior to maturity (all three substances naturally decline with fruit ripening), highlighting its role in promoting fruit ripening. In conclusion, exogenous melatonin improves the internal nutrition and flavor quality of fruit by regulating the accumulation of primary and secondary metabolites during fruit ripening. Specifically, the increase in D-fructose (a major contributor to sweetness) and L-rhamnose (a potential precursor for aroma compounds) enhances fruit flavor profile. The accelerated degradation of galactose, D-mannose, and methyl-D-pyranogalactoside (components of cell wall polysaccharides) prior to maturity, alongside the metabolic shift favoring fructose accumulation over sucrose, highlights melatonin’s role in promoting fruit ripening and softening processes. It also promotes fruit enlargement and single fruit weight without affecting fruit firmness. This study establishes a theoretical basis for the further investigation of the molecular mechanisms underlying melatonin’s role in peach fruits and for enhancing quality-focused breeding practices. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

22 pages, 3518 KiB  
Article
Insights into the Flavor Profiles and Key Aroma-Active Compounds of Sichuan Xiaoqu Qingxiangxing Baijiu Across Distilling Stages
by Lei Tian, Pei Xu, Ji Qin, Guojun Hou, Qiao Huang, Ying Liu, Yu Li and Tongwei Guan
Foods 2025, 14(16), 2814; https://doi.org/10.3390/foods14162814 - 14 Aug 2025
Viewed by 281
Abstract
Distillation, a crucial step in Baijiu production, profoundly influences its flavor. However, the aroma-active compounds of Sichuan Xiaoqu Qingxiangxing (SXQ) Baijiu during distillation remain unclear. Here, we comprehensively analyzed the volatile flavor compound (VFC) composition and alcohol content variations across three [...] Read more.
Distillation, a crucial step in Baijiu production, profoundly influences its flavor. However, the aroma-active compounds of Sichuan Xiaoqu Qingxiangxing (SXQ) Baijiu during distillation remain unclear. Here, we comprehensively analyzed the volatile flavor compound (VFC) composition and alcohol content variations across three key distillation stages (i.e., head, heart, and tail) of SXQ Baijiu using headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography–mass spectrometry (GC×GC-MS), alongside electronic nose (E-nose) and electronic tongue (E-tongue). A total of 111 VFCs, 22 key odorants, and 11 pivotal differential VFCs were identified. Ethyl octanoate were identified as the most critical odor-active compounds, while isoamylol was recognized as a key difference marker. VFC concentrations in raw Baijiu decreased from head > heart > tail, while VFC categories increased from tail > head > heart. The flavor profiles of the head differ significantly from those of the heart and tail in Baijiu distillation. Alcohol content decreased as distillation proceeded. The E-nose and E-tongue effectively distinguished raw Baijiu samples from different distillation stages. This study enhances our understanding of volatile compounds and their aroma contributions during the distillation process of SXQ Baijiu. The findings provides bases for optimizing the distillation and quality-based classification of distillates in SXQ Baijiu production. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

15 pages, 912 KiB  
Article
Ultrasonic-Assisted Nanoparticle Engineering to Enhance the Extraction Efficiency and Sensory Quality of Saudi Coffee
by Sameh A. Ahmed, Faisal S. Al-Amro and Yaser M. Alahmadi
Foods 2025, 14(16), 2811; https://doi.org/10.3390/foods14162811 - 13 Aug 2025
Viewed by 238
Abstract
Background: Saudi coffee, made from Khawlani beans, is known for its sweeter, less acidic flavor and rich content of bioactive compounds. However, traditional preparation methods are time consuming and inefficient in extracting these compounds, limiting their global appeal. This study introduces an ultrasonic-assisted [...] Read more.
Background: Saudi coffee, made from Khawlani beans, is known for its sweeter, less acidic flavor and rich content of bioactive compounds. However, traditional preparation methods are time consuming and inefficient in extracting these compounds, limiting their global appeal. This study introduces an ultrasonic-assisted nanoparticle preparation technique to enhance the extraction efficiency, chemical profile, and sensory quality of Saudi coffee. The method aims to overcome limitations of traditional grinding by reducing the particle size while preserving key bioactive compounds. Methods: Finely ground coffee was subjected to ultrasonic processing at optimized parameters 450 W (60% of 750 W output), with 10 min of pulsed sonication to produce nanoparticles. These were characterized using SEM, FT-IR, XRPD, and particle size analysis. Comparative chemical analysis (caffeine, total phenols) and sensory evaluation were conducted against regular Saudi coffee. Results: Ultrasonication reduced the particle size to ~101 nm, significantly enhancing caffeine (from 0.54 to 3.21 mg/g) and phenolic content (from 426.7 to 1825.3 µg GAE/g). Solubility also increased from 40.7% to 75.9%. Sensory tests showed an improved aroma, mouthfeel, and flavor. These improvements are attributed to an enhanced extraction and surface area at the nanoscale. Conclusion: Ultrasonic-assisted nanoparticle technology significantly improves the physicochemical and sensory properties of Saudi coffee. This approach offers a fast, scalable, and eco-friendly method for quality enhancement, positioning Saudi coffee for greater global competitiveness. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

8 pages, 467 KiB  
Proceeding Paper
Role of a Natural Antioxidant in the Secondary Shelf Life of Ready-to-Use Meat Pâté
by Beatrice Sordini, Sonia Esposto, Arianna Bonucci, Ilenia Dottori, Luigi Daidone, Stefania Urbani, Gianluca Veneziani, Roberto Selvaggini, Maurizio Servili, Davide Nucciarelli and Agnese Taticchi
Proceedings 2025, 119(1), 10; https://doi.org/10.3390/proceedings2025119010 - 11 Aug 2025
Viewed by 165
Abstract
By-products from the agro-food industry can be natural ingredients for reformulating traditional foods, enhancing quality, extending secondary shelf life (SSL), and reducing food waste. This study evaluates the impact of an olive vegetation water phenolic extract (OVWPE) at two concentrations on ready-to-use meat [...] Read more.
By-products from the agro-food industry can be natural ingredients for reformulating traditional foods, enhancing quality, extending secondary shelf life (SSL), and reducing food waste. This study evaluates the impact of an olive vegetation water phenolic extract (OVWPE) at two concentrations on ready-to-use meat pâté (MP1 and MP2) under simulated retail storage. We evaluated the phenolic composition, volatile compounds, antioxidant activity, and sensory quality of the OVWPE-added pâté and compared it to the control sample (CTRL; without antioxidant). Results indicated that OVWPE minimized oxidation products, enhancing lipid stability, and also reduced the formation of C6–C9 aldehydes linked to rancid off-flavor. Without sensory defects, the OVWPE pâtés showed higher antioxidant activity and α-tocopherol content than the CTRL. OVWPE appears to be a promising antioxidant of natural origin for food formulations, supporting SSL extension and food waste reduction. Full article
Show Figures

Figure 1

Back to TopTop