The Effect of Longan Peel and Seed on Wheat Starch and the Quality of Longan Cake
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Longan Cake with Longan Peel and Seed
2.2.1. Preparation of Longan Peel Powder and Seed Powder
2.2.2. Preparation of Longan Cake
2.3. Determination of Texture Properties and Color of Longan Cake
2.4. Determination of Volatile Flavor Components of Longan Cake
2.5. Preparation of Longan Peel and Seed Extracts and Their Complexes with Wheat Starch
2.6. Determination of Thermal Properties of Wheat Starch with LPE or LSE
2.7. Determination of Thermogravimetric Analysis (TGA) of Wheat Starch with LPE or LSE
2.8. Determination of Rheological Properties of Wheat Starch with LPE or LSE
2.9. Determination of Solubility and Swelling Power of Wheat Starch with LPE or LSE
2.10. Determination of the Water Holding Capacity (WHC) and Oil Holding Capacity (OHC) of Wheat Starch with LPE or LSE
2.11. Determination of Iodine Binding of Wheat Starch with LPE or LSE
2.12. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC) of LPE and LSE
2.13. Determination of Phenolic Profile of LPE and LSE
2.14. Determination of Antioxidant Activities of LPE and LSE
2.15. Statistical Analysis
3. Results and Discussions
3.1. Texture Properties and Color of Longan Cake
3.2. Volatile Flavor Components of Longan Cake
3.3. Thermal Properties of Wheat Starch with LPE or LSE
3.4. Thermogravimetric Analysis (TGA) of Wheat Starch with LPE or LSE
3.5. Rheological Properties of Wheat Starch with LPE or LSE
3.6. Solubility and Swelling Power of Wheat Starch with LPE or LSE
3.7. Water Holding Capacity (WHC) and Oil Holding Capacity (OHC) of Wheat Starch with LPE or LSE
3.8. Iodine Binding of Wheat Starch with LPE or LSE
3.9. Total Phenolic and Total Flavonoid Content of LPE and LSE
3.10. Identification of Main Phenolic Components in LPE and LSE
3.11. Antioxidant Activities of LPE and LSE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Omura, R.; Kawai, K. Effects of starch gelatinization, rheological properties, and a top cover on the height of steamed cakes made with rice flour and wheat flour. J. Cereal Sci. 2025, 123, 104194. [Google Scholar] [CrossRef]
- Martínez-García, M.; Pascual-Pineda, L.A.; Rascón-Díaz, M.P.; Quintanilla-Carvajal, M.X.; Jiménez-Fernández, M. Physicochemical, Technological, and Structural Properties and Sensory Quality of Bread Prepared with Wheat Flour and Pumpkin (Cucurbita argyrosperma), Chayotextle (Sechium edule Root) and Jinicuil (Inga paterno Seeds) Flour. ACS Food Sci. Technol. 2025, 5, 512–524. [Google Scholar] [CrossRef]
- Márquez-Rangel, I.; Cruz, M.; Ruiz, H.A.; Rodríguez-Jasso, R.M.; Loredo-Treviño, A.; Belmares, R. Evaluation of Agave salmiana by-products as a functional ingredient for the development of sustainable foods. J. Sci. Food Agric. 2025, 105, 4349–4358. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, H.; Wang, Z.X.; Brennan, M.; Soteyome, T.; Qin, Y.Y.; Brennan, C. Effects of wheat bran flour, oat flour, and Dictyophora indusiata powder on physical, chemical, sensorial, and in vitro digestibility of wheat noodles. Int. J. Food Sci. Technol. 2024, 59, 9615–9625. [Google Scholar] [CrossRef]
- Alasino, M.C.; Osella, C.A.; Torre, M.A.D.L.; Sanchez, H.D. Use of sodium stearoyl lactylate and azodicarbonamide in wheat flour breads with added pea flour. Int. J. Food Sci. Nutr. 2011, 62, 385–391. [Google Scholar] [CrossRef]
- Yamada, Y.; Preston, K.R. Effects of individual oxidants on oven rise and bread properties of canadian short process bread. J. Cereal Sci. 1992, 15, 237–251. [Google Scholar] [CrossRef]
- Yuksel, F.; Çaglar, S. In vitro glycemic index, acrylamide content, and some physicochemical and sensorial properties of special dried bread (Peksimet) enriched with einkorn wheat (Tiriticum monococcum L.) flour. J. Food Sci. Technol. Mys. 2025, 62, 368–376. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.A.; Siddiqui, M.W.; Dávila-Aviña, J.E.; González-Aguilar, G.A. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int. 2011, 44, 1866–1874. [Google Scholar] [CrossRef]
- de Araújo, F.F.; Farias, D.D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.J.; Dhital, S.; Wu, P.; Chen, X.D.; Gidley, M.J. In Vitro Digestion of Apple Tissue Using a Dynamic Stomach Model: Grinding and Crushing Effects on Polyphenol Bioaccessibility. J. Agric. Food Chem. 2020, 68, 574–583. [Google Scholar] [CrossRef]
- Park, S.J.; Ahmad, F.; Philp, A.; Baar, K.; Williams, T.; Luo, H.B.; Ke, H.M.; Rehmann, H.; Taussig, R.; Brown, A.L.; et al. Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP Phosphodiesterases. Cell 2012, 148, 421–433. [Google Scholar] [CrossRef]
- Rakariyatham, K.; Liu, X.Y.; Liu, Z.Y.; Wu, S.F.; Shahidi, F.; Zhou, D.Y.; Zhu, B.W. Improvement of Phenolic Contents and Antioxidant Activities of Longan (Dimocarpus longan) Peel Extracts by Enzymatic Treatment. Waste Biomass Valori. 2020, 11, 3987–4002. [Google Scholar] [CrossRef]
- Rakariyatham, K.; Zhou, D.Y.; Rakariyatham, N.; Shahidi, F. Sapindaceae (Dimocarpus longan and Nephelium lappaceum) seed and peel by-products: Potential sources for phenolic compounds and use as functional ingredients in food and health applications. J. Funct. Foods 2020, 67, 103846. [Google Scholar] [CrossRef]
- Rangkadilok, N.; Worasuttayangkurn, L.; Bennett, R.N.; Satayavivad, J. Identification and quantification of polyphenolic compounds in longan (Euphoria longana Lam.) fruit. J. Agr. Food Chem. 2005, 53, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Zubairu, I.K.; Rakariyatham, K.; Bai-Ngew, S.; Leksawasdi, N.; Regenstein, J.M.; Lao, F.; Hong, H.; Shin, W.S.; Alzahrani, K.J.; Phimolsiripol, Y. Nutritional and Therapeutic Potential of Longan Fruit By-products for Liver Diseases: Pathway to Functional Foods. Curr. Nutr. Rep. 2025, 14, 28. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Y.J.; Tu, L.Y.; Xu, A.N.; Zhao, Y.L.; Ye, Q.; Wang, Y.F.; Xu, P. Structural diversity of tea phenolics modulates physicochemical properties and digestibility of wheat starch: Insights into gallic acid group-dependent interactions. Carbohydr. Polym. 2025, 364, 123763. [Google Scholar] [CrossRef]
- Carvalho, H.J.M.; Pereira, D.T.V.; Barcia, M.T.; Schmiele, M. Current advances in the interaction mechanisms, nutritional role and functional properties of phenolic compound-starch complexes. Food Res. Int. 2025, 202, 115744. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.L.; Li, X.T.; Li, W.; Hao, X.; Wu, S.Y.; Zhang, M.; Zheng, F.M.; Zhang, N. Structural, physicochemical, and digestive properties of enzymatic debranched rice starch modified by phenolic compounds with varying structures. Int. J. Biol. Macromol. 2024, 274, 133262. [Google Scholar] [CrossRef]
- Rakariyatham, K.; Zhou, D.Y.; Lu, T.; Yin, F.W.; Yu, Z.L.; Li, D.Y.; Shen, Y.; Zhu, B.W. Synergistic effects of longan (Dimocarpus longan) peel extracts and food additives on oxidative stability of tuna oil. Lwt-Food Sci. Technol. 2021, 152, 112275. [Google Scholar] [CrossRef]
- Bölek, S. Valorization of roasted longan stone in production of functional biscuits with high antioxidant activity and dietary fiber. Food Sci. Technol. 2022, 42, e69820. [Google Scholar] [CrossRef]
- Porrello, A.; Orecchio, S.; Maggio, A. Matrix-matched quantification of volatile organic compounds (VOCs) in gluten free flours and bakery products. Food Chem. X 2024, 22, 101399. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.L.; Gao, H.X.; Zhang, Z.; He, Z.; He, Q.; Jia, L.R.; Zeng, W.C. Inhibitory effects of Ligustrum robustum (Rxob.) Blume extract on α-amylase and α-glucosidase. J. Funct. Foods 2015, 19, 204–213. [Google Scholar] [CrossRef]
- Xu, F.; Li, X.Q.; Li, J.H.; Chen, J. The interaction between inulin and wheat starch and effects of inulin on frozen storage quality of noodles. Int. J. Food Sci. Technol. 2021, 56, 2423–2431. [Google Scholar] [CrossRef]
- Liu, S.C.; Xie, L.M.; Shen, M.Y.; Xiao, Y.H.; Yu, Q.; Chen, Y.; Xie, J.H. Dual modifications on the gelatinization, textural, and morphology properties of pea starch by sodium carbonate and Mesona chinensis polysaccharide. Food Hydrocolloid. 2020, 102, 105601. [Google Scholar] [CrossRef]
- Yu, Q.H.; Li, T.P.; Li, S.H. Interaction between wheat starch and hawthorn seed polysaccharide and its influence on starch properties and in vitro digestibility. Food Chem. 2025, 485, 144610. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Ying, R.F.; Zeng, S.Q.; Huang, M.G. Effect of arabinoxylan and nanocellulose on the gelatinization, rheological, thermal, structural properties, and in vitro starch digestibility of wheat starch. Int. J. Biol. Macromol. 2025, 318, 144805. [Google Scholar] [CrossRef]
- Chen, H.J.; Zhong, S.L.; Chi, G.X.; Li, H.Y.; Chen, K.W.; Wang, Z.R.; Kan, J.Q. Preparation and functional characteristics of starch-lipid complexes with different oleic acid-rich glycerolipids. Food Chem. 2025, 476, 143450. [Google Scholar] [CrossRef]
- Gao, H.X.; Chen, N.; He, Q.; Shi, B.; Zeng, W.C. Potential of polyphenols from Ligustrum robustum (Rxob.) Blume on enhancing the quality of starchy food during frying. J. Food Sci. 2024, 89, 3306–3317. [Google Scholar] [CrossRef]
- Zeng, W.C.; Zhang, W.C.; Zhang, W.H.; He, Q.; Shi, B. The antioxidant activity and active component of Gnaphalium affine extract. Food Chem. Toxicol. 2013, 58, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Girard, A.L.; Awika, J.M. Effects of edible plant polyphenols on gluten protein functionality and potential applications of polyphenol-gluten interactions. Compr. Rev. Food Sci. F. 2020, 19, 2164–2199. [Google Scholar] [CrossRef]
- Xu, L.R.; Yu, X.Z.; Li, M.J.; Chen, J.; Wang, X.G. Monitoring oxidative stability and changes in key volatile compounds in edible oils during ambient storage through HS-SPME/GC-MS. Int. J. Food. Prop. 2018, 20, S2926–S2938. [Google Scholar] [CrossRef]
- Franklin, L.M.; Chapman, D.M.; King, E.S.; Mau, M.; Huang, G.W.; Mitchell, A.E. Chemical and Sensory Characterization of Oxidative Changes in Roasted Almonds Undergoing Accelerated Shelf Life. J. Agric. Food Chem. 2017, 65, 2549–2563. [Google Scholar] [CrossRef]
- Peralta-Ruiz, Y.; Tovar, C.G.; Sinning-Mangonez, A.; Bermont, D.; Cordero, A.P.; Paparella, A.; Chaves-López, C. Colletotrichum gloesporioides inhibition using chitosan-Ruta graveolens L essential oil coatings: Studies in vitro and in situ on Carica papaya fruit. Int. J. Food Microbiol. 2020, 326, 108649. [Google Scholar] [CrossRef]
- Wu, S.L.; Yang, J.; Dong, H.; Liu, Q.Y.; Li, X.L.; Zeng, X.F.; Bai, W.D. Key aroma compounds of Chinese dry-cured Spanish mackerel (Scomberomorus niphonius) and their potential metabolic mechanisms. Food Chem. 2021, 342, 128381. [Google Scholar] [CrossRef]
- Ding, A.Z.; Zhu, M.; Qian, X.Q.; Shi, L.; Huang, H.; Xiong, G.Q.; Wang, J.; Wang, L. Effect of fatty acids on the flavor formation of fish sauce. Lwt-Food Sci. Technol. 2020, 134, 110259. [Google Scholar] [CrossRef]
- Deibl, N.; Kempe, R. General and Mild Cobalt-Catalyzed C-Alkylation of Unactivated Amides and Esters with Alcohols. J. Am. Chem. Soc. 2016, 138, 10786–10789. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Interactions between starch and phenolic compound. Trends Food Sci. Tech. 2015, 43, 129–143. [Google Scholar] [CrossRef]
- Liu, B.; Zhong, F.; Yokoyama, W.; Huang, D.J.; Zhu, S.; Li, Y. Interactions in starch co-gelatinized with phenolic compound systems: Effect of complexity of phenolic compounds and amylose content of starch. Carbohydr. Polym. 2020, 247, 116667. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Gao, H.X.; He, Q.; Yu, Z.L.; Zeng, W.C. Interaction and action mechanism of starch with different phenolic compounds. Int. J. Food Sci. Nutr. 2020, 71, 726–737. [Google Scholar] [CrossRef]
- Hussain, M.; Saeed, F.; Niaz, B.; Imran, A.; Tufail, T. Biochemical and Structural Characterization of Ferulated Arabinoxylans Extracted from Nixtamalized and Non-Nixtamalized Maize Bran. Foods 2022, 11, 3374. [Google Scholar] [CrossRef] [PubMed]
- Chumsri, P.; Panpipat, W.; Cheong, L.Z.; Nisoa, M.; Chaijan, M. Comparative Evaluation of Hydrothermally Produced Rice Starch-Phenolic Complexes: Contributions of Phenolic Type, Plasma-Activated Water, and Ultrasonication. Foods 2022, 11, 3826. [Google Scholar] [CrossRef]
- Wang, S.Q.; Kong, L.Y.; Zhao, Y.; Tan, L.B.; Zhang, J.; Du, Z.Y.; Zhang, H. Lipophilization and molecular encapsulation of p-coumaric acid by amylose inclusion complex. Food Hydrocolloid. 2019, 93, 270–275. [Google Scholar] [CrossRef]
- Barbi, R.C.T.; Teixeira, G.L.; Hornung, P.S.; Avila, S.; Hoffmann-Ribani, R. Eriobotrya japonica seed as a new source of starch: Assessment of phenolic compounds, antioxidant activity, thermal, rheological and morphological properties. Food Hydrocolloid. 2018, 77, 646–658. [Google Scholar] [CrossRef]
- Wang, J.; Guo, D.L.; Han, D.M.; Pan, X.W.; Li, J.G. A comprehensive insight into the metabolic landscape of fruit pulp, peel, and seed in two longan (Dimocarpus longan Lour.) varieties. Int. J. Food Prop. 2020, 23, 1527–1539. [Google Scholar] [CrossRef]
- Mao, S.F.; Ren, Y.M.; Ye, X.Q.; Kong, X.L.; Tian, J.H. Regulating the physicochemical, structural characteristics and digestibility of potato starch by complexing with different phenolic acids. Int. J. Biol. Macromol. 2023, 253, 127474. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, M.C.; Ma, S.P.; Wang, H.S. Physicochemical characterization of rice, potato, and pea starches, each with different crystalline pattern, when incorporated with Konjac glucomannan. Food Hydrocolloid. 2020, 101, 105499. [Google Scholar] [CrossRef]
- Kang, J.; Huang-Fu, Z.Y.; Tian, X.A.; Cheng, L.T.; Zhang, J.X.; Liu, Y.; Liu, Y.F.; Wang, S.J.; Hu, X.Z.; Zou, L.; et al. Arabinoxylan of varied structural features distinctively affects the functional and in vitro digestibility of wheat starch. Food Hydrocolloid. 2023, 140, 108615. [Google Scholar] [CrossRef]
- Chen, Y.H.; McClements, D.J.; He, K.; Peng, X.W.; Xu, Z.L.; Meng, M.; Ji, H.Y.; Zhao, J.W.; Jin, Z.Y.; Chen, L. Effect of phytic acid on the structure, properties and oil absorption of wheat flour. Food Hydrocolloid. 2024, 150, 109737. [Google Scholar] [CrossRef]
- Snape, C.E.; Morrison, W.R.; Maroto-Valer, M.M.; Karkalas, J.; Pethrick, R.A. Solid state 13C NMR investigation of lipid ligands in V-amylose inclusion complexes. Carbohyd. Polym. 1998, 36, 225–237. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Liu, Y.; Xu, W.H.; Gong, J.B.; Zhu, Q.Y.; Zhang, H.Z.; Qin, X.G.; Liu, G. Effects of glycosylated whey protein isolate on gelatinization, gel properties, and microstructure of wheat starch. Int. J. Biol. Macromol. 2025, 288, 138756. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Wang, Z.Y.; Yang, C.X.; Lu, Y.H.; Sun, D.H.; Wang, Y.P.; Shao, W.Y.; Li, Q.B.A. Isolation and identification of polyphenolic compounds in longan pericarp. Sep. Purif. Technol. 2009, 70, 219–224. [Google Scholar] [CrossRef]
- Zheng, G.M.; Xu, L.X.; Wu, P.; Xie, H.H.; Jiang, Y.M.; Chen, F.; Wei, X.Y. Polyphenols from longan seeds and their radical-scavenging activity. Food Chem. 2009, 116, 433–436. [Google Scholar] [CrossRef]
Sample | Texture Profile Analysis | Color | ||||||
---|---|---|---|---|---|---|---|---|
Pastry Hardness (g) | Filling Hardness (g) | Filling Adhesiveness | L* | a* | b* | ΔE | ||
longan peel | 0% | 193.14 ± 10.79 c | 132.47 ± 1.67 b | 35.80 ± 0.48 a | 63.92 ± 2.27 a | 9.60 ± 0.40 e | 43.13 ± 1.30 a | - |
5% | 229.84 ± 15.17 bc | 132.52 ± 1.39 b | 34.04 ± 0.53 ab | 56.96 ± 0.61 b | 11.10 ± 0.81 d | 40.02 ± 0.66 b | 7.01 ± 0.46 d | |
10% | 272.14 ± 17.46 b | 133.35 ± 1.42 a | 33.21 ± 1.24 bc | 55.12 ± 0.90 c | 12.08 ± 0.75 c | 38.68 ± 1.08 c | 9.43 ± 0.58 c | |
15% | 288.24 ± 14.56 ab | 133.44 ± 0.99 a | 31.45 ± 0.47 c | 53.22 ± 1.56 d | 13.18 ± 0.41 b | 35.90 ± 0.96 d | 12.72 ± 0.73 b | |
20% | 348.28 ± 10.03 a | 134.38 ± 1.34 a | 29.19 ± 1.58 d | 52.18 ± 1.38 d | 14.16 ± 0.96 a | 35.36 ± 0.98 d | 14.13 ± 0.63 a | |
longan seed | 0% | 193.14 ± 10.79 c | 132.47 ± 1.67 b | 35.80 ± 0.48 a | 63.92 ± 2.27 a | 9.60 ± 0.40 b | 43.13 ± 1.30 a | - |
5% | 210.86 ± 11.74 bc | 136.73 ± 1.21 a | 33.27 ± 0.57 b | 57.84 ± 0.81 b | 10.84 ± 0.90 a | 34.08 ± 0.80 b | 10.52 ± 0.23 d | |
10% | 247.26 ± 8.73 b | 130.43 ± 1.75 bc | 31.30 ± 0.94 c | 54.06 ± 1.54 c | 11.36 ± 0.56 a | 33.26 ± 1.03 bc | 13.47 ± 0.49 c | |
15% | 254.12 ± 18.09 ab | 134.47 ± 1.63 ab | 28.60 ± 0.72 cd | 50.70 ± 1.50 d | 11.50 ± 0.23 a | 32.44 ± 0.34 c | 16.45 ± 0.68 b | |
20% | 301.74 ± 10.72 a | 129.48 ± 1.07 c | 27.19 ± 1.07 d | 47.62 ± 0.50 d | 11.52 ± 0.56 a | 29.14 ± 0.46 d | 20.92 ± 0.85 a |
RT (min) | Compounds | Volatile Compound Contents (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Longan Peel | Longan Seed | ||||||||||
0% | 5% | 10% | 15% | 20% | 0% | 5% | 10% | 15% | 20% | ||
16.511 | 2-Heptanone | 28.24 ± 0.03 b | 22.25 ± 0.02 d | 20.83 ± 0.02 f | 22.70 ± 0.02 c | 20.67 ± 0.02 g | 28.24 ± 0.03 b | 29.53 ± 0.03 a | 21.77 ± 0.02 e | 17.02 ± 0.02 i | 19.45 ± 0.02 h |
17.026 | UN. Decane | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. | 2.31 ± 0.01 c | 2.60 ± 0.01 b | N. D. | 3.19 ± 0.01 a |
17.066 | Dodecane | 1.47 ± 0.01 c | 3.19 ± 0.01 a | 2.53 ± 0.01 b | 1.04 ± 0.01 e | 1.34 ± 0.01 d | 1.47 ± 0.01 c | N. D. | N. D. | 0.91 ± 0.01 f | N. D. |
17.755 | 2-Octyne | N. D. | 0.87 ± 0.01 d | N. D. | N. D. | N. D. | N. D. | N. D. | 13.25 ± 0.02 c | 22.33 ± 0.02 a | 20.94 ± 0.02 b |
17.765 | 2-Heptyne | N. D. | N. D. | N. D. | 1.57 ± 0.01 b | 1.54 ± 0.01 b | N. D. | 29.53 ± 0.03 a | N. D. | N. D. | N. D. |
18.167 | 1-Pentanol | 2.21 ± 0.01 b | 2.20 ± 0.01 b | 2.14 ± 0.01 c | 2.92 ± 0.01 a | 2.14 ± 0.01 c | 2.21 ± 0.01 b | 1.78 ± 0.01 d | 1.67 ± 0.01 f | N. D. | 1.59 ± 0.01 e |
19.390 | 2-Propanone, 1-methoxy- | N. D. | N. D. | N. D. | 0.53 ± 0.01 a | 0.53 ± 0.01 a | N. D. | N. D. | N. D. | N. D. | N. D. |
19.550 | Octanal | 0.92 ± 0.01 f | 1.49 ± 0.01 c | 1.77 ± 0.01 a | 1.52 ± 0.01 b | 1.27 ± 0.01 d | 0.92 ± 0.01 f | 0.93 ± 0.01 f | 0.77 ± 0.01 g | N. D. | 1.14 ± 0.01 e |
19.800 | Octane, 4-methyl- | 0.75 ± 0.01 c | 1.12 ± 0.01 a | 1.01 ± 0.01 b | 0.66 ± 0.01 d | N. D. | 0.75 ± 0.01 c | 0.58 ± 0.01 e | 0.50 ± 0.01 f | N. D. | 0.49 ± 0.01 f |
19.804 | 2-Propanone, 1-hydroxy- | N. D. | N. D. | N. D. | N. D. | 0.92 ± 0.01 a | N. D. | N. D. | N. D. | N. D. | N. D. |
20.052 | Prenol | N. D. | 0.65 ± 0.01 c | 0.67 ± 0.01 c | 1.05 ± 0.01 b | 1.18 ± 0.01 a | N. D. | N. D. | N. D. | N. D. | N. D. |
20.224 | 2-Cyclopenten-1-one, 3-methyl- | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. | 0.89 ± 0.01 c | 1.09 ± 0.01 b | 1.37 ± 0.01 a |
20.320 | 2,3-Octanedione | N. D. | N. D. | N. D. | N. D. | 0.33 ± 0.01 a | N. D. | N. D. | N. D. | N. D. | N. D. |
20.491 | 2-Heptenal, (Z)- | 0.56 ± 0.01 g | 1.28 ± 0.01 b | 1.20 ± 0.01 c | 1.20 ± 0.01 c | 1.35 ± 0.01 a | 0.56 ± 0.01 g | 0.39 ± 0.01 h | 0.72 ± 0.01 e | 0.64 ± 0.01 f | 0.86 ± 0.01 d |
20.716 | 5-Hepten-2-one, 6-methyl- | 0.84 ± 0.01 c | 0.87 ± 0.01 b | 0.89 ± 0.01 a | 0.88 ± 0.01 ab | 0.71 ± 0.01 d | 0.84 ± 0.01 c | 0.51 ± 0.01 g | 0.58 ± 0.01 f | 0.72 ± 0.01 d | 0.64 ± 0.01 e |
20.826 | 1-Hexanol | 7.33 ± 0.01 a | 6.41 ± 0.01 b | 5.92 ± 0.01 e | 6.38 ± 0.01 c | 4.54 ± 0.01 i | 7.33 ± 0.01 a | 6.35 ± 0.01 d | 5.08 ± 0.01 h | 5.51 ± 0.01 f | 5.12 ± 0.01 g |
21.978 | 2-Nonanone | 15.41 ± 0.02 a | 0.32 ± 0.01 h | 10.56 ± 0.02 d | 9.89 ± 0.01 f | 10.38 ± 0.01 e | 15.41 ± 0.02 a | 11.31 ± 0.02 b | 10.87 ± 0.02 c | 10.87 ± 0.02 c | 8.80 ± 0.01 g |
22.113 | Nonanal | 10.21 ± 0.02 f | 17.79 ± 0.02 a | 14.95 ± 0.02 b | 13.02 ± 0.02 c | 11.09 ± 0.02 e | 10.21 ± 0.02 f | 7.92 ± 0.01 h | 7.41 ± 0.01 i | 11.22 ± 0.02 d | 10.10 ± 0.02 g |
23.012 | 1-Octen-3-ol | 1.55 ± 0.01 g | 1.77 ± 0.01 c | 1.70 ± 0.01 e | 1.68 ± 0.01 e | 1.74 ± 0.01 d | 1.55 ± 0.01 g | 1.40 ± 0.01 h | 1.64 ± 0.01 f | 1.97 ± 0.01 b | 2.03 ± 0.01 a |
23.163 | Methoxyacetic acid, hexyl ester | 1.22 ± 0.01 b | 1.77 ± 0.01 a | N. D. | N. D. | N. D. | 1.22 ± 0.01 b | N. D. | N. D. | N. D. | N. D. |
23.163 | Acetic acid | N. D. | N. D. | 1.86 ± 0.01 c | 1.90 ± 0.01 b | 2.43 ± 0.01 a | N. D. | N. D. | 1.18 ± 0.01 f | 1.69 ± 0.01 d | 1.37 ± 0.01 e |
23.169 | 1-Hexanol, 3-methyl- | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. | 0.74 ± 0.01 a | N. D. | N. D. | N. D. |
23.617 | Furfural | 2.12 ± 0.01 f | 3.72 ± 0.01 d | 3.96 ± 0.01 c | 4.34 ± 0.01 b | 6.32 ± 0.01 a | 2.12 ± 0.01 f | 2.05 ± 0.01 g | 2.14 ± 0.01 f | 2.93 ± 0.01 e | 1.90 ± 0.01 h |
23.856 | 2-Ethyl-1-hexanol | 0.86 ± 0.01 d | 1.14 ± 0.01 b | 0.66 ± 0.01 i | 0.94 ± 0.01 c | 0.81 ± 0.01 e | 0.86 ± 0.01 d | 0.72 ± 0.01 gh | 0.73 ± 0.01 fg | 1.34 ± 0.01 a | 0.71 ± 0.01 h |
24.515 | Ethanone, 1-(2-furanyl)- | N. D. | 2.04 ± 0.01 a | 1.07 ± 0.01 d | 1.31 ± 0.01 c | 1.71 ± 0.01 b | N. D. | N. D. | 0.33 ± 0.01 e | N. D. | N. D. |
24.576 | Copaene | N. D. | N. D. | 1.08 ± 0.01 c | 1.21 ± 0.01 b | 1.48 ± 0.01 a | N. D. | N. D. | 0.71 ± 0.01 f | 0.89 ± 0.01 e | 0.94 ± 0.01 d |
24.771 | 3,5-Octadien-2-one | N. D. | N. D. | 0.42 ± 0.01 bc | N. D. | 0.33 ± 0.01 e | N. D. | N. D. | 0.46 ± 0.01 a | 0.40 ± 0.01 d | 0.41 ± 0.01 cd |
25.406 | Benzaldehyde | 0.23 ± 0.01 c | N. D. | 0.24 ± 0.01 c | N. D. | 0.41 ± 0.01 b | 0.23 ± 0.01 c | N. D. | N. D. | 0.60 ± 0.01 a | N. D. |
25.183 | 1-Nonanol | 1.29 ± 0.01 a | N. D. | N. D. | N. D. | N. D. | 1.29 ± 0.01 a | N. D. | N. D. | N. D. | N. D. |
25.186 | 1-Octanol | N. D. | 2.12 ± 0.01 a | 2.00 ± 0.01 b | 1.76 ± 0.01 c | 1.74 ± 0.01 d | N. D. | 1.32 ± 0.01 e | N. D. | N. D. | N. D. |
25.19 | 2-Nonenal, (E)- | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. | 1.50 ± 0.01 c | 2.12 ± 0.01 a | 2.02 ± 0.01 b |
26.265 | 2-Undecanone | 4.73 ± 0.01 a | 4.70 ± 0.01 b | 3.66 ± 0.01 d | 3.25 ± 0.01 g | 3.27 ± 0.01 f | 4.73 ± 0.01 a | 2.93 ± 0.01 h | 3.37 ± 0.01 e | 4.11 ± 0.01 c | 2.61 ± 0.01 i |
26.445 | Ethanol, 2-(2-ethoxyethoxy)- | 0.07 ± 0.01 f | 0.60 ± 0.01 a | 0.23 ± 0.01 c | N. D. | N. D. | 0.07 ± 0.01 f | 0.25 ± 0.01 b | 0.12 ± 0.01 d | N. D. | 0.10 ± 0.01 e |
26.560 | Butanoic acid | 0.39 ± 0.01 i | 1.28 ± 0.01 a | 1.07 ± 0.01 c | 1.18 ± 0.01 b | 0.98 ± 0.01 d | 0.39 ± 0.01 i | 0.54 ± 0.01 h | 0.64 ± 0.01 g | 0.89 ± 0.01 e | 0.76 ± 0.01 f |
26.713 | Bicyclo [7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-,[1R-(1R*,4Z,9S*)]- | N. D. | N. D. | 1.76 ± 0.01 b | 1.09 ± 0.01 d | 1.67 ± 0.01 c | N. D. | 0.72 ± 0.01 e | N. D. | N. D. | 3.09 ± 0.01 a |
26.718 | Caryophyllene | N. D. | 1.26 ± 0.01 a | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. |
27.091 | 2-Furanmethanol | 11.16 ± 0.02 a | 5.63 ± 0.01 e | 5.19 ± 0.01 f | 4.38 ± 0.01 h | 5.01 ± 0.01 g | 11.16 ± 0.02 a | 8.07 ± 0.01 b | 6.92 ± 0.01 c | 5.77 ± 0.01 d | 4.72 ± 0.01 i |
27.257 | Benzeneacetaldehyde | 0.97 ± 0.01 h | 1.51 ± 0.01 f | 1.85 ± 0.01 d | 1.91 ± 0.01 c | 2.11 ± 0.01 a | 0.97 ± 0.01 h | 1.02 ± 0.01 g | 1.72 ± 0.01 e | 2.10 ± 0.01 a | 1.96 ± 0.01 b |
28.021 | Humulene | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. | 0.40 ± | 0.62 ± | 0.76 ± |
28.025 | Linalyl acetate | N. D. | N. D. | N. D. | 0.47 ± 0.01 b | 0.73 ± 0.01 a | N. D. | N. D. | N. D. | N. D. | N. D. |
29.296 | Naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)- | N. D. | N. D. | N. D. | N. D. | 0.22 ± 0.01 b | N. D. | N. D. | N. D. | 0.27 ± 0.01 a | 0.27 ± 0.01 a |
29.402 | 1-Dodecanol, 3,7,11-trimethyl- | N. D. | 0.26 ± 0.01 a | N. D. | N. D. | N. D. | N. D. | N. D. | 0.15 ± 0.01 c | 0.14 ± 0.01 c | 0.17 ± 0.01 b |
29.829 | 2-Tridecanone | 0.84 ± 0.01 c | 0.93 ± 0.01 a | 0.72 ± 0.01 d | 0.54 ± 0.01 g | 0.56 ± 0.01 f | 0.84 ± 0.01 c | 0.50 ± 0.01 h | 0.68 ± 0.01 e | 0.88 ± 0.01 b | 0.51 ± 0.01 h |
29.992 | 2,4-Decadienal | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. | N. D. | 0.37 ± 0.01 a | 0.32 ± 0.01 b |
30.145 | Hexanoic acid | 0.26 ± 0.01 g | 1.58 ± 0.01 b | 1.61 ± 0.01 a | 1.46 ± 0.01 c | 1.36 ± 0.01 d | 0.26 ± 0.01 g | 0.61 ± 0.01 f | 1.09 ± 0.01 e | 1.58 ± 0.01 b | 1.46 ± 0.01 c |
31.370 | Butylated Hydroxytoluene | 6.37 ± 0.01 g | 11.25 ± 0.02 a | 7.46 ± 0.01 e | 8.95 ± 0.01 d | 9.13 ± 0.01 c | 6.37 ± 0.01 g | 7.08 ± 0.01 f | 9.92 ± 0.02 b | N. D. | N. D. |
33.239 | Octanoic acid | N. D. | N. D. | 0.54 ± 0.01 b | 0.27 ± 0.01 c | N. D. | N. D. | N. D. | 0.19 ± 0.01 e | 1.02 ± 0.01 a | 0.21 ± 0.01 d |
Sample | Aldehydes | Ketones | Alcohols | Acids | Esters | Furans | Phenols | Total Content | ||
---|---|---|---|---|---|---|---|---|---|---|
longan peel | 0% | amount | 6 | 5 | 6 | 3 | N. D. | N. D. | 1 | 21 |
content (%) | 15.01 ± 0.07 | 50.06 ± 0.08 | 24.40 ± 0.07 | 1.87 ± 0.03 | N. D. | N. D. | 6.37 ± 0.01 | 97.71 ± 0.26 | ||
5% | amount | 5 | 5 | 8 | 3 | N. D. | 1 | 1 | 23 | |
content (%) | 25.79 ± 0.06 | 29.07 ± 0.06 | 20.18 ± 0.08 | 4.63 ± 0.03 | N. D. | 2.04 ± 0.01 | 11.25 ± 0.02 | 92.96 ± 0.26 | ||
10% | amount | 6 | 6 | 6 | 3 | N. D. | 1 | 1 | 23 | |
content (%) | 23.97 ± 0.07 | 37.08 ± 0.08 | 16.28 ± 0.06 | 4.54 ± 0.03 | N. D. | 1.07 ± 0.01 | 7.46 ± 0.01 | 90.4 ± 0.26 | ||
15% | amount | 5 | 6 | 7 | 4 | 1 | 1 | 1 | 25 | |
content (%) | 21.99 ± 0.06 | 37.79 ± 0.07 | 19.11 ± 0.07 | 4.81 ± 0.04 | 0.47 ± 0.01 | 1.31 ± 0.01 | 8.95 ± 0.01 | 94.43 ± 0.27 | ||
20% | amount | 6 | 9 | 7 | 3 | 1 | 1 | 1 | 28 | |
content (%) | 22.55 ± 0.07 | 37.70 ± 0.10 | 17.16 ± 0.07 | 4.77 ± 0.03 | 0.73 ± 0.01 | 1.71 ± 0.01 | 9.13 ± 0.01 | 93.75 ± 0.30 | ||
longan seed | 0% | amount | 6 | 5 | 6 | 3 | N. D. | N. D. | 1 | 21 |
content (%) | 15.01 ± 0.07 | 50.06 ± 0.08 | 24.40 ± 0.07 | 1.87 ± 0.03 | N. D. | N. D. | 6.37 ± 0.01 | 97.71 ± 0.26 | ||
5% | amount | 5 | 5 | 7 | 2 | N. D. | N. D. | 1 | 20 | |
content (%) | 12.31 ± 0.05 | 44.78 ± 0.08 | 20.38 ± 0.07 | 1.15 ± 0.02 | N. D. | N. D. | 7.08 ± 0.01 | 85.7 ± 0.23 | ||
10% | amount | 6 | 7 | 6 | 4 | N. D. | 1 | 1 | 25 | |
content (%) | 14.26 ± 0.06 | 38.62 ± 0.09 | 16.19 ± 0.06 | 3.10 ± 0.04 | N. D. | 0.33 ± 0.01 | 9.92 ± 0.02 | 82.42 ± 0.28 | ||
15% | amount | 7 | 7 | 5 | 4 | N. D. | N. D. | N. D. | 23 | |
content (%) | 19.98 ± 0.08 | 35.09 ± 0.09 | 14.73 ± 0.05 | 5.18 ± 0.04 | N. D. | N. D. | N. D. | 74.92 ± 0.26 | ||
20% | amount | 7 | 7 | 6 | 4 | N. D. | N. D. | N. D. | 24 | |
content (%) | 18.30 ± 0.08 | 33.79 ± 0.08 | 14.34 ± 0.06 | 3.80 ± 0.04 | N. D. | N. D. | N. D. | 70.23 ± 0.26 |
Sample | DSC | ||||
---|---|---|---|---|---|
To (°C) | TP (°C) | TC (°C) | ΔHg (J/g) | ||
LPE | 0% | 56.54 ± 0.25 a | 65.73 ± 0.32 a | 62.90 ± 0.42 a | 3.34 ± 0.02 a |
5% | 56.16 ± 0.34 ab | 65.63 ± 0.79 ab | 62.57 ± 0.45 ab | 3.10 ± 0.08 b | |
10% | 56.13 ± 0.38 b | 65.02 ± 0.36 b | 62.23 ± 0.19 bc | 2.94 ± 0.10 bc | |
15% | 55.60 ± 0.84 c | 64.17 ± 0.68 c | 61.88 ± 0.16 cd | 2.92 ± 0.02 c | |
20% | 55.18 ± 0.41 d | 64.05 ± 0.43 c | 61.78 ± 0.04 d | 2.84 ± 0.10 c | |
LSE | 0% | 56.54 ± 0.25 a | 65.73 ± 0.32 a | 62.90 ± 0.42 a | 3.34 ± 0.02 a |
5% | 56.13 ± 0.54 b | 65.55 ± 0.28 ab | 62.18 ± 0.37 b | 2.81 ± 0.02 b | |
10% | 56.06 ± 0.60 c | 64.12 ± 0.15 b | 62.08 ± 0.28 c | 2.75 ± 0.08 bc | |
15% | 55.52 ± 0.21 d | 63.23 ± 0.18 c | 61.85 ± 0.32 cd | 2.59 ± 0.07 c | |
20% | 55.08 ± 0.21 e | 63.02 ± 0.16 c | 61.48 ± 0.46 d | 2.39 ± 0.05 d |
Sample | Iodine Binding | |||
---|---|---|---|---|
λmax (nm) | A635 | Iodine Binding Capacity (A635/A520) | ||
LPE | 0% | 626 a | 0.52 ± 0.02 a | 2.01 ± 0.03 a |
5% | 620 b | 0.45 ± 0.01 b | 1.92 ± 0.01 b | |
10% | 617 bc | 0.36 ± 0.02 c | 1.78 ± 0.01 c | |
15% | 616 bc | 0.26 ± 0.01 d | 1.62 ± 0.01 d | |
20% | 614 c | 0.25 ± 0.01 d | 1.58 ± 0.02 d | |
LSE | 0% | 626 a | 0.52 ± 0.02 a | 2.01 ± 0.03 a |
5% | 617 b | 0.40 ± 0.02 b | 1.75 ± 0.01 b | |
10% | 616 bc | 0.33 ± 0.01 c | 1.67 ± 0.01 bc | |
15% | 614 bc | 0.23 ± 0.01 d | 1.57 ± 0.02 c | |
20% | 607 c | 0.19 ± 0.01 d | 1.25 ± 0.02 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-S.; Xiao, Y.; Liang, H.-Y.; Chen, N.; Gao, H.-X.; Zeng, W.-C. The Effect of Longan Peel and Seed on Wheat Starch and the Quality of Longan Cake. Polymers 2025, 17, 2259. https://doi.org/10.3390/polym17162259
Chen Y-S, Xiao Y, Liang H-Y, Chen N, Gao H-X, Zeng W-C. The Effect of Longan Peel and Seed on Wheat Starch and the Quality of Longan Cake. Polymers. 2025; 17(16):2259. https://doi.org/10.3390/polym17162259
Chicago/Turabian StyleChen, Yi-Shan, Yang Xiao, Heng-Yu Liang, Nan Chen, Hao-Xiang Gao, and Wei-Cai Zeng. 2025. "The Effect of Longan Peel and Seed on Wheat Starch and the Quality of Longan Cake" Polymers 17, no. 16: 2259. https://doi.org/10.3390/polym17162259
APA StyleChen, Y.-S., Xiao, Y., Liang, H.-Y., Chen, N., Gao, H.-X., & Zeng, W.-C. (2025). The Effect of Longan Peel and Seed on Wheat Starch and the Quality of Longan Cake. Polymers, 17(16), 2259. https://doi.org/10.3390/polym17162259