Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (384)

Search Parameters:
Keywords = filling station

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1929 KiB  
Article
Investigating Provincial Coupling Coordination Between Digital Infrastructure and Green Development in China
by Beibei Zhang, Zhenni Zhou, Juan Zheng, Zezhou Wu and Yan Liu
Buildings 2025, 15(15), 2724; https://doi.org/10.3390/buildings15152724 - 1 Aug 2025
Viewed by 196
Abstract
Digital technologies could facilitate green development by enhancing energy efficiency. However, existing research on coupling coordination between digital infrastructure and green development remains scarce. To fill this research gap, this study analyzes the spatio-temporal variations and barriers of coupling coordination. An evaluation index [...] Read more.
Digital technologies could facilitate green development by enhancing energy efficiency. However, existing research on coupling coordination between digital infrastructure and green development remains scarce. To fill this research gap, this study analyzes the spatio-temporal variations and barriers of coupling coordination. An evaluation index system is established and then the coupling relationship and the barrier factors between digital infrastructure and green development are analyzed. A provincial analysis is conducted by using data from China. The results in the study indicate (1) coupling coordination between digital infrastructure and green development exhibits a relatively low state, characterized by an overall upward trend; (2) noteworthy disparities are observed in the spatio-temporal pattern of the coupling coordination degree, reflecting the overall evolutionary trend from low to high coupling coordination, along with the characteristics of positive spatial correlation and high spatial concentration; and (3) obstacle factors are analyzed from the aspects of digital infrastructure and green development, emphasizing the construction of mobile phone base stations and investment in pollution control, among other aspects. This study contributes valuable insights for improvement paths for digital infrastructure and green development, offering recommendations for optimizing strategies to promote their coupled development. Full article
(This article belongs to the Special Issue Promoting Green, Sustainable, and Resilient Urban Construction)
Show Figures

Figure 1

12 pages, 264 KiB  
Article
The Oral Health Status of Spanish Naval Military Personnel: A Retrospective Study
by Bárbara Manso de Gustín, Alfonso Alvarado-Lorenzo, Juan Manuel Aragoneses and Manuel Fernández-Domínguez
J. Clin. Med. 2025, 14(15), 5236; https://doi.org/10.3390/jcm14155236 - 24 Jul 2025
Viewed by 261
Abstract
Background/Objectives: Oral health has specific importance and consequences from a military and Navy standpoint. The aim of this study was to determine and compare caries prevalence and dental care in Spanish Navy personnel. Methods: A retrospective observational study was carried out [...] Read more.
Background/Objectives: Oral health has specific importance and consequences from a military and Navy standpoint. The aim of this study was to determine and compare caries prevalence and dental care in Spanish Navy personnel. Methods: A retrospective observational study was carried out with a sample size of 1318 individuals (34.65 ± 8.82 years old) stationed at the Rota naval base in Spain, whose dental charts were examined. Caries prevalence was assessed using the Decayed, Missing, Filled Teeth (DMFT) index; dental care was evaluated using the care index (CI); and demographic and occupational factors were recorded. Results: The population of this study had a mean DMFT index of 5.99 ± 4.71 and a CI of 79%. Through the results of the DMFT index and CI, the statistical significance of the age and rank variables (p < 0.01) was confirmed, with personnel >45 years old and non-commissioned officers (NCOs) having the highest mean DMFT values and the youngest and officer groups having the greatest CI variable. Comparing the DMFT index across genders and ages and between age and rank also revealed significant differences. Conclusions: This study’s findings show a low prevalence of cavitated caries (14.5%), with intermediate DMFT values and higher CIs compared to those in previous published data. Full article
16 pages, 2035 KiB  
Article
Optimizing Sunflower Cultivar Selection Under Climate Variability: Evidence from Coupled Meteorological-Growth Modeling in Arid Northwest China
by Jianguo Mu, Jianqin Wang, Ruiying Ma, Zengshuai Lv, Hongye Dong, Yantao Liu, Wei Duan, Shengli Liu, Peng Wang and Xuekun Zhang
Agronomy 2025, 15(7), 1724; https://doi.org/10.3390/agronomy15071724 - 17 Jul 2025
Viewed by 296
Abstract
Under the scenario of global climate warming, meteorological risks affecting sunflower cultivation in Xinjiang’s 10th Division were investigated by developing a meteorological-growth coupling model. Field experiments were conducted at three representative stations (A1–A3) during 2023–2024 to assess temperature and precipitation impacts on yield [...] Read more.
Under the scenario of global climate warming, meteorological risks affecting sunflower cultivation in Xinjiang’s 10th Division were investigated by developing a meteorological-growth coupling model. Field experiments were conducted at three representative stations (A1–A3) during 2023–2024 to assess temperature and precipitation impacts on yield and quality traits among sunflower cultivars with varying maturation periods. The main findings were: (1) Early-maturing cultivar B1 (RH3146) exhibited superior adaptation at low-temperature station A1, achieving 12% higher plant height and an 18% yield increase compared to regional averages. (2) At thermally variable station A2 (daily average temperature fluctuation ± 8 °C, precipitation CV = 25%), the late-maturing cultivar B3 showed enhanced stress resilience, achieving 35.6% grain crude fat content (15% greater than mid-maturing B2) along with 8–10% increases in seed setting rate and 100-grain weight. These improvements were potentially due to optimized photoassimilated allocation and activation of stress-responsive genes. (3) At station A3, characterized by high thermal-humidity variability (CV > 15%) during grain filling, B3 experienced a 15-day delay in maturation and a 3% reduction in ripeness. Two principal mitigation strategies are recommended: preferential selection of early-to-mid maturing cultivars in regions with thermal-humidity CV > 10%, improving yield stability by 23%, and optimization of sowing schedules based on accumulated temperature-precipitation modeling, reducing meteorological losses by 15%. These evidence-based recommendations provide critical insights for climate-resilient cultivar selection and precision agricultural management in meteorologically vulnerable agroecosystems. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

22 pages, 1802 KiB  
Article
Economic Operation Optimization for Electric Heavy-Duty Truck Battery Swapping Stations Considering Time-of-Use Pricing
by Peijun Shi, Guojian Ni, Rifeng Jin, Haibo Wang, Jinsong Wang and Xiaomei Chen
Processes 2025, 13(7), 2271; https://doi.org/10.3390/pr13072271 - 16 Jul 2025
Viewed by 276
Abstract
Battery-swapping stations (BSSs) are pivotal for supplying energy to electric heavy-duty trucks. However, their operations face challenges in accurate demand forecasting for battery-swapping and fair revenue allocation. This study proposes an optimization strategy for the economic operation of BSSs that optimizes revenue allocation [...] Read more.
Battery-swapping stations (BSSs) are pivotal for supplying energy to electric heavy-duty trucks. However, their operations face challenges in accurate demand forecasting for battery-swapping and fair revenue allocation. This study proposes an optimization strategy for the economic operation of BSSs that optimizes revenue allocation and load balancing to enhance financial viability and grid stability. First, factors including geographical environment, traffic conditions, and truck characteristics are incorporated to simulate swapping behaviors, supporting the construction of an accurate demand-forecasting model. Second, an optimization problem is formulated to maximize the weighted difference between BSS revenue and squared load deviations. An economic operations strategy is proposed based on an adaptive Shapley value. It enables precise evaluation of differentiated member contributions through dynamic adjustment of bias weights in revenue allocation for a strategy that aligns with the interests of multiple stakeholders and market dynamics. Simulation results validate the superior performance of the proposed algorithm in revenue maximization, peak shaving, and valley filling. Full article
Show Figures

Figure 1

22 pages, 3865 KiB  
Article
An Assessment of Bio-Physical and Social Drivers of River Vulnerability and Risks
by Komali Kantamaneni, John Whitton, Sigamani Panneer, Iqbal Ahmad, Anil Gautam and Debashish Sen
Earth 2025, 6(3), 77; https://doi.org/10.3390/earth6030077 - 11 Jul 2025
Viewed by 711
Abstract
In recent decades, the River Ganges in India has been heavily contaminated with domestic waste and industrial toxins because of cultural activities, a lack of community awareness, an absence of sewage disposal facilities, and rapid population growth. Previous studies have focused separately on [...] Read more.
In recent decades, the River Ganges in India has been heavily contaminated with domestic waste and industrial toxins because of cultural activities, a lack of community awareness, an absence of sewage disposal facilities, and rapid population growth. Previous studies have focused separately on either the physical or social factors associated with River Ganges pollution but have not combined these elements in a single study. To fill this research gap, our study assesses the bio-physical and social vulnerability of the River Ganges by using a holistic approach. The following four sampling stations were selected: Rishikesh, Haridwar, Kanpur, and Varanasi. These locations were chosen to test the water quality in bio-physical aspects and to assess the social perceptions of river vulnerability among the residents and visitors. Perceptions of river water quality and likely sources of pollution were gathered via the distribution of over 1000 questionnaires. Data collection took place in the winter and summer of 2022 and 2023. The results showed that river water quality is not suitable for drinking purposes at any of the four cities without conventional treatment, and that the river is unsuitable for bathing at all locations, except upstream of Rishikesh. Nearly 50% of those questioned agreed that the river is polluted, whilst 74% agreed that pollution has increased in recent decades, particularly in the last 10 years. These compelling results are critical for policymakers and decision makers. They highlight the urgent need for novel strategies that address Ganges pollution while fostering community health education and environmental management. By dispelling myths surrounding river quality, this study strengthens the ongoing efforts to restore the Ganges, ensuring that it remains a vital lifeline for present and future generations. Full article
Show Figures

Figure 1

30 pages, 6991 KiB  
Article
A Hybrid EV Charging Approach Based on MILP and a Genetic Algorithm
by Syed Abdullah Al Nahid and Junjian Qi
Energies 2025, 18(14), 3656; https://doi.org/10.3390/en18143656 - 10 Jul 2025
Viewed by 348
Abstract
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a [...] Read more.
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a centralized day-ahead optimal scheduling mechanism and EV shifting process based on mixed-integer linear programming (MILP) and (2) a distributed control strategy based on a genetic algorithm (GA) that dynamically adjusts the charging rate in real-time grid scenarios. The MILP minimizes energy imbalance at overloaded slots by reallocating EVs based on supply–demand mismatch. By combining full and minimum charging strategies with MILP-based shifting, the method significantly reduces network stress due to EV charging. The centralized model schedules time slots using valley-filling and EV-specific constraints, and the local GA-based distributed control adjusts charging currents based on minimum energy, system availability, waiting time, and a priority index (PI). This PI enables user prioritization in both the EV shifting process and power allocation decisions. The method is validated using demand data on a radial feeder with residential and commercial load profiles. Simulation results demonstrate that the proposed hybrid EV charging framework significantly improves grid-level efficiency and user satisfaction. Compared to the baseline without EV integration, the average-to-peak demand ratio is improved from 61% to 74% at Station-A, from 64% to 80% at Station-B, and from 51% to 63% at Station-C, highlighting enhanced load balancing. The framework also ensures that all EVs receive energy above their minimum needs, achieving user satisfaction scores of 88.0% at Stations A and B and 81.6% at Station C. This study underscores the potential of hybrid charging schemes in optimizing energy utilization while maintaining system reliability and user convenience. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

17 pages, 679 KiB  
Article
Low-Complexity Sum-Rate Maximization for Multi-IRS-Assisted V2I Systems
by Qi Liu, Beiping Zhou, Jie Zhou and Yongfeng Zhao
Electronics 2025, 14(14), 2750; https://doi.org/10.3390/electronics14142750 - 8 Jul 2025
Viewed by 252
Abstract
Intelligent reflecting surface (IRS) has emerged as a promising solution to establish propagation paths in non-line-of-sight (NLoS) scenarios, effectively mitigating blockage challenges in direct vehicle-to-infrastructure (V2I) links. This study investigates a time-varying multi-IRS-assisted multiple-input multiple-output (MIMO) communication system, aiming to maximize the system [...] Read more.
Intelligent reflecting surface (IRS) has emerged as a promising solution to establish propagation paths in non-line-of-sight (NLoS) scenarios, effectively mitigating blockage challenges in direct vehicle-to-infrastructure (V2I) links. This study investigates a time-varying multi-IRS-assisted multiple-input multiple-output (MIMO) communication system, aiming to maximize the system sum rate through the joint optimization of base station (BS) precoding and IRS phase configurations. The formulated problem exhibits inherent non-convexity and time-varying characteristics, posing significant optimization challenges. To address these, we propose a low-complexity dimension-wise sine maximization (DSM) algorithm, grounded in the sum path gain maximization (SPGM) criterion, to efficiently optimize the IRS phase shift matrix. Concurrently, the water-filling (WF) algorithm is employed for BS precoding design. Simulation results demonstrate that compared with traditional methods, the proposed DSM algorithm achieves a 14.9% increase in sum rate, while exhibiting lower complexity and faster convergence. Furthermore, the proposed multi-IRS design yields an 8.7% performance gain over the single-IRS design. Full article
Show Figures

Figure 1

21 pages, 6801 KiB  
Article
Performance Evaluation of a High-Gain Axisymmetric Minkowski Fractal Reflectarray for Ku-Band Satellite Internet Communication
by Prabhat Kumar Patnaik, Harish Chandra Mohanta, Dhruba Charan Panda, Ribhu Abhusan Panda, Malijeddi Murali and Heba G. Mohamed
Fractal Fract. 2025, 9(7), 421; https://doi.org/10.3390/fractalfract9070421 - 27 Jun 2025
Viewed by 568
Abstract
In this article, a high-gain axisymmetric Minkowski fractal reflectarray is designed and fabricated for Ku-Band satellite internet communications. High gain is achieved here by carefully optimising the number of unit cells, their shape modifier, focal length, feed position and scan angle. The space-filling [...] Read more.
In this article, a high-gain axisymmetric Minkowski fractal reflectarray is designed and fabricated for Ku-Band satellite internet communications. High gain is achieved here by carefully optimising the number of unit cells, their shape modifier, focal length, feed position and scan angle. The space-filling properties of Minkowski fractals help in miniaturising the fractal. The scan angle of the reflectarray varied by adjusting the fractal scaling factor for each unit cell in the array. The reflectarray is symmetric along the X-axis in its design and configuration. Initially, a Minkowski fractal unit cell is designed using iteration-1 in the simulation software. Then, its design parameters are optimised to achieve high gain, a narrow beam, and beam scan capabilities. The sensitivity of design parameters is examined individually using the array synthesis method to achieve these performance parameters. It helps to establish the maximum range of design and performance parameters for this design. The proposed reflectarray resonates at 12 GHz, achieving a gain of over 20 dB and a narrow beamwidth of less than 15 degrees. Finally, the designed fractal reflectarray is tested in real-time simulation environments using MATLAB R2023b, and its performance is evaluated in an interference scenario involving LEO and MEO satellites, as well as a ground station, under various time conditions. For real-world applicability, it is necessary to identify, analyse, and mitigate the unwanted interference signals that degrade the desired satellite signal. The proposed reflectarray, with its performance characteristics and beam scanning capabilities, is found to be an excellent choice for Ku-band satellite internet communications. Full article
Show Figures

Figure 1

18 pages, 4676 KiB  
Article
Integrated Leakage Control Technology for Underground Structures in Karst Terrains: Multi-Stage Grouting and Zoned Remediation at Guangzhou Baiyun Metro Station
by Yanhong Wang, Wentian Xu, Shi Zheng, Jinsong Liu, Muyu Li and Yili Yuan
Buildings 2025, 15(13), 2239; https://doi.org/10.3390/buildings15132239 - 26 Jun 2025
Viewed by 363
Abstract
This study presents a comprehensive treatment system for addressing leakage challenges in underground structure construction within complex karst terrains, demonstrated through the case of Baiyun Station in Guangzhou. Integrating advanced geological investigation, dynamic grouting techniques, and adaptive structural remediation strategies, this methodology effectively [...] Read more.
This study presents a comprehensive treatment system for addressing leakage challenges in underground structure construction within complex karst terrains, demonstrated through the case of Baiyun Station in Guangzhou. Integrating advanced geological investigation, dynamic grouting techniques, and adaptive structural remediation strategies, this methodology effectively mitigates water inflow risks in structurally heterogeneous karst environments. Key innovations include the “one-trench two-drilling” exploration-grouting system for karst cave detection and filling, a multi-stage emergency water-gushing control protocol combining cofferdam sealing and dual-fluid grouting, and a zoned epoxy resin injection scheme for structural fissure remediation. Implementation at Baiyun Station achieved quantifiable outcomes: karst cave filling rates increased from 35.98% to 82.6%, foundation pit horizontal displacements reduced by 67–68%, and structural seepage repair rates reached 96.4%. The treatment system reduced construction costs by CNY 12 million and shortened schedules by 45 days through optimized pile formation efficiency (98% qualification rate) and minimized rework. While demonstrating superior performance in sealing > 0.2 mm fissures, limitations persist in addressing sub-micron fractures and ensuring long-term epoxy resin durability. This research establishes a replicable framework for underground engineering in karst regions, emphasizing real-time monitoring, multi-technology synergy, and environmental sustainability. Full article
Show Figures

Figure 1

21 pages, 3885 KiB  
Article
A Point Cloud Registration Method for Steel Tubular Arch Rib Segments of CFST Arch Bridges Based on Local Geometric Constraints
by Yiquan Lv, Chuanli Kang, Junli Liu and Hongjian Zhou
Buildings 2025, 15(12), 2130; https://doi.org/10.3390/buildings15122130 - 19 Jun 2025
Viewed by 338
Abstract
The multi-station registration of concrete-filled steel tubular (CFST) arch rib segments poses significant challenges due to structural complexity and environmental constraints during terrestrial laser scanning, requiring multi-angle acquisition for comprehensive coverage. This study introduces a cascaded registration framework comprising: (1) a coarse registration [...] Read more.
The multi-station registration of concrete-filled steel tubular (CFST) arch rib segments poses significant challenges due to structural complexity and environmental constraints during terrestrial laser scanning, requiring multi-angle acquisition for comprehensive coverage. This study introduces a cascaded registration framework comprising: (1) a coarse registration method utilizing local geometric features of segmented tubular joints, where equidistant cross-section partitioning extracts inherent circularity constraints from cylindrical segments, and (2) a refined registration stage employing the Coherent Point Drift (CPD) algorithm with k-d tree acceleration for computational efficiency. Experimental results demonstrate that the coarse registration achieves 31 mm RMSE with R2= 0.889, eliminating 88.9% of initial misalignment. The CPD refinement reduces RMSE to 4 mm (87% precision improvement), reaching sub-centimeter accuracy with exceptional congruence (R2 = 0.995, residual error = 0.5%). Notably, k-d tree acceleration decreases computational time by 34.2% (13.30 s vs. 20.21 s) compared to conventional CPD. Validated on 2.2 m CFST specimens, this method provides an efficient solution for multi-station point cloud registration of complex steel structures. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

24 pages, 27040 KiB  
Article
POI-Based Assessment of Sustainable Commercial Development: Spatial Distribution Characteristics and Influencing Factors of Commercial Facilities Around Urumqi Metro Line 1 Stations
by Aishanjiang Abudurexiti, Zulihuma Abulikemu and Maimaitizunong Keyimu
Sustainability 2025, 17(12), 5270; https://doi.org/10.3390/su17125270 - 6 Jun 2025
Viewed by 533
Abstract
Against the backdrop of rapid rail transit development, this study takes Urumqi Metro Line 1 as a case, using geographic information system (GIS) spatial analysis and space syntax Pearson correlation coefficient methods. Focusing on an 800 m radius around station areas, the research [...] Read more.
Against the backdrop of rapid rail transit development, this study takes Urumqi Metro Line 1 as a case, using geographic information system (GIS) spatial analysis and space syntax Pearson correlation coefficient methods. Focusing on an 800 m radius around station areas, the research investigates the distribution characteristics of commercial facilities and the impact of metro development on commercial patterns through the quantitative analysis and distribution trends of points of interest (POI) data across different historical periods. The study reveals that following the opening of Urumqi Metro Line 1, commercial facilities have predominantly clustered around stations including Erdaoqiao, Nanmen, Beimen, Nanhu Square, Nanhu Beilu, Daxigou, and Sports Center, with kernel density values surging by 28–39%, indicating significantly enhanced commercial agglomeration. Metro construction has promoted commercial POI quantity growth and commercial sector enrichment. Surrounding commercial areas have developed rapidly after metro construction, with the most significant impacts observed in the catering, shopping, and residential-oriented living commercial sectors. After the construction of the subway, the distribution pattern of commercial facilities presents two kinds of aggregation patterns: one is the original centripetal aggregation layout before construction and further strengthened after construction; the other is the centripetal aggregation layout before construction and further weakened after construction, tending to the site level of face-like aggregation. The clustering characteristics of different business types vary. Factors such as subway accessibility, population density, and living infrastructure all impact the distribution of businesses around the subway. The impact of subway accessibility on commercial facilities varies by station infrastructure and urban area. The findings demonstrate how transit infrastructure development can catalyze sustainable urban form evolution by optimizing spatial resource allocation and fostering transportation–commerce synergy. It provides empirical support for applying the theory of transit-oriented development (TOD) in the urban planning of western developing regions. The research not only fills a research gap concerning the commercial space differentiation law of metro systems in megacities in arid areas but also provides a scientific decision-making basis for optimizing the spatial resource allocation of stations and realizing the synergistic development of transportation and commerce in the node cities along the “Belt and Road”. Full article
Show Figures

Figure 1

16 pages, 1540 KiB  
Article
A Comparison of Daily and Hourly Evapotranspiration and Transpiration Rate of Summer Maize with Contrast Canopy Size
by Gaoping Xu, Hui Tong, Rongxue Zhang, Xin Lu, Zhaoshun Yang, Yi Wang and Xuzhang Xue
Water 2025, 17(10), 1521; https://doi.org/10.3390/w17101521 - 18 May 2025
Viewed by 637
Abstract
A detailed characterization of evapotranspiration (ET) patterns is of paramount importance for optimizing irrigation scheduling and enhancing water-use efficiency in the North China Plain. To delve into this, a two-season study was conducted at the National Experimental Station for Precise Agriculture in Beijing. [...] Read more.
A detailed characterization of evapotranspiration (ET) patterns is of paramount importance for optimizing irrigation scheduling and enhancing water-use efficiency in the North China Plain. To delve into this, a two-season study was conducted at the National Experimental Station for Precise Agriculture in Beijing. Using 12 weighing lysimeters, the study compared two summer maize varieties with contrasting canopy sizes: Jingke 968 (JK), characterized by a large canopy, and CF 1002 (CF), with a small canopy. The comprehensive analysis yielded the following significant findings: (1) The daily average ET rates exhibited consistent trends across cultivars, yet with notable disparities in magnitude. JK consistently demonstrated higher water consumption throughout the growth seasons. In the first season, at the V13–R1 stage, the peak daily ET of JK and CF reached 5.91 mm/day and 5.52 mm/day, respectively. In the second season, during the R1–R3 stage, these values were 5.21 mm/day for JK and 5.22 mm/day for CF, highlighting the nuanced differences in water use between the varieties under varying growth conditions. (2) Regardless of canopy size, the hourly ET fluctuations across different growth stages followed similar temporal patterns. However, the most striking inter-varietal differences in ET emerged during the R1–R3 reproductive stages, when both cultivars had achieved peak canopy development (leaf area index, LAI > 4.5). Notably, the ET differences between JK and CF adhered to a characteristic diurnal “increase–decrease” pattern. These differences peaked during mid-morning (09:00–11:00) and early afternoon (13:00–15:00), while minimal divergence was observed at solar noon. This pattern suggests complex interactions between canopy structure, microclimate, and plant physiological processes that govern water loss over the course of a day. (3) Analysis of the pooled data pinpointed two critical time periods that significantly contributed to the cumulative ET differences between the varieties. The first period was from 12:00–17:00 during the R1–R3 (anthesis) stage, and the second was from 08:00–16:00 during the R3–R5 (grain filling) stage. JK maintained significantly higher transpiration rates (Tr) compared to CF, especially during the morning hours (09:00–12:00). On average, the Tr of JK exceeded that of CF by 5.3% during the pre-anthesis stage and by 16.0% during the post-anthesis stage. These observed Tr differentials strongly indicate that canopy architecture plays a pivotal role in modulating stomatal regulation patterns. Maize varieties with large canopies, such as JK, demonstrated enhanced morning photosynthetic activity, which likely contributed to increased transpiration. At the same time, both varieties seemed to employ similar midday water conservation strategies, possibly as an adaptive response to environmental stress. In summary, this study has comprehensively elucidated the intricate relationship between the leaf area index and the evapotranspiration of summer maize across multiple timescales, encompassing periodic, daily, and hourly variations. The findings provide invaluable data-driven insights that can underpin the development of precise and quantitative irrigation strategies, ultimately promoting sustainable and efficient maize production in the North China Plain. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

30 pages, 6658 KiB  
Article
Dynamic Modeling of a Compressed Natural Gas Refueling Station and Multi-Objective Optimization via Gray Relational Analysis Method
by Fatih Özcan and Muhsin Kılıç
Appl. Sci. 2025, 15(9), 4908; https://doi.org/10.3390/app15094908 - 28 Apr 2025
Viewed by 567
Abstract
Compressed natural gas (CNG) refueling stations operate under highly dynamic thermodynamic conditions, requiring accurate modeling and optimization to ensure efficient performance. In this study, a dynamic simulation model of a CNG station was developed using MATLAB-SIMULINK, including detailed subsystems for multi-stage compression, cascade [...] Read more.
Compressed natural gas (CNG) refueling stations operate under highly dynamic thermodynamic conditions, requiring accurate modeling and optimization to ensure efficient performance. In this study, a dynamic simulation model of a CNG station was developed using MATLAB-SIMULINK, including detailed subsystems for multi-stage compression, cascade storage, and vehicle tank filling. Real gas effects were incorporated to improve prediction accuracy of the pressure, temperature, and mass flow rate variations during fast filling. The model was validated against experimental data, showing good agreement in both pressure rise and flow rate evolution. A two-stage multi-objective optimization approach was applied using Taguchi experimental design and gray relational analysis (GRA). In the first stage, storage pressures were optimized to maximize the number of vehicles filled and gas mass delivered, while minimizing compressor-specific work. The second stage focused on optimizing the volume distribution among the low, medium, and high-pressure tanks. The combined optimization led to a 12.33% reduction in compressor-specific energy consumption with minimal change in refueling throughput. These results highlight the critical influence of pressure levels and volume ratios in cascade storage systems on station performance. The presented methodology provides a systematic framework for the analysis and optimization of transient operating conditions in CNG infrastructure. Full article
Show Figures

Figure 1

23 pages, 6638 KiB  
Article
Influencing Factors and Prediction of Turbine Sediment Concentration in Pure Pumped-Storage Power Stations on Sediment-Laden Rivers
by Lei Liu, Zhandi Dong and Zhiguo Wang
Water 2025, 17(9), 1254; https://doi.org/10.3390/w17091254 - 23 Apr 2025
Viewed by 490
Abstract
This study investigates the sediment transport characteristics in the lower reservoir area of a pure pumped-storage power station (Pure-PSPS) to address the sediment abrasion issue under high sediment-laden conditions. By establishing a physical model and employing multivariate statistical analysis methods, we systematically reveal [...] Read more.
This study investigates the sediment transport characteristics in the lower reservoir area of a pure pumped-storage power station (Pure-PSPS) to address the sediment abrasion issue under high sediment-laden conditions. By establishing a physical model and employing multivariate statistical analysis methods, we systematically reveal the multifactorial coupled influence mechanism of key parameters in the lower reservoir area on turbine sediment concentration (TSC), while developing a predictive TSC formula applicable to high-sediment Pure-PSPS based on sediment-carrying capacity theory and sediment mass conservation principles. The study indicates the following: (1) Under consistent basic parameters such as reservoir length, the decay rate of sediment concentration along the path from the reservoir inlet to the power station’s intake and outlet decreases to 30~80% under high inflow conditions, while under medium and low inflow conditions, the decay rate exceeds 80%. (2) The lower boundary of the median particle size adjustment range for suspended sediment gradually increases from 0.006 mm for 30- and 40-year flood recurrence intervals to 0.009 mm for an 80-year recurrence interval, and under the 80-year recurrence interval, the particle size fluctuation range converges to a high and narrow distribution of 0.009~0.011 mm. (3) The constructed linear regression model has an R2 value of 0.8. The inflow sediment concentration (standardized coefficient β = 0.36) exhibits the strongest explanatory power for the dependent variable, followed by inflow discharge (β = 0.345) and the height difference between the intake/outlet and the silted bed surface (β = 0.319). (4) By optimizing the Adomian decomposition method, dimensional analysis, and multiple regression techniques, and based on sediment-carrying capacity theory and sediment mass conservation principles, this study derived and fitted a predictive formula for TSC in high-sediment-laden Pure-PSPS environments with favorable validation results. The research not only clarifies the interactive relationship between high-sediment-laden flow and turbine sediment concentration in Pure-PSPS but also fills the methodological gap in predicting operational conditions for pure pumped-storage power stations under extreme sediment scenarios. The established regular patterns provide a scientific foundation for the design and feasibility assessment of similar Pure-PSPS projects in sediment-rich rivers. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

17 pages, 5399 KiB  
Article
Experimental Research of the Possibility of Applying the Hartmann–Sprenger Effect to Regulate the Pressure of Natural Gas in Non-Stationary Conditions
by Artem Belousov, Vladimir Lushpeev, Anton Sokolov, Radel Sultanbekov, Yan Tyan, Egor Ovchinnikov, Aleksei Shvets, Vitaliy Bushuev and Shamil Islamov
Processes 2025, 13(4), 1189; https://doi.org/10.3390/pr13041189 - 14 Apr 2025
Cited by 21 | Viewed by 879
Abstract
This research focuses on the development of a quasi-isothermal pressure regulator based on the principle of flow mixing after energy separation. Currently, no established methods exist for designing pressure reduction devices that utilize energy separation effects, and this study aims to fill this [...] Read more.
This research focuses on the development of a quasi-isothermal pressure regulator based on the principle of flow mixing after energy separation. Currently, no established methods exist for designing pressure reduction devices that utilize energy separation effects, and this study aims to fill this gap. The paper presents experimental results on the performance of a pressure reduction device operating based on the Hartmann–Sprenger effect. This study investigated the hypothesis that by selecting the size of resonators, relative distances, and their mutual location, it would be possible to realize pressure regulation, simultaneously providing both the maintenance of a significant effect and the full provision of the functions of pressure regulators operating in non-stationary conditions. The experiments involved three resonators (45.5 mm, 70.5 mm, and 97.5 mm) in regurgitant mode. The findings revealed that the smallest resonator demonstrated the highest rate of temperature increase, with an average value of 2.36 K/s. The medium resonator exhibited the highest reliability under non-stationary conditions, while the largest resonator provided the highest temperature, with a maximum excess of 102 K over the temperature in front of the nozzle. The primary goal of this study was to develop technology suitable for installation at a pressure reduction station, considering mass and dimensional constraints. Full article
(This article belongs to the Topic Oil and Gas Pipeline Network for Industrial Applications)
Show Figures

Figure 1

Back to TopTop