Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,972)

Search Parameters:
Keywords = field displacement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3150 KiB  
Review
Making the Connection Between PFASs and Agriculture Using the Example of Minnesota, USA: A Review
by Sven Reetz, Joel Tallaksen, John Larson and Christof Wetter
Agriculture 2025, 15(15), 1676; https://doi.org/10.3390/agriculture15151676 (registering DOI) - 2 Aug 2025
Abstract
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a [...] Read more.
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a pressing issue since health advisories are continuously being reassessed. This semi-systematic literature review connects the release, environmental fate, and agriculture uptake of PFASs to enhance comprehension and identify knowledge gaps which limit accurate risk assessment. It focuses on the heavily agricultural state of Minnesota, USA, which is representative of the large Midwestern US Corn Belt in terms of agricultural activities, because PFASs have been monitored in Minnesota since the beginning of the 21st century. PFAS contamination is a complex issue due to the over 14,000 individual PFAS compounds which have unique chemical properties that interact differently with air, water, soil, and biological systems. Moreover, the lack of field studies and monitoring of agricultural sites makes accurate risk assessments challenging. Researchers, policymakers, and farmers must work closely together to reduce the risk of PFAS exposure as the understanding of their potential health effects increases and legacy PFASs are displaced with shorter fluorinated replacements. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

16 pages, 2028 KiB  
Article
A Hybrid Algorithm for PMLSM Force Ripple Suppression Based on Mechanism Model and Data Model
by Yunlong Yi, Sheng Ma, Bo Zhang and Wei Feng
Energies 2025, 18(15), 4101; https://doi.org/10.3390/en18154101 (registering DOI) - 1 Aug 2025
Abstract
The force ripple of a permanent magnet synchronous linear motor (PMSLM) caused by multi-source disturbances in practical applications seriously restricts its high-precision motion control performance. The traditional single-mechanism model has difficulty fully characterizing the nonlinear disturbance factors, while the data-driven method has real-time [...] Read more.
The force ripple of a permanent magnet synchronous linear motor (PMSLM) caused by multi-source disturbances in practical applications seriously restricts its high-precision motion control performance. The traditional single-mechanism model has difficulty fully characterizing the nonlinear disturbance factors, while the data-driven method has real-time limitations. Therefore, this paper proposes a hybrid modeling framework that integrates the physical mechanism and measured data and realizes the dynamic compensation of the force ripple by constructing a collaborative suppression algorithm. At the mechanistic level, based on electromagnetic field theory and the virtual displacement principle, an analytical model of the core disturbance terms such as the cogging effect and the end effect is established. At the data level, the acceleration sensor is used to collect the dynamic response signal in real time, and the data-driven ripple residual model is constructed by combining frequency domain analysis and parameter fitting. In order to verify the effectiveness of the algorithm, a hardware and software experimental platform including a multi-core processor, high-precision current loop controller, real-time data acquisition module, and motion control unit is built to realize the online calculation and closed-loop injection of the hybrid compensation current. Experiments show that the hybrid framework effectively compensates the unmodeled disturbance through the data model while maintaining the physical interpretability of the mechanistic model, which provides a new idea for motor performance optimization under complex working conditions. Full article
19 pages, 8049 KiB  
Article
Determination of the Magnetic Field Coordinates of BMM Sensors Under a Collapsed Rock Mass Array for Assessing Ore Body Contour Displacement
by Andrey O. Shigin, Danil S. Kudinov, Ekaterina A. Kokhonkova and Vyacheslav V. Romanov
Geosciences 2025, 15(8), 292; https://doi.org/10.3390/geosciences15080292 (registering DOI) - 1 Aug 2025
Abstract
This article analyzes the operating principle of the BMM sensor emitter in order to improve the accuracy of the wireless determination of the BMM sensor coordinates under a massif of destroyed rock in the context of the problem of determining the shift of [...] Read more.
This article analyzes the operating principle of the BMM sensor emitter in order to improve the accuracy of the wireless determination of the BMM sensor coordinates under a massif of destroyed rock in the context of the problem of determining the shift of rocks during gold ore mining. Using numerical simulations, FEM has been developed to develop digital models reflecting individual cases of the propagation of the magnetic field of the emitter located in various geological conditions and positions relative to the rock surface and the vertical axis. The accuracy of determining the coordinates of the radio beacon in the rock has been analyzed, and data on the deviation of the coordinates of the peaks of the magnetic field strength from the radio beacon axis have been obtained in cases of a heterogeneous composition of the rock massif, the influence of the deviation of the emitter axis angle from the vertical, the influence of the unevenness of the collapse relief, and the influence of the superposition of fields from different radiation sources. A study has been carried out to determine the direction of the radio beacon search based on the resulting vector of the emitter’s magnetic field strength. Full article
(This article belongs to the Topic Advances in Mining and Geotechnical Engineering)
Show Figures

Figure 1

14 pages, 233 KiB  
Article
Looking Through the Corporate Glass Ceiling in China
by Runping Zhu, Zunbin Huo, Zeqing Chen and Richard Krever
J. Risk Financial Manag. 2025, 18(8), 423; https://doi.org/10.3390/jrfm18080423 (registering DOI) - 1 Aug 2025
Abstract
An important element in the Constitution of the People’s Republic of China is the guarantee of gender equality in all fields. The principle is not reflected in terms of corporate governance and senior management, however. A study of the largest 400 companies listed [...] Read more.
An important element in the Constitution of the People’s Republic of China is the guarantee of gender equality in all fields. The principle is not reflected in terms of corporate governance and senior management, however. A study of the largest 400 companies listed on Chinese stock exchanges shows far fewer female board members and senior managers than male counterparts and only a small improvement over the course of a decade. A comparison of gender balances in terms of a range of variables, including stock exchange listing, industry type, and ownership type, reveals better balances in wholly privately owned firms than in those with controlling state interests. Subject to intervening government policies to promote state-owned enterprises over private sector counterparts, the pattern over the decade studied suggests there is a possibility privately owned enterprises may gradually displace state-owned companies in the largest 400 group and gender balances in senior roles in the largest 400 group will consequently improve. Full article
(This article belongs to the Special Issue Emerging Issues in Economics, Finance and Business—2nd Edition)
20 pages, 892 KiB  
Article
Static Analysis of Temperature-Dependent FGM Spherical Shells Under Thermo-Mechanical Loads
by Zhong Zhang, Zhiting Feng, Zhan Shi, Honglei Xie, Ying Sun, Zhenyuan Gu, Jie Xiao and Jiajing Xu
Buildings 2025, 15(15), 2709; https://doi.org/10.3390/buildings15152709 (registering DOI) - 31 Jul 2025
Abstract
Static analysis is conducted for functionally graded material (FGM) spherical shells under thermo-mechanical loads, based on the three-dimensional thermo-elasticity theory. The material properties, which vary with both the radial coordinate and temperature, introduce nonlinearity to the problem. To address this, a layer model [...] Read more.
Static analysis is conducted for functionally graded material (FGM) spherical shells under thermo-mechanical loads, based on the three-dimensional thermo-elasticity theory. The material properties, which vary with both the radial coordinate and temperature, introduce nonlinearity to the problem. To address this, a layer model is proposed, wherein the shell is discretized into numerous concentric spherical layers, each possessing uniform material properties. Within this framework, the nonlinear heat conduction equations are first solved iteratively. The resulting temperature field is then applied to the thermo-elastic equations, which are subsequently solved using a combined state space and transfer matrix method to obtain displacement and stress solutions. Comparison with existing literature results demonstrates good agreement. Finally, a parametric study is presented to investigate the effects of material temperature dependence and gradient index on the thermo-mechanical behaviors of the FGM spherical shells. Full article
20 pages, 17113 KiB  
Article
Seismic Performance of an Asymmetric Tall-Pier Girder Bridge with Fluid Viscous Dampers Under Near-Field Earthquakes
by Ziang Pan, Qiming Qi, Jianxian He, Huaping Yang, Changjiang Shao, Wanting Gong and Haomeng Cui
Symmetry 2025, 17(8), 1209; https://doi.org/10.3390/sym17081209 - 30 Jul 2025
Viewed by 145
Abstract
Tall-pier girder bridges with fluid viscous dampers (FVDs) are widely used in earthquake-prone mountainous areas. However, the influence of higher-order modes and near-field earthquakes on tall piers has rarely been studied. Based on an asymmetric tall-pier girder bridge, a finite element model is [...] Read more.
Tall-pier girder bridges with fluid viscous dampers (FVDs) are widely used in earthquake-prone mountainous areas. However, the influence of higher-order modes and near-field earthquakes on tall piers has rarely been studied. Based on an asymmetric tall-pier girder bridge, a finite element model is established, and the parameters of FVDs are optimized using SAP2000. The higher-order mode effects on tall piers are explored by proportionally reducing the pier heights. The pulse effects of near-field earthquakes on FVD mitigation and higher-order modes are analyzed. The optimal FVDs can coordinate the force distribution among tall piers, effectively reducing displacement responses and internal forces. Due to higher-order modes, the internal force envelopes of tall piers exhibit concave-convex distributions. As pier heights decrease, the internal force envelopes gradually become linear, implying reduced higher-order mode effects. Long-period pulse-like motions produce the maximum seismic responses because the slender tall-pier bridge is sensitive to high spectral accelerations in medium-to-long periods. The higher-order modes are more easily excited by near-field motions with large spectral values in the high-frequency range. Overall, FVDs can simultaneously reduce the seismic responses of tall piers and diminish the influence of higher-order modes. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

24 pages, 4396 KiB  
Article
Study of the Characteristics of a Co-Seismic Displacement Field Based on High-Resolution Stereo Imagery: A Case Study of the 2024 MS7.1 Wushi Earthquake, Xinjiang
by Chenyu Ma, Zhanyu Wei, Li Qian, Tao Li, Chenglong Li, Xi Xi, Yating Deng and Shuang Geng
Remote Sens. 2025, 17(15), 2625; https://doi.org/10.3390/rs17152625 - 29 Jul 2025
Viewed by 197
Abstract
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that [...] Read more.
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that are suitable for the detailed extraction and quantification of vertical co-seismic displacements. In this study, we utilized pre- and post-event WorldView-2 stereo images of the 2024 Ms7.1 Wushi earthquake in Xinjiang to generate DEMs with a spatial resolution of 0.5 m and corresponding terrain point clouds with an average density of approximately 4 points/m2. Subsequently, we applied the Iterative Closest Point (ICP) algorithm to perform differencing analysis on these datasets. Special care was taken to reduce influences from terrain changes such as vegetation growth and anthropogenic structures. Ultimately, by maintaining sufficient spatial detail, we obtained a three-dimensional co-seismic displacement field with a resolution of 15 m within grid cells measuring 30 m near the fault trace. The results indicate a clear vertical displacement distribution pattern along the causative sinistral–thrust fault, exhibiting alternating uplift and subsidence zones that follow a characteristic “high-in-center and low-at-ends” profile, along with localized peak displacement clusters. Vertical displacements range from approximately 0.2 to 1.4 m, with a maximum displacement of ~1.46 m located in the piedmont region north of the Qialemati River, near the transition between alluvial fan deposits and bedrock. Horizontal displacement components in the east-west and north-south directions are negligible, consistent with focal mechanism solutions and surface rupture observations from field investigations. The successful extraction of this high-resolution vertical displacement field validates the efficacy of satellite-based high-resolution stereo-imaging methods for overcoming the limitations of GNSS and InSAR techniques in characterizing near-field surface displacements associated with earthquake ruptures. Moreover, this dataset provides robust constraints for investigating fault-slip mechanisms within near-surface geological contexts. Full article
Show Figures

Figure 1

17 pages, 6326 KiB  
Article
Dynamic Stress Wave Response of Thin-Walled Circular Cylindrical Shell Under Thermal Effects and Axial Harmonic Compression Boundary Condition
by Desejo Filipeson Sozinando, Patrick Nziu, Bernard Xavier Tchomeni and Alfayo Anyika Alugongo
Appl. Mech. 2025, 6(3), 55; https://doi.org/10.3390/applmech6030055 - 28 Jul 2025
Viewed by 302
Abstract
The interaction between thermal fields and mechanical loads in thin-walled cylindrical shells introduces complex dynamic behaviors relevant to aerospace and mechanical engineering applications. This study investigates the axial stress wave propagation in a circular cylindrical shell subjected to combined thermal gradients and time-dependent [...] Read more.
The interaction between thermal fields and mechanical loads in thin-walled cylindrical shells introduces complex dynamic behaviors relevant to aerospace and mechanical engineering applications. This study investigates the axial stress wave propagation in a circular cylindrical shell subjected to combined thermal gradients and time-dependent harmonic compression. A semi-analytical model based on Donnell–Mushtari–Vlasov (DMV) shells theory is developed to derive the governing equations, incorporating elastic, inertial, and thermal expansion effects. Modal solutions are obtained to evaluate displacement and stress distributions across varying thermal and mechanical excitation conditions. Empirical Mode Decomposition (EMD) and Instantaneous Frequency (IF) analysis are employed to extract time–frequency characteristics of the dynamic response. Complementary Finite Element Analysis (FEA) is conducted to assess modal deformations, stress wave amplification, and the influence of thermal softening on resonance frequencies. Results reveal that increasing thermal gradients leads to significant reductions in natural frequencies and amplifies stress responses at critical excitation frequencies. The combination of analytical and numerical approaches captures the coupled thermomechanical effects on shell dynamics, providing an understanding of resonance amplification, modal energy distribution, and thermal-induced stiffness variation under axial harmonic excitation across thin-walled cylindrical structures. Full article
Show Figures

Figure 1

25 pages, 17505 KiB  
Article
A Hybrid Spatio-Temporal Graph Attention (ST D-GAT Framework) for Imputing Missing SBAS-InSAR Deformation Values to Strengthen Landslide Monitoring
by Hilal Ahmad, Yinghua Zhang, Hafeezur Rehman, Mehtab Alam, Zia Ullah, Muhammad Asfandyar Shahid, Majid Khan and Aboubakar Siddique
Remote Sens. 2025, 17(15), 2613; https://doi.org/10.3390/rs17152613 - 28 Jul 2025
Viewed by 285
Abstract
Reservoir-induced landslides threaten infrastructures and downstream communities, making continuous deformation monitoring vital. Time-series InSAR, notably the SBAS algorithm, provides high-precision surface-displacement mapping but suffers from voids due to layover/shadow effects and temporal decorrelation. Existing deep-learning approaches often operate on fixed-size patches or ignore [...] Read more.
Reservoir-induced landslides threaten infrastructures and downstream communities, making continuous deformation monitoring vital. Time-series InSAR, notably the SBAS algorithm, provides high-precision surface-displacement mapping but suffers from voids due to layover/shadow effects and temporal decorrelation. Existing deep-learning approaches often operate on fixed-size patches or ignore irregular spatio-temporal dependencies, limiting their ability to recover missing pixels. With this objective, a hybrid spatio-temporal Graph Attention (ST-GAT) framework was developed and trained on SBAS-InSAR values using 24 influential features. A unified spatio-temporal graph is constructed, where each node represents a pixel at a specific acquisition time. The nodes are connected via inverse distance spatial edges to their K-nearest neighbors, and they have bidirectional temporal edges to themselves in adjacent acquisitions. The two spatial GAT layers capture terrain-driven influences, while the two temporal GAT layers model annual deformation trends. A compact MLP with per-map bias converts the fused node embeddings into normalized LOS estimates. The SBAS-InSAR results reveal LOS deformation, with 48% of missing pixels and 20% located near the Dasu dam. ST D-GAT reconstructed fully continuous spatio-temporal displacement fields, filling voids at critical sites. The model was validated and achieved an overall R2 (0.907), ρ (0.947), per-map R2 ≥ 0.807 with RMSE ≤ 9.99, and a ROC-AUC of 0.91. It also outperformed the six compared baseline models (IDW, KNN, RF, XGBoost, MLP, simple-NN) in both RMSE and R2. By combining observed LOS values with 24 covariates in the proposed model, it delivers physically consistent gap-filling and enables continuous, high-resolution landslide monitoring in radar-challenged mountainous terrain. Full article
Show Figures

Figure 1

16 pages, 8118 KiB  
Article
The Influence of Long-Term Service on the Mechanical Properties and Energy Dissipation Capacity of Flexible Anti-Collision Rings
by Junhong Zhou, Jia Lu, Wei Jiang, Ang Li, Hancong Shao, Zixiao Huang, Fei Wang and Qiuwei Yang
Coatings 2025, 15(8), 880; https://doi.org/10.3390/coatings15080880 - 27 Jul 2025
Viewed by 243
Abstract
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image [...] Read more.
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image correlation (DIC) technology. The results show that: The mechanical response of the anti-collision ring shows significant asymmetric tension–compression, with the tensile peak force being 6.8 times that of compression. A modified Johnson–Cook model was developed to accurately characterize the tension–compression force–displacement behavior across varying strain rates (0.001–0.1 s−1). The DIC full-field strain analysis reveals that the clamping fixture significantly influences the tensile deformation mode of the anti-collision ring by constraining its inner wall movement, thereby altering strain distribution patterns. Despite exhibiting a corrosion gradient from severe underwater degradation to minimal surface weathering, all tested rings demonstrated consistent mechanical performance, verifying the robust protective capability of the rubber coating in marine service conditions. Full article
Show Figures

Figure 1

18 pages, 3371 KiB  
Article
Insight into the Propagation of Interface Acoustic Waves in Rotated YX-LiNbO3/SU-8/Si Structures
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà and Farouk Laidoudi
Micromachines 2025, 16(8), 861; https://doi.org/10.3390/mi16080861 - 26 Jul 2025
Viewed by 253
Abstract
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate [...] Read more.
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate IAW propagation in the layered structure and to optimize design parameters, specifically the thicknesses of the platinum (Pt) interdigital transducers (IDTs) and the SU-8 adhesive layer. The simulations revealed the existence of two types of IAWs travelling at different velocities under specific Y-rotated cuts of the LiNbO3 half-space. These IAWs are faster than the surface acoustic wave (SAW) and slower than the leaky SAW (LSAW) propagating on the surface of the bare LiNbO3 half-space. The mechanical displacement fields of both IAWs exhibit a rapid decay to zero within a few wavelengths from the LiNbO3 surface. The piezoelectric coupling coefficients of the IAWs were found to be as high as approximately 7% and 31%, depending on the Y-rotation angle. The theoretical results were experimentally validated by measuring the velocities of the SAW and LSAW on a bare 90° YX-LiNbO3 substrate, and the velocities of the IAWs in a 90° YX-LiNbO3/SU-8/Si structure featuring 330 nm thick Pt IDTs, a 200 µm wavelength, and a 15 µm thick SU-8 layer. The experimental data showed good agreement with the theoretical predictions. These combined theoretical and experimental findings establish design principles for exciting two interface waves with elliptical and quasi-shear polarization, offering enhanced flexibility for fluidic manipulation and the integration of sensing functionalities. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices, Second Edition)
Show Figures

Figure 1

20 pages, 7363 KiB  
Article
Numerical Simulation Study of Rainfall-Induced Saturated–Unsaturated Landslide Instability and Failure
by Zhuolin Wu, Gang Yang, Wen Li, Xiangling Chen, Fei Liu and Yong Zheng
Water 2025, 17(15), 2229; https://doi.org/10.3390/w17152229 - 26 Jul 2025
Viewed by 333
Abstract
Rainfall infiltration is a key factor affecting the stability of the slope. To study the impact of rainfall on the instability mechanism and stability of slopes, this paper employs numerical simulation to establish a rainfall infiltration slope model and conducts a saturated–unsaturated slope [...] Read more.
Rainfall infiltration is a key factor affecting the stability of the slope. To study the impact of rainfall on the instability mechanism and stability of slopes, this paper employs numerical simulation to establish a rainfall infiltration slope model and conducts a saturated–unsaturated slope flow and solid coupling numerical analysis. By combining the strength reduction method with the calculation of slope stability under rainfall infiltration, the safety factor of the slope is obtained. A comprehensive analysis is conducted from the perspectives of the seepage field, displacement field and other factors to examine the impact of heavy rainfall patterns and rainfall intensities on the instability mechanism and stability of the slope. The results indicate that heavy rainfall causes the transient saturation zone within the landslide body to continuously move upward, forming a continuous sliding surface inside the slope, which may lead to instability and sliding of the soil in the upper part of the slope toe. The heavy rainfall patterns significantly affect the temporal and spatial evolution of pore water pressure, displacement and safety factors of the slope. Pore water pressure and displacement show a positive correlation with the rainfall intensity at various times during heavy rainfall events. The pre-peak rainfall pattern causes the largest decrease in the safety factor of the slope, and the slope failure occurs earlier, which is the most detrimental to the stability of the slope. The rainfall intensity is inversely proportional to the safety factor. As the rainfall intensity increases, the decrease in the slope’s safety factor becomes more significant, and the time required for slope instability is also shortened. The results of this study provide a scientific basis for analyzing rainfall-induced slope instability and failure. Full article
Show Figures

Figure 1

22 pages, 15042 KiB  
Article
Study on Optimization of Downward Mining Schemes of Sanshandao Gold Mine
by Weijun Liu, Zhixiang Liu and Zaiyong Li
Appl. Sci. 2025, 15(15), 8296; https://doi.org/10.3390/app15158296 - 25 Jul 2025
Viewed by 103
Abstract
To address the challenges associated with deep ground pressure control at the Sanshandao Gold Mine, a pre-controlled top-to-middle and deep-hole upper and lower-wall goaf subsequent filling mining method was proposed. Three distinct downward mining schemes were designed, the excavation procedure is systematically designed [...] Read more.
To address the challenges associated with deep ground pressure control at the Sanshandao Gold Mine, a pre-controlled top-to-middle and deep-hole upper and lower-wall goaf subsequent filling mining method was proposed. Three distinct downward mining schemes were designed, the excavation procedure is systematically designed with 18 steps, and the temporal and spatial evolution characteristics of stress and displacement were analyzed using FLAC3D. The results revealed that stress concentration occurred during excavation steps 1–3. As excavation progressed to steps 4–9, the stress concentration area shifted primarily to the filling zones of partially excavated and filled sections. By steps 10–12, the stress concentration in these areas was alleviated. Upon completion of all excavation and filling steps, a small plastic zone was observed, accompanied by an alternating distribution of high and low stress within the backfill. Throughout the excavation process, vertical displacement ranged from 4.42 to 22.73 mm, while horizontal displacement ranged from 1.72 to 3.69 mm, indicating that vertical displacement had a more significant impact on stope stability than horizontal displacement. Furthermore, the fuzzy comprehensive evaluation method was applied to optimize the selection among the three schemes, with Scheme 2 identified as the optimal. Field industrial trials subsequently confirmed the technical rationality and practical applicability of Scheme 2 under actual mining conditions. Full article
(This article belongs to the Special Issue Recent Advances in Rock Mass Engineering)
Show Figures

Figure 1

19 pages, 10374 KiB  
Article
Nanoscale Nickel Oxide: Synthesis, Characterization, and Impact on Antibacterial Activity Against Representative Microorganisms
by Daniela Istrate, Mihai Oproescu, Ecaterina Magdalena Modan, Sorin Georgian Moga, Denis Aurelian Negrea and Adriana-Gabriela Schiopu
ChemEngineering 2025, 9(4), 77; https://doi.org/10.3390/chemengineering9040077 - 25 Jul 2025
Viewed by 207
Abstract
Among the various available synthesis approaches, hydrolytic precipitation offers a simple, cost-effective, and scalable route for producing phase-pure NiO with a controlled morphology and crystallite size. However, the influence of calcination temperature on its crystalline phase, particle size, and antimicrobial activity remains an [...] Read more.
Among the various available synthesis approaches, hydrolytic precipitation offers a simple, cost-effective, and scalable route for producing phase-pure NiO with a controlled morphology and crystallite size. However, the influence of calcination temperature on its crystalline phase, particle size, and antimicrobial activity remains an active field of research. This study aims to investigate the structural, morphological, and antibacterial properties of NiO nanoparticles synthesized via hydrolytic methods and thermally treated at different temperatures. XRD data indicate the presence of the hexagonal crystallographic phase of NiO (space group 166: R-3m), a structural variant less commonly reported in the literature, stabilized under mild hydrolytic synthesis conditions. The average crystallite size increases significantly from 4.97 nm at 300 °C to values of ~17.8 nm at 500–700 °C, confirming the development of the crystal lattice. The ATR-FTIR analysis confirms the presence of the characteristic Ni–O band for all samples, positioned between 367 and 383 cm−1, with a reference value of 355 cm−1 for commercial NiO. The displacements and variations in intensity reflect a thermal evolution of the crystalline structure, but also an important influence of the size of the crystallites and the agglomeration state. The results reveal a systematic evolution in particle morphology from porous, flake-like nanostructures at 300 °C to dense, well-faceted polyhedral crystals at 900 °C. With an increasing temperature, particle size increases. EDS spectra confirm the high purity of the NiO phase across all samples. Additionally, the NiO nanoparticles exhibit calcination-temperature-dependent antibacterial activity, with the complete inhibition of Escherichia coli and Enterococcus faecalis observed after 24 h for the sample calcined at 300 °C and over 90% CFU reduction within 4 h. A significant reduction in E. faecalis viability across all samples indicates time- and strain-specific bactericidal effects. Due to its remarkable multifunctionality, NiO has emerged as a strategic nanomaterial in fields ranging from energy storage and catalysis to antimicrobial technologies, where precise control over its structural phase and particle size is essential for optimizing performance. Full article
Show Figures

Figure 1

20 pages, 3825 KiB  
Article
Diffangle-Grasp: Dexterous Grasp Synthesis via Fine-Grained Contact Generation and Natural Pose Optimization
by Meng Ning, Chong Deng, Ziheng Zhan, Qianwei Yin and Xue Xia
Biomimetics 2025, 10(8), 492; https://doi.org/10.3390/biomimetics10080492 - 25 Jul 2025
Viewed by 277
Abstract
Grasping objects with a high degree of anthropomorphism is a critical component in the field of highly anthropomorphic robotic grasping. However, the accuracy of contact maps and the irrationality of the grasping gesture become challenges for grasp generation. In this paper, we propose [...] Read more.
Grasping objects with a high degree of anthropomorphism is a critical component in the field of highly anthropomorphic robotic grasping. However, the accuracy of contact maps and the irrationality of the grasping gesture become challenges for grasp generation. In this paper, we propose a reasonably improved generation scheme, called Diffangle-Grasp, consisting of two parts: contact map generation based on a conditional variational autoencoder (CVAE), sharing the potential space with the diffusion model, and optimized grasping generation, conforming to the physical laws and the natural pose. The experimental findings demonstrate that the proposed method effectively reduces the loss in contact map reconstruction by 9.59% in comparison with the base model. Additionally, it enhances the naturalness by 2.15%, elevates the success rate of grasping by 3.27%, reduces the penetration volume by 11.06%, and maintains the grasping simulation displacement. The comprehensive comparison and qualitative analysis with mainstream schemes also corroborate the rationality of the improvement. In this paper, we provide a comprehensive account of our contributions to enhancing the accuracy of contact maps and the naturalness of grasping gestures. We also offer a detailed technical feasibility analysis for robotic human grasping. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

Back to TopTop