Study of the Characteristics of a Co-Seismic Displacement Field Based on High-Resolution Stereo Imagery: A Case Study of the 2024 MS7.1 Wushi Earthquake, Xinjiang
Abstract
1. Introduction
2. Seismotectonic Setting
3. Data and Methods
3.1. DEM Extraction Based on WorldView-2 Stereo Pairs
- (1)
- Data input and projection setup: input stereo imagery data, define a consistent universal transverse mercator (UTM) projection coordinate system tailored to the local zone (Northern Hemisphere Zone 44, EPSG: 32644), and set units to meters to facilitate accurate subsequent computations.
- (2)
- Absolute orientation and control point extraction: utilize automatic control-point extraction methods based on reference DEMs and orthorectified imagery, inputting geographic locations and elevation information of these points to complete absolute orientation. This step ensures spatial consistency among different image datasets, effectively reducing systematic errors induced by satellite attitude and image distortions.
- (3)
- Ground tie-point collection: collect more than 150 ground tie-points from the oriented imagery, ensuring their root mean square (RMS) errors remain within 1.5 to achieve high positional matching accuracy across datasets.
- (4)
- DEM parameter configuration and extraction: define suitable DEM resolution, terrain detail levels, and sampling intervals according to research objectives, ultimately generating a DEM with a spatial resolution of up to 0.5 m. This DEM accurately reflects the terrain morphology within the study area and corrects systematic errors resulting from satellite attitude deviations and image distortion effects.
3.2. Iterative Closest Point (ICP) Algorithm
3.3. Calculation of the 3D Co-Seismic Displacement Field of the Wushi Earthquake
3.4. Measurement of Near-Fault Co-Seismic Displacements
3.4.1. Line-Fitting-Based Displacement Estimation Method
3.4.2. Mean Value Difference-Based Displacement Estimation Method
3.4.3. Fault-Parallel Buffer-Zone-Based Displacement Estimation Method
4. Results
4.1. Spatial Characteristics of the Co-Seismic Displacement Field of the Wushi Earthquake
4.2. Spatial Distribution of Near-Fault Co-Seismic Vertical Displacement
5. Discussion
5.1. Selection of Window Size and Step Length in the ICP Algorithm
5.2. Error Analysis of ICP-Derived Displacement Results
5.3. Influence of Different Measurement Methods on Co-Seismic Vertical Displacement Estimates
6. Conclusions
- The co-seismic vertical deformation field of the Wushi earthquake indicates a predominant surface uplift near the fault, reflecting a distinct reverse-faulting mechanism characterized by differential vertical displacement between the hanging wall and footwall blocks. The vertical displacement profile along strike presents a systematic low–high–low variation, ranging from 0.2 to 1.4 m, including three prominent peaks interpreted as localized zones of high stress concentration along the seismogenic fault. The maximum observed vertical displacement (~1.46 m) is located north of the Qialemati River, within the mountain-front transitional zone at the interface between the alluvial fan deposits and bedrock terrain.
- Comparative analyses of displacement measurements from the three extraction methods demonstrate that selecting an optimal measurement technique should consider faulting style, deformation characteristics, and observed surface rupture conditions. In regions with subtle vertical displacement contrasts between fault blocks, manual filtering and selective displacement extraction methods yield enhanced accuracy. Conversely, automated averaging approaches prove more efficient and robust in areas characterized by distinct surface ruptures and substantial displacements, with the added benefit of facilitating quantitative error estimations to evaluate measurement reliability.
- The results of this study indicate that novel high-resolution optical satellites, such as WorldView-2, are capable of acquiring terrain data with sub-meter to meter-level resolution. Measurements derived from point cloud data achieve accuracies finer than the scale of co-seismic slip associated with large earthquakes. Moreover, this technique demonstrates distinct advantages in accumulating pre-earthquake baseline data, rapidly acquiring post-earthquake observations, and extensively covering surface deformation zones. Consequently, it enables rapid and timely construction of high-resolution, three-dimensional, near-field co-seismic displacement fields of earthquake surface ruptures, effectively overcoming the spatial coverage limitations near faults inherent to GNSS and InSAR observational techniques.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gold, R.D.; Reitman, N.G.; Briggs, R.W.; Barnhart, W.D.; Hayes, G.P.; Wilson, E. On-and off-fault deformation associated with the September 2013 Mw 7.7 Balochistan earthquake: Implications for geologic slip rate measurements. Tectonophysics 2015, 660, 65–78. [Google Scholar] [CrossRef]
- Miyahara, B.; Miura, Y.; Kakiage, Y.; Ueshiba, H.; Honda, M.; Nakai, H.; Yamashita, T.; Morishit, Y.; Kobayash, T.; Yara, H. Detection of ground surface deformation caused by the 2016 Kumamoto earthquake by InSAR using ALOS-2 data. Bull. Geospat. Inf. Auth. Jpn. 2016, 64, 21–26. [Google Scholar]
- Wang, H.; Ran, Y.; Chen, L.; Li, Y. Paleoearthquakes on the Anninghe and Zemuhe fault along the southeastern margin of the Tibetan Plateau and implications for fault rupture behavior at fault bends on strike-slip faults. Tectonophysics 2017, 721, 167–178. [Google Scholar] [CrossRef]
- Milliner, C.W.D.; Sammis, C.; Allam, A.A.; Dolan, J.F.; Hollingsworth, J.; Leprince, S.; Ayoub, F. Resolving fine-scale heterogeneity of co-seismic slip and the relation to fault structure. Sci. Rep. 2016, 6, 27201. [Google Scholar] [CrossRef] [PubMed]
- Nissen, E.; Elliott, J.R.; Sloan, R.A.; Craig, T.J.; Funning, G.J.; Hutko, A.; Parsons, B.E.; Wright, T.J. Limitations of rupture forecasting exposed by instantaneously triggered earthquake doublet. Nat. Geosci. 2016, 9, 330–336. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Z.J.; Yuan, Z.; Yao, W.; Zhang, J.; Ji, L.; Shao, Z.; Han, L.; Wang, Z. Airborne LiDAR-based mapping of surface ruptures and coseismic slip of the 1955 Zheduotang earthquake on the Xianshuihe fault, east Tibet. Bull. Seismol. Soc. Am. 2022, 112, 3102–3120. [Google Scholar] [CrossRef]
- Zhou, Y.; Parsons, B.E.; Walker, R.T. Characterizing complex surface ruptures in the 2013 Mw 7.7 Balochistan earthquake using three-dimensional displacements. J. Geophys. Res. Solid Earth 2018, 123, 10191–10211. [Google Scholar] [CrossRef]
- Clark, K.J.; Nissen, E.K.; Howarth, J.D.; Hamling, J.I.; Mountjoy, J.J.; Ries, W.F.; Jones, K.; Goldstien, S.; Cochran, U.A.; Villamor, P.; et al. Highly variable coastal deformation in the 2016 MW7.8 Kaikōura earthquake reflects rupture complexity along a transpressional plate boundary. Earth Planet. Sci. Lett. 2017, 474, 334–344. [Google Scholar] [CrossRef]
- Fletcher, J.M.; Teran, O.J.; Rockwell, T.K.; Oskin, M.E.; Hudnut, K.W.; Mueller, K.J.; Spelz, R.M.; Akciz, S.O.; Masana, E.; Faneros, G.; et al. Assembly of a large earthquake from a complex fault system: Surface rupture kinematics of the 4 April 2010 El Mayor-Cucapah (Mexico) Mw 7.2 earthquake. Geosphere 2014, 10, 797–827. [Google Scholar] [CrossRef]
- Hayes, G.P.; Briggs, R.W.; Sladen, A.; Fielding, E.J.; Prentice, C.; Hudnut, K.; Mann, P.; Taylor, F.W.; Crone, A.J.; Gold, R.; et al. Complex rupture during the 12 January 2010 Haiti earthquake. Nat. Geosci. 2010, 3, 800–805. [Google Scholar] [CrossRef]
- Johnson, K.L.; Nissen, E.; Lajoie, L. Surface rupture morphology and vertical slip distribution of the 1959 Mw 7.2 Hebgen Lake (Montana) earthquake from airborne lidar topography. J. Geophys. Res. Solid Earth 2018, 123, 8229–8248. [Google Scholar] [CrossRef]
- Nissen, E.; Krishnan, A.K.; Arrowsmith, J.R.; Saripalli, S. Three-dimensional surface displacements and rotations from differencing pre-and post-earthquake LiDAR point clouds. Geophys. Res. Lett. 2012, 39, L16301. [Google Scholar] [CrossRef]
- Elliott, J.; Freymueller, J.T.; Larsen, C.F. Active tectonics of the St. Elias orogen, Alaska, observed with GPS measurements. J. Geophys. Res. Solid Earth 2013, 118, 5625–5642. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
- Ai, M.; Bi, H.; Zheng, W.J.; Yin, J.; Yuan, D.; Ren, Z.; Chen, G.; Liu, J. Using unmanned aerial vehicle photogrammetry technology to obtain quantitative parameters of active tectonics. Seismol. Geol. 2018, 40, 1276–1293. [Google Scholar]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Michel, R.; Avouac, J.P.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the Landers earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [Google Scholar] [CrossRef]
- Kaiser, A.; Balfour, N.; Fry, B.; Holden, C.; Litchfield, N.; Gerstenberger, M.; D’Anastasio, E.; Horspool, N.; McVerry, G.; Ristau, J.; et al. The 2016 Kaikōura, New Zealand, earthquake: Preliminary seismological report. Seismol. Res. Lett. 2017, 88, 727–739. [Google Scholar] [CrossRef]
- Cunningham, D.; Grebby, S.; Tansey, K.; Gosar, A.; Kastelic, V. Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia. Geophys. Res. Lett. 2006, 33, L20308. [Google Scholar] [CrossRef]
- Glennie, C.L.; Hinojosa-Corona, A.; Nissen, E.; Kusari, A.; Oskin, M.E.; Arrowsmith, J.R.; Borsa, A. Optimization of legacy lidar data sets for measuring near-field earthquake displacements. Geophys. Res. Lett. 2014, 41, 3494–3501. [Google Scholar] [CrossRef]
- Lin, Z.; Kaneda, H.; Mukoyama, S.; Asada, N.; Chiba, T. Detection of subtle tectonic-geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey. Geomorphology 2013, 182, 104–115. [Google Scholar] [CrossRef]
- Fialko, Y.; Sandwell, D.; Simons, M.; Rosen, P. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature 2005, 435, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Qu, C.; Shan, X.; Zhao, D.; Gong, W.; Li, Y. Coseismic deformation and multi-fault slip model of the 2019 Mindanao earthquake sequence derived from Sentinel-1 and ALOS-2 data. Tectonophysics 2021, 799, 228707. [Google Scholar] [CrossRef]
- Leprince, S.; Hudnut, K.W.; Akciz, S.O.; Hinojosa-Corona, A.; Fletcher, J.M. Surface rupture and slip variation induced by the 2010 El Mayor–Cucapah earthquake, Baja California, quantified using COSI-Corr analysis on pre-and post-earthquake LiDAR acquisitions. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 4–8 December 2011. [Google Scholar]
- Liu, Y.H.; Shan, X.J.; Qu, C.Y.; Song, X.G.; Zhang, G.F. Application of sub-pixel image correlation to near field ground deformation measurements of Wenchuan earthquake. Seismology 2013, 35, 138–150. [Google Scholar]
- Oskin, M.E.; Arrowsmith, J.R.; Corona, A.H.; Elliott, A.J.; Fletcher, J.M.; Fielding, E.J.; Gold, P.O.; Garcia, J.J.G.; Hudnut, K.W.; Liu-Zeng, J.; et al. Near-field deformation from the El Mayor–Cucapah earthquake revealed by differential LIDAR. Science 2012, 335, 702–705. [Google Scholar] [CrossRef]
- Chen, Y.; Medioni, G. Object modelling by registration of multiple range images. Image Vis. Comput. 1992, 10, 145–155. [Google Scholar] [CrossRef]
- Wei, Z.-Y.; He, H.-L.; Deng, Y.-T.; Xi, X. Three-Dimensional Surface Coseismic Displacements from Differencing pre- and Post-Earthquake Terrain Point Clouds. Seismol. Geol. 2025, 47, 167–188. [Google Scholar]
- Sharp, G.C.; Lee, S.W.; Wehe, D.K. ICP registration using invariant features. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 90–102. [Google Scholar] [CrossRef]
- Glira, P.; Pfeifer, N.; Briese, C.; Ressl, C. A correspondence framework for ALS strip adjustments based on variants of the ICP algorithm. Photogramm. Fernerkund. Geoinf. 2015, 4, 275–289. [Google Scholar] [CrossRef]
- Zinke, R.; Hollingsworth, J.; Dolan, J.F. Surface slip and off-fault deformation patterns in the 2013 MW 7.7 Balochistan, Pakistan earthquake: Implications for controls on the distribution of near-surface coseismic slip. Geochem. Geophys. Geosystems 2014, 15, 5034–5050. [Google Scholar] [CrossRef]
- Scott, C.P.; Arrowsmith, J.R.; Nissen, E.; Lajoie, L.; Maruyama, T.; Chiba, T. The M7 2016 Kumamoto, Japan, earthquake: 3-D deformation along the fault and within the damage zone constrained from differential lidar topography. J. Geophys. Res. Solid Earth 2018, 123, 6138–6155. [Google Scholar] [CrossRef]
- Fialko, Y. Probing the mechanical properties of seismically active crust with space geodesy: Study of the coseismic deformation due to the 1992 Mw7.3 Landers (southern California) earthquake. J. Geophys. Res. Solid Earth 2004, 109, B03307. [Google Scholar] [CrossRef]
- Scholz, C.H. The Mechanics of Earthquakes and Faulting. Master’s Thesis, Cambridge University, Cambridge, UK, 2019. [Google Scholar]
- Dolan, J.F.; Haravitch, B.D. How well do surface slip measurements track slip at depth in large strike-slip earthquakes? The importance of fault structural maturity in controlling on-fault slip versus off-fault surface deformation. Earth Planet. Sci. Lett. 2014, 388, 38–47. [Google Scholar] [CrossRef]
- Toda, S.; Maruyama, T.; Yoshimi, M.; Kaneda, H.; Awata, Y.; Yoshida, T.; Ando, R. Surface rupture associated with the 2008 Iwate-Miyagi Nairiku, Japan, earthquake and its implications to the rupture process and evaluation of active faults. Zisin (J. Seismol. Soc. Jpn. 2nd Ser.) 2010, 62, 153–178. [Google Scholar]
- Liu, J.-J.; Zhang, Y.-Z.; Hao, X.-Y.; Wu, W.-Q. Inversion of Surface Deformation and Fault Slip Distribution of Xinjiang Wushi MW7.0 Earthquake in 2024 Based on Sentinel-1A. J. Geod. Geodyn. 2025, 45, 170–176. [Google Scholar]
- Li, J.; Yao, Y.; Li, R.; Yusan, S.; Li, G.; Freymueller, J.T.; Wang, Q. Present-Day strike-slip faulting and thrusting of the Kepingtage fold-and-thrust belt in southern Tianshan: Constraints from GPS observations. Geophys. Res. Lett. 2022, 49, e2022GL099105. [Google Scholar] [CrossRef]
- Liu, H.; Xie, L.; Zhao, G.; Ali, E.; Xu, W. A joint InSAR-GNSS workflow for correction and selection of interferograms to estimate high-resolution interseismic deformations. Satell. Navig. 2023, 4, 14. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Yu, S.; Li, Z.; Zhao, P.; Luo, J.; Yang, Y. Fault-slip distribution characteristics and seismogenic tectonics of the Mw 7.0 earthquake on 23 January 2024 in Wushi County, Xinjiang, revealed by InSAR. Preprint, 2024. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, W.; Zhang, Z.; Jia, Q.; Yang, H. Large-earthquake rupturing and slipping behavior along the range-front Maidan fault in the southern Tian Shan, northwestern China. J. Asian Earth Sci. 2020, 190, 104193. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, W.; Zhang, P.; Zhang, Z.; Jia, Q.; Yu, J.; Zhang, H.; Yao, Y.; Liu, J.; Han, G.; et al. Oblique thrust of the Maidan fault and late Quaternary tectonic deformation in the southwestern Tian Shan, Northwestern China. Tectonics 2019, 38, 2625–2645. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, P.; Zhang, Z.; Zheng, W.; Xu, B.; Wang, W.; Yu, Z.; Dai, X.; Zhang, B.; Zang, K. Slip partitioning and crustal deformation patterns in the Tianshan orogenic belt derived from GPS measurements and their tectonic implications. Earth-Sci. Rev. 2023, 238, 104362. [Google Scholar] [CrossRef]
- Deng, Q.D.; Zhang, P.Z.; Ran, Y.K.; Yang, X.; Min, W.; Chu, Q. Basic characteristics of activity tectonics in China. Sci. China (Ser. D) 2002, 32, 1020–1030. [Google Scholar]
- Guan, Z.X.; Wan, Y.G.; Zhou, M.Y.; Wang, R.; Song, Z.; Huang, S.; Gu, P. Seismogenic fault plane and geodynamic dis-cussion of the 2024 Wushi Ms7.1 earthquake, Xinjiang, China. Earthquake 2024, 44, 1–11. [Google Scholar]
- Zhang, B.; Qian, L.; Li, T.; Chen, J.; Xu, J.H.; Yao, Y.; Fang, L.H.; Xie, C.; Chen, J.B.; Liu, G.S.; et al. Geological disasters and surface ruptures of January 23, 2024 Ms7.1 Wushi earthquake, Xinjiang, China. Seismol. Geol. 2024, 46, 220–234. [Google Scholar]
- Puetz, A.M.; Lee, K.; Olsen, R.C. WorldView-2 data simulation and analysis results. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV; SPIE: Bellingham, WA, USA, 2009; Volume 7334, pp. 315–323. [Google Scholar]
- Toda, S.; Tsutsumi, H. Simultaneous reactivation of two, subparallel, inland normal faults during the Mw 6.6 11 April 2011 Iwaki earthquake triggered by the Mw 9.0 Tohoku-oki, Japan, earthquake. Bull. Seismol. Soc. Am. 2013, 103, 1584–1602. [Google Scholar] [CrossRef]
NO. | Sensor | Product Level | Product ID | Acquisition Date | Cloud Coverage | Coordinate System |
---|---|---|---|---|---|---|
1 | Linear array camera | Level-2A | 050250350 | 16 February 2019 | 10.2% | WGS1984 |
2 | Linear array camera | Level-2A | 017345495 | 15 October 2024 | 1.5% | WGS1984 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Wei, Z.; Qian, L.; Li, T.; Li, C.; Xi, X.; Deng, Y.; Geng, S. Study of the Characteristics of a Co-Seismic Displacement Field Based on High-Resolution Stereo Imagery: A Case Study of the 2024 MS7.1 Wushi Earthquake, Xinjiang. Remote Sens. 2025, 17, 2625. https://doi.org/10.3390/rs17152625
Ma C, Wei Z, Qian L, Li T, Li C, Xi X, Deng Y, Geng S. Study of the Characteristics of a Co-Seismic Displacement Field Based on High-Resolution Stereo Imagery: A Case Study of the 2024 MS7.1 Wushi Earthquake, Xinjiang. Remote Sensing. 2025; 17(15):2625. https://doi.org/10.3390/rs17152625
Chicago/Turabian StyleMa, Chenyu, Zhanyu Wei, Li Qian, Tao Li, Chenglong Li, Xi Xi, Yating Deng, and Shuang Geng. 2025. "Study of the Characteristics of a Co-Seismic Displacement Field Based on High-Resolution Stereo Imagery: A Case Study of the 2024 MS7.1 Wushi Earthquake, Xinjiang" Remote Sensing 17, no. 15: 2625. https://doi.org/10.3390/rs17152625
APA StyleMa, C., Wei, Z., Qian, L., Li, T., Li, C., Xi, X., Deng, Y., & Geng, S. (2025). Study of the Characteristics of a Co-Seismic Displacement Field Based on High-Resolution Stereo Imagery: A Case Study of the 2024 MS7.1 Wushi Earthquake, Xinjiang. Remote Sensing, 17(15), 2625. https://doi.org/10.3390/rs17152625