Novel Surface and Bulk Acoustic Wave Devices, Second Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "A:Physics".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 461

Special Issue Editors


E-Mail Website
Guest Editor
School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
Interests: acoustic wave signal processing devices; SAW sensors and read out system; piezoelectric MEMS devices
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
Interests: RF-MEMS; Nano-Opto-Electro-Mechanical Systems; RF filters (Hybrid, IPD, SAW, BAW)
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
Interests: surface acoustic wave signal processing; sensor technology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
Interests: surface acoustic wave sensors and their fabrication
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Surface acoustic wave and bulk acoustic wave devices have always been a hotspot in the field of piezoelectric devices. Commercially, the demand for high-frequency, large-bandwidth, and low-loss filters in the RF front-end of mobile phones continues to drive the development of surface acoustic wave devices and bulk acoustic wave devices. Various high-sensitivity acoustic wave sensors are also attracting the attention of researchers and investors, especially the wireless and passive features make acoustic wave sensors are applied in many fields. At the same time, with the continuous improvement of the basic research, some new devices are also emerging, such as the surface acoustic wave amplifier based on the acousto-electric amplification effect, and the XSAW/XBAW devices based on the single crystal piezoelectric substrate. It is worth noting that sensors based on single-crystal piezoelectric thin-film substrates have not been studied much, which is undoubtedly an important topic in this field. Accordingly, this Special Issue seeks to showcase research papers, communications, and review articles that focus on novel methodology, design and fabrication developments in surface and bulk acoustic wave devices, including, but not limited to, the topics mentioned above.

We look forward to receiving your submissions!

Prof. Dr. Wei Luo
Prof. Dr. Chengjie Zuo
Prof. Dr. Wen Wang
Prof. Dr. Jian Zhou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • surface acoustic waves
  • bulk acoustic waves
  • RF filters (Hybrid, SAW, BAW)
  • acoustic wave sensors
  • RF-MEMS

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 3371 KiB  
Article
Insight into the Propagation of Interface Acoustic Waves in Rotated YX-LiNbO3/SU-8/Si Structures
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà and Farouk Laidoudi
Micromachines 2025, 16(8), 861; https://doi.org/10.3390/mi16080861 - 26 Jul 2025
Viewed by 366
Abstract
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate [...] Read more.
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate IAW propagation in the layered structure and to optimize design parameters, specifically the thicknesses of the platinum (Pt) interdigital transducers (IDTs) and the SU-8 adhesive layer. The simulations revealed the existence of two types of IAWs travelling at different velocities under specific Y-rotated cuts of the LiNbO3 half-space. These IAWs are faster than the surface acoustic wave (SAW) and slower than the leaky SAW (LSAW) propagating on the surface of the bare LiNbO3 half-space. The mechanical displacement fields of both IAWs exhibit a rapid decay to zero within a few wavelengths from the LiNbO3 surface. The piezoelectric coupling coefficients of the IAWs were found to be as high as approximately 7% and 31%, depending on the Y-rotation angle. The theoretical results were experimentally validated by measuring the velocities of the SAW and LSAW on a bare 90° YX-LiNbO3 substrate, and the velocities of the IAWs in a 90° YX-LiNbO3/SU-8/Si structure featuring 330 nm thick Pt IDTs, a 200 µm wavelength, and a 15 µm thick SU-8 layer. The experimental data showed good agreement with the theoretical predictions. These combined theoretical and experimental findings establish design principles for exciting two interface waves with elliptical and quasi-shear polarization, offering enhanced flexibility for fluidic manipulation and the integration of sensing functionalities. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices, Second Edition)
Show Figures

Figure 1

Back to TopTop