Seismic Performance of an Asymmetric Tall-Pier Girder Bridge with Fluid Viscous Dampers Under Near-Field Earthquakes
Abstract
1. Introduction
2. Description and Modeling of the Bridge
2.1. Description of the Bridge
2.2. Analytical Model of the Bridge
2.3. Dynamic Characteristics of the Bridge
3. Parametric Study of FVDs in Tall-Pier Girder Bridge
3.1. Variations in Displacement Responses
3.2. Investigations into Internal Force Responses
3.3. Seismic Mitigation Efficacy of the FVD
4. Influence of Higher-Order Modes
4.1. Model Shape Analysis
4.2. Shear Force Envelopes
4.3. Bending Moment Envelopes
5. Influence of Near-Field Earthquakes
5.1. Comparisons of Displacement
5.2. Comparisons of Shear Force
5.3. Comparisons of Bending Moment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, W.; Li, J.; Guan, Z. Shake table test on a long-span cable-stayed bridge with viscous dampers considering wave passage effects. J. Bridge Eng. 2021, 26, 04020118. [Google Scholar] [CrossRef]
- Chen, X.; Ding, H.; Li, C. A quasi-tuned-mass-damper design concept for mitigating the dynamic displacement demand of tall piers. Soil Dyn. Earthq. Eng. 2022, 155, 107172. [Google Scholar] [CrossRef]
- Li, J.; Peng, T.; Xu, Y. Damage investigation of girder bridges under the Wenchuan earthquake and corresponding seismic design recommendations. Earthq. Eng. Eng. Vib. 2008, 7, 337–344. [Google Scholar] [CrossRef]
- Liu, J.; Fan, Y.; Shi, P. Response to a high-altitude earthquake: The Yushu Earthquake example. Int. J. Disaster Risk Sci. 2011, 2, 43–53. [Google Scholar] [CrossRef]
- Xu, X.; Wen, X.; Han, Z.; Chen, G.; Li, C.; Zheng, W.; Zhang, S.; Ren, Z.; Xu, C.; Tan, X. Lushan Ms 7.0 earthquake: A blind reserve-fault event. Chin. Sci. Bull. 2013, 58, 3437–3443. [Google Scholar] [CrossRef]
- Qi, Q.; Shao, C.; Wei, W.; Xiao, Z.; He, J. Seismic performance of railway rounded rectangular hollow tall piers using the shaking table test. Eng. Struct. 2020, 220, 110968. [Google Scholar] [CrossRef]
- Shang, J.; Tan, P.; Zhang, Y.; Han, J.; Mi, P. Seismic isolation design of structure using variable friction pendulum bearings. Soil Dyn. Earthq. Eng. 2021, 148, 106855. [Google Scholar] [CrossRef]
- Wei, B.; Yang, Z.; Fu, Y.; Xiao, B.; Jiang, L. Seismic displacement response analysis of Friction Pendulum Bearing under friction coupling and collision effects. Eng. Struct. 2024, 310, 118128. [Google Scholar] [CrossRef]
- Zheng, W.; Tan, P.; Li, J.; Wang, H.; Liu, Y.; Xian, Z. Superelastic conical friction pendulum isolator for seismic isolation of bridges under near-fault ground motions. Struct. Control Health Monit. 2023, 2023, 5497731. [Google Scholar] [CrossRef]
- Aghaeidoost, V.; Billah, A.M. An advanced rate-dependent analytical model of lead rubber bearing. Earthq. Eng. Struct. Dyn. 2024, 53, 1961–1981. [Google Scholar] [CrossRef]
- Chen, P.; Wang, B.; Zhang, Z.; Li, T.; Dai, K. A generalized model of lead rubber bearing considering large strain stiffening and degradation. Eng. Struct. 2023, 275, 115264. [Google Scholar] [CrossRef]
- Chen, X.; Wu, S.; Li, J.; Guan, Z.; Xiang, N. Seismic performance assessment and design procedure of base-isolated bridges with lead-rubber-bearing and negative stiffness springs (LRB-NS). Eng. Struct. 2024, 306, 117871. [Google Scholar] [CrossRef]
- Gu, H.; Itoh, Y. Ageing behaviour of natural rubber and high damping rubber materials used in bridge rubber bearings. Adv. Struct. Eng. 2010, 13, 1105–1113. [Google Scholar] [CrossRef]
- Tubaldi, E.; Mitoulis, S.A.; Ahmadi, H. Comparison of different models for high damping rubber bearings in seismically isolated bridges. Soil Dyn. Earthq. Eng. 2018, 104, 329–345. [Google Scholar] [CrossRef]
- Qi, Q.; Shao, C.; Cui, H.; Huang, H.; Wei, W.; Wang, C.; Zhuang, W. Shaking table tests and numerical studies on the seismic behaviors of FPB in railway continuous beam bridges. Eng. Struct. 2023, 290, 116318. [Google Scholar] [CrossRef]
- Su, L.; Zhang, W.; Chen, Y.; Zhang, C. Seismic design and shaking table test of continuous girder bridges with winding rope fluid viscous dampers. Eng. Struct. 2023, 277, 115408. [Google Scholar] [CrossRef]
- Guo, J.; Li, M.; Wu, Y.; Xiao, Y.; Guan, Z. Experimental study on a cable-stayed bridge isolated with the combination of elastoplastic cables and fluid viscous dampers in the transverse direction. Eng. Struct. 2024, 302, 117447. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, Z.; Qiao, H.; De Domenico, D. Seismic protection of reinforced concrete continuous girder bridges with inerter-based vibration absorbers. Soil Dyn. Earthq. Eng. 2023, 164, 107526. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, S.; Yu, W.; Wu, X.; Song, F.; Ren, X. Ground motion frequency insensitivity of bearing-supported pedestrian bridge with viscous dampers. KSCE J. Civ. Eng. 2021, 25, 2662–2673. [Google Scholar] [CrossRef]
- Zhong, J.; Hu, Z.; Yuan, W.; Chen, L. System-based probabilistic optimization of fluid viscous dampers equipped in cable-stayed bridges. Adv. Struct. Eng. 2018, 21, 1815–1825. [Google Scholar] [CrossRef]
- Liang, X.; Li, B.; Liu, X.; Liang, L. Optimisation of longitudinal seismic energy dissipation system for straddle-type monorail-cum-road long-span cable-stayed bridge. Shock Vib. 2019, 2019, 9637356. [Google Scholar] [CrossRef]
- Jing, H.; Feng, Z.; Chen, Z.; Hua, X.; Chen, Z.; Wan, T. Enhancing longitudinal performance in railway suspension bridges through an integrated cable restrainer system. Structures 2024, 65, 106769. [Google Scholar] [CrossRef]
- Bas, S.; Dong, C.Z.; Apaydin, N.M.; Ilki, A.; Catbas, F.N. Hanger replacement influence on seismic response of suspension bridges: Implementation to the Bosphorus Bridge subjected to multi-support excitation. Earthq. Eng. Struct. Dyn. 2020, 49, 1496–1518. [Google Scholar] [CrossRef]
- Chen, X.; Spencer, B.F., Jr.; Li, J.; Guan, Z.; Pang, Y. Optimization of distribution patterns of link beams in a double-column tall pier bent subjected to earthquake excitations. Earthq. Eng. Struct. Dyn. 2023, 52, 641–659. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, N.; Guan, Z.; Li, J. Seismic vulnerability assessment of tall pier bridges under mainshock-aftershock-like earthquake sequences using vector-valued intensity measure. Eng. Struct. 2022, 253, 113732. [Google Scholar] [CrossRef]
- Guan, Z.; Li, J.; Xu, Y.; Lu, H. Higher-order mode effects on the seismic performance of tall piers. Front. Struct. Civ. Eng. 2011, 5, 496–502. [Google Scholar] [CrossRef]
- Chen, X.; Wu, P.; Li, C. Seismic performance assessment of base-isolated tall pier bridges using friction pendulum bearings achieving resilient design. Structures 2022, 38, 618–629. [Google Scholar] [CrossRef]
- Makris, N.; Constantinou, M. Fractional-derivative maxwell model for viscous dampers. J. Struct. Eng. 1991, 117, 2708–2724. [Google Scholar] [CrossRef]
- JT/T 842-2012; High Damping Seismic Isolation Rubber Bearings for Highway Bridges. Ministry of Transport of the People’s Republic of China: Beijing, China, 2012.
- JTG/T 2231-01-2020; Specifications for Seismic Design of Highway Bridges. Ministry of Transport of the People’s Republic of China: Beijing, China, 2020.
- JTG 3363-2019; Specifications for Design of Foundation of Highway Bridges and Culverts. Ministry of Transport of the People’s Republic of China: Beijing, China, 2019.
- Qi, Q.; Shao, C.; Yang, H.; Cui, H.; Chen, Z.; Gong, W. Axial-flexure-shear model for seismic analysis of RC thin-walled hollow piers. Soil Dyn. Earthq. Eng. 2025, 195, 109375. [Google Scholar] [CrossRef]
P1, P4, and P5 | P2 and P3 | ||
---|---|---|---|
Z (m) | m (kN/m4) | Z (m) | m (kN/m4) |
0 | 7500 | 0 | 10,000 |
2.5 | 7500 | 2.5 | 10,000 |
5.0 | 15,000 | 5.0 | 15,000 |
7.5 | 15,000 | 7.5 | 15,000 |
10.0 | 15,000 | 10.0 | 15,000 |
12.5 | 15,000 | 12.5 | 25,000 |
15.0 | 15,000 | 15.0 | 25,000 |
17.5 | 25,000 | 17.5 | 25,000 |
20.0 | 25,000 | 20.0 | 25,000 |
22.5 | 25,000 | 22.5 | 25,000 |
25.0 | 25,000 | 25.0 | 25,000 |
27.5 | 25,000 | 27.5 | 25,000 |
30.0 | 25,000 | 30.0 | 25,000 |
Mode | Period (s) | Participating Mass Ratios (%) | Mode Description |
---|---|---|---|
1 | 2.836 | 55.7 | First-order longitudinal bending of P2 and longitudinal translation of the girder. |
5 | 1.569 | 1.8 | First-order longitudinal bending of P3. |
7 | 1.127 | 2.1 | First-order longitudinal bending of P4. |
10 | 0.885 | 2.4 | First-order longitudinal bending of P1. |
14 | 0.489 | 2.5 | Second-order longitudinal bending of P2; higher-order vibration of the girder. |
18 | 0.384 | 3.1 | Second-order longitudinal bending of P3. |
24 | 0.247 | 1.7 | Second-order longitudinal bending of P4. |
Pier | Height (m) | Bearing Displacement (mm) | Pier Top Displacement (mm) | ||||
---|---|---|---|---|---|---|---|
Optimal FVD | Without FVD | Mitigating Ratio (%) | Optimal FVD | Without FVD | Mitigating Ratio (%) | ||
P1 | 46.3 | 102.1 | 239.5 | −57.4 | 117.2 | 139.6 | −16.0 |
P2 | 87.4 | / | / | / | 156.0 | 193.1 | −19.2 |
P3 | 85.5 | 48.9 | 139.6 | −65.0 | 188.2 | 194.0 | −3.0 |
P4 | 61.0 | 69.6 | 201.8 | −65.5 | 136.6 | 186.5 | −26.8 |
P5 | 48.5 | 90.2 | 230.3 | −60.8 | 126.0 | 130.4 | −3.4 |
Pier | Height (m) | Shear Force (103kN) | Bending Moment (104kN·m) | ||||
---|---|---|---|---|---|---|---|
Optimal FVD | Without FVD | Mitigating Ratio (%) | Optimal FVD | Without FVD | Mitigating Ratio (%) | ||
P1 | 46.3 | 2.3 | 3.4 | −32.3 | 7.7 | 9.8 | −21.4 |
P2 | 87.4 | 8.3 | 9.1 | −8.8 | 20.7 | 27.7 | −25.3 |
P3 | 85.5 | 5.4 | 10.5 | −48.6 | 13.3 | 24.8 | −46.4 |
P4 | 61 | 3.2 | 4.6 | −30.4 | 9.2 | 11.2 | −17.9 |
P5 | 48.5 | 2.2 | 4.8 | −54.2 | 7.7 | 10.3 | −25.2 |
Pier | Height (m) | First-Order Longitudinal Bending | Second-Order Longitudinal Bending | ||||
---|---|---|---|---|---|---|---|
Mode | Period (s) | Participating Mass Ratios (%) | Mode | Period (s) | Participating Mass Ratios (%) | ||
P2 | 87.4 (100%) | 1 | 2.836 | 55.7 | 14 | 0.489 | 2.5 |
65.5 (75%) | 1 | 2.290 | 54.3 | 20 | 0.264 | 1.9 | |
43.7 (50%) | 3 | 1.675 | 53.0 | 28 | 0.125 | 0.58 | |
P3 | 85.5 (100%) | 5 | 1.569 | 1.8 | 18 | 0.384 | 3.1 |
64.1 (75%) | 5 | 1.166 | 3.8 | 21 | 0.240 | 2.7 | |
42.7 (50%) | 6 | 0.696 | 5.6 | 30 | 0.123 | 2.2 |
RSN | Earthquake | Mw | Rp (km) | PGA (m/s2) | PGV (m/s) | Tg (s) | Tp (s) | Note |
---|---|---|---|---|---|---|---|---|
2495 | Chi-Chi Taiwan-03 | 6.2 | 22.37 | 4.565 | 0.698 | 1.072 | 1.379 | Short-period |
2734 | Chi-Chi Taiwan-04 | 6.2 | 6.2 | 1.838 | 0.327 | 0.435 | 2.436 | Medium-period |
1244 | Chi-Chi Taiwan | 7.62 | 9.94 | 3.783 | 1.088 | 1.033 | 5.341 | Long-period |
1513 | Chi-Chi Taiwan | 7.62 | 10.97 | 5.8067 | 0.7054 | 0.5422 | - | Non-pulse |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Qi, Q.; He, J.; Yang, H.; Shao, C.; Gong, W.; Cui, H. Seismic Performance of an Asymmetric Tall-Pier Girder Bridge with Fluid Viscous Dampers Under Near-Field Earthquakes. Symmetry 2025, 17, 1209. https://doi.org/10.3390/sym17081209
Pan Z, Qi Q, He J, Yang H, Shao C, Gong W, Cui H. Seismic Performance of an Asymmetric Tall-Pier Girder Bridge with Fluid Viscous Dampers Under Near-Field Earthquakes. Symmetry. 2025; 17(8):1209. https://doi.org/10.3390/sym17081209
Chicago/Turabian StylePan, Ziang, Qiming Qi, Jianxian He, Huaping Yang, Changjiang Shao, Wanting Gong, and Haomeng Cui. 2025. "Seismic Performance of an Asymmetric Tall-Pier Girder Bridge with Fluid Viscous Dampers Under Near-Field Earthquakes" Symmetry 17, no. 8: 1209. https://doi.org/10.3390/sym17081209
APA StylePan, Z., Qi, Q., He, J., Yang, H., Shao, C., Gong, W., & Cui, H. (2025). Seismic Performance of an Asymmetric Tall-Pier Girder Bridge with Fluid Viscous Dampers Under Near-Field Earthquakes. Symmetry, 17(8), 1209. https://doi.org/10.3390/sym17081209