Static Analysis of Temperature-Dependent FGM Spherical Shells Under Thermo-Mechanical Loads
Abstract
1. Introduction
2. Layer Model for Spherical Shells
3. Heat Conduction Analysis
3.1. Heat Conduction Analysis for the T-I Case
3.2. Heat Conduction Analysis for the T-D Case
4. Static Analysis
4.1. Basic Equations and Superposition Principle
4.2. Solution to the Pressure Problem
4.2.1. State Space Method
4.2.2. Solution Strategy
4.3. Solution to the Thermal Load Problem
5. Results and Discussion
5.1. Validation of the Temperature Solution
5.2. Validation of the Displacement and Stress Solutions
5.3. Effects of Material Temperature Dependence
5.4. Effects of Gradient Index
6. Conclusions
- (1)
- When the material temperature dependence is neglected, the displacements and stresses exhibit linear variation with the surface temperature. Conversely, consideration of the material temperature dependence induces nonlinear thermo-mechanical behaviors. The discrepancy between the two cases grows progressively with raising surface temperature.
- (2)
- The gradient index significantly influences the temperature, displacement, and stress distributions. Specifically, the stresses are decreased with the increase in the gradient index.
- (3)
- When the external pressure is symmetrically distributed near the two poles of the spherical shell, the deformations and stresses exhibit greater magnitude in polar regions than near the equatorial plane.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barsi, F.; Barsotti, R.; Bennati, S. Admissible shell internal forces and safety assessment of masonry domes. Int. J. Solids Struct. 2023, 264, 112082. [Google Scholar] [CrossRef]
- Jasion, P.; Magnucki, K. A pressure vessel with a special barrelled shape. Ocean Eng. 2022, 263, 112414. [Google Scholar] [CrossRef]
- Chen, K.; Dong, J. Strength optimization design of spherical hulls for deep-sea submersibles: A hydraulic autofrettage approach in external pressure vessels. Ocean Eng. 2023, 287, 115853. [Google Scholar] [CrossRef]
- Habashneh, M.; Rad, M.M. Reliability based topology optimization of thermoelastic structures using bi-directional evolutionary structural optimization method. Int. J. Mech. Mater. Des. 2023, 19, 605–620. [Google Scholar] [CrossRef]
- Javani, M.; Kiani, Y.; Eslami, M.R. Nonlinear dynamic response of a temperature-dependent FGM spherical shell under various boundary conditions and thermal shocks: Examination of dynamic snap-through. Thin-Walled Struct. 2024, 199, 111796. [Google Scholar] [CrossRef]
- Eslami, M.R.; Ghorbani, H.R.; Shakeri, M. Thermoelastic buckling of thin spherical shells. J. Therm. Stress. 2001, 24, 1177–1198. [Google Scholar] [CrossRef]
- Vu, H.N.; Pham, T.H.; Nguyen, V.T.; Tran, Q.M.; Nguyen, T.P. Nonlinear thermomechanical static and dynamic buckling responses of FG-GPLRC spherical caps and circular plates with two-step spiderweb stiffeners and a piezoelectric Layer. J. Eng. Mech. 2025, 151, 04025028. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, F.; Liu, R. Thermal buckling of axisymmetrically laminated cylindrically orthotropic shallow spherical shells including transverse shear. Appl. Math. Mech. 2008, 29, 291–300. [Google Scholar] [CrossRef]
- Esmaeili, H.R.; Kiani, Y. Vibrations of graphene platelet reinforced composite doubly curved shells subjected to thermal shock. Mech. Based Des. Struct. Mach. 2024, 52, 650–679. [Google Scholar] [CrossRef]
- Reddy, J.N.; Liu, C.F. A higher-order shear deformation theory of laminated elastic shells. Int. J. Eng. Sci. 1985, 23, 319–330. [Google Scholar] [CrossRef]
- Ghugal, Y.M.; Sayyad, A.S.; Girme, S.M. Thermoelastic bending analysis of laminated composite shells using a trigonometric shear and normal deformation theory. J. Therm. Stress. 2022, 45, 171–190. [Google Scholar] [CrossRef]
- Xiao, J.; Shuai, J.; Deng, W.; Liu, L.; Wang, P.; Li, L. Low-carbon and green materials in construction: Latest advances and prospects. Buildings 2025, 15, 1508. [Google Scholar] [CrossRef]
- Weng, R.; He, Z.; Liu, J.; Lei, B.; Huang, L.; Xu, J.; Liu, L.; Xiao, J. Shear performance of UHPC-NC composite structure interface treated with retarder: Quantification by fractal dimension and optimization of process parameters. Buildings 2025, 15, 2591. [Google Scholar] [CrossRef]
- Mai, G.; Xiong, Z.; Zhu, H.; Zhou, L.; Zhou, H.; Li, L. Durability of GFRP bars embedded in seawater sea sand concrete in marine environments. Constr. Build. Mater. 2025, 458, 139488. [Google Scholar] [CrossRef]
- Lv, H.; Xiong, Z.; Li, H.; Liu, J.; Xu, G.; Chen, H. Investigating the mechanical properties and water permeability of recycled pervious concrete using three typical gradation schemes. Buildings 2025, 15, 358. [Google Scholar] [CrossRef]
- Wang, J.; Liu, F.; Pan, Z.; Chen, G.; Li, H.; Wu, Z.; Luo, Z.; Li, L.; He, M.; Xiong, Z. Behaviour of FRP–rubber concrete–steel double-skin tubular long columns under axial compression: An experimental and theoretical study. Steel Compos. Struct. 2025, 55, 47–63. [Google Scholar] [CrossRef]
- Wang, J.; Liu, F.; Luo, Z.; He, M.; Chen, G.; Xiong, Z. Behaviour of FRP-rubber concrete-steel double-skin tubular slender columns under eccentric compression: An experimental and theoretical study. J. Build. Eng. 2025, 104, 112265. [Google Scholar] [CrossRef]
- Chen, W.Q.; Ding, H.J. A state-space-based stress analysis of a multilayered spherical shell with spherical isotropy. J. Appl. Mech. 2001, 68, 109–114. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, J.; Cao, X.; Wang, Y.; Zhu, J.; Yao, L. Nonlinear transient heat transfer analysis of functionally graded material sandwich slabs by incremental differential quadrature element method. Acta Mater. Compos. Sin. 2024, 41, 6284–6296. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y.; Cao, X.; Xu, J.; Yao, L. A slice model for thermoelastic analysis of porous functionally graded material sandwich beams with temperature-dependent material properties. Thin-Walled Struct. 2024, 198, 111700. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, D.; Yao, L.; Gu, Z.; Ke, L.; Xiao, J. Asymptotic solutions for heat transfer and stresses in functionally graded porous sandwich pipes subjected to nonuniform pressures and thermal loads. Thin-Walled Struct. 2024, 205, 112531. [Google Scholar] [CrossRef]
- Kar, V.R.; Panda, S.K. Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method. Compos. Struct. 2015, 129, 202–212. [Google Scholar] [CrossRef]
- Ansari, R.; Zargar Ershadi, M.; Akbardoost Laskoukalayeh, H.; Rouhi, H. Thermally induced vibrations of functionally graded shallow spherical shells under cooling shock. AIAA J. 2024, 62, 833–841. [Google Scholar] [CrossRef]
- Fu, Y.; Hu, S.; Mao, Y. Nonlinear low-velocity impact analysis of functionally graded shallow spherical shells in thermal environments. J. Thermoplast. Compos. Mater. 2016, 29, 680–703. [Google Scholar] [CrossRef]
- Hong, C.C. Frequency of thick FGM spherical shells with TSDT under thermal environment. J. Vib. Eng. Technol. 2024, 12, 6619–6633. [Google Scholar] [CrossRef]
- Jiammeepreecha, W.; Chaidachatorn, K.; Phungpaingam, B.; Klaycham, K.; Chucheepsakul, S. Free vibration analysis of FGM spherical and elliptical shells under nonlinear thermal environments. Thin-Walled Struct. 2024, 196, 111497. [Google Scholar] [CrossRef]
- Kolapkar, S.S.; Sayyad, A.S. Static analysis of functionally graded shells of double curvature using trigonometric shear and normal deformation theory. Mech. Adv. Mater. Struct. 2024, 1–27. [Google Scholar] [CrossRef]
- Verma, K.P.; Maiti, D.K. Transient analysis of thermo-mechanically shock loaded four-parameter power law functionally graded shells. Compos. Struct. 2021, 257, 113388. [Google Scholar] [CrossRef]
- Kandasamy, R.; Dimitri, R.; Tornabene, F. Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments. Compos. Struct. 2016, 157, 207–221. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, Y.; Zhu, J. On the free vibration and bending analysis of functionally graded nanocomposite spherical shells reinforced with graphene nanoplatelets: Three-dimensional elasticity solutions. Eng. Struct. 2021, 226, 111376. [Google Scholar] [CrossRef]
- Meuyou, H.H.; Ntamack, G.E.; Azrar, L. Three-dimensional semi-analytical solutions of arbitrary functionally graded piezoelectric doubly curved shell panel under thermo-electric load. J. Therm. Stress. 2023, 46, 775–798. [Google Scholar] [CrossRef]
- Liu, C.B.; Bian, Z.G.; Chen, W.Q.; Lü, C.F. Three-dimensional pyroelectric analysis of a functionally graded piezoelectric hollow sphere. J. Therm. Stress. 2012, 35, 499–516. [Google Scholar] [CrossRef]
- Eslami, M.R.; Babaei, M.H.; Poultangari, R. Thermal and mechanical stresses in a functionally graded thick sphere. Int. J. Press. Vessel. Pip. 2005, 82, 522–527. [Google Scholar] [CrossRef]
- Moosaie, A.; Panahi-Kalus, H. Thermal stresses in an incompressible FGM spherical shell with temperature-dependent material properties. Thin-Walled Struct. 2017, 120, 215–224. [Google Scholar] [CrossRef]
- Martínez-Pañeda, E. On the finite element implementation of functionally graded materials. Materials 2019, 12, 287. [Google Scholar] [CrossRef] [PubMed]
Position | Layer Number | Iteration Step | ||||
---|---|---|---|---|---|---|
j = 1 | j = 2 | j = 3 | j = 4 | j = 5 | ||
r = 0.625 m | p = 10 | 98.212 | 97.788 | 97.800 | 97.800 | 97.800 |
p = 50 | 97.597 | 97.148 | 97.161 | 97.162 | 97.162 | |
p = 100 | 97.572 | 97.122 | 97.136 | 97.136 | 97.136 | |
p = 200 | 97.571 | 97.121 | 97.135 | 97.135 | 97.135 | |
p = 400 | 97.571 | 97.121 | 97.135 | 97.135 | 97.135 | |
r = 0.75 m | p = 10 | 53.670 | 53.764 | 53.773 | 53.773 | 53.773 |
p = 50 | 53.608 | 53.693 | 53.702 | 53.702 | 53.702 | |
p = 100 | 53.606 | 53.690 | 53.700 | 53.700 | 53.700 | |
p = 200 | 53.605 | 53.690 | 53.700 | 53.699 | 53.699 | |
p = 400 | 53.605 | 53.690 | 53.699 | 53.699 | 53.699 |
Displacement or Stress | Layer Number | Position | |||
---|---|---|---|---|---|
r = 0.6 m | r = 0.7 m | r = 0.8 m | r = 0.9 m | ||
ur (mm) | p = 10 | 0.266 | 0.266 | 0.262 | 0.253 |
p = 50 | 0.265 | 0.264 | 0.260 | 0.251 | |
p = 100 | 0.265 | 0.264 | 0.260 | 0.250 | |
p = 200 | 0.265 | 0.264 | 0.260 | 0.250 | |
p = 400 | 0.265 | 0.264 | 0.260 | 0.250 | |
p = 600 | 0.265 | 0.264 | 0.260 | 0.250 | |
σr (MPa) | p = 10 | −41.663 | −33.131 | −23.736 | −12.877 |
p = 50 | −41.576 | −33.029 | −23.651 | −12.828 | |
p = 100 | −41.574 | −33.026 | −23.649 | −12.827 | |
p = 200 | −41.573 | −33.025 | −23.648 | −12.826 | |
p = 400 | −41.573 | −33.025 | −23.648 | −12.826 | |
p = 600 | −41.573 | −33.025 | −23.648 | −12.826 | |
σθ (MPa) | p = 10 | −12.223 | 3.337 | 23.244 | 48.748 |
p = 50 | −15.638 | −1.000 | 17.670 | 41.622 | |
p = 100 | −16.064 | −1.522 | 17.014 | 40.792 | |
p = 200 | −16.278 | −1.781 | 16.688 | 40.381 | |
p = 400 | −16.384 | −1.910 | 16.526 | 40.177 | |
p = 600 | −16.420 | −1.953 | 16.472 | 40.109 |
Displacement or Stress | Layer Number | Series Term | |||
---|---|---|---|---|---|
n = 10 | n = 20 | n = 30 | n = 40 | ||
ur (μm) | p = 10 | −85.927 | −86.024 | −86.015 | −86.015 |
p = 50 | −85.938 | −86.034 | −86.025 | −86.025 | |
p = 100 | −85.938 | −86.034 | −86.026 | −86.025 | |
p = 200 | −85.938 | −86.034 | −86.026 | −86.026 | |
p = 400 | −85.938 | −86.034 | −86.026 | −86.026 | |
p = 600 | −85.938 | −86.034 | −86.026 | −86.026 | |
σr (MPa) | p = 10 | −3.817 | −3.918 | −3.900 | −3.900 |
p = 50 | −3.806 | −3.907 | −3.888 | −3.888 | |
p = 100 | −3.806 | −3.906 | −3.888 | −3.888 | |
p = 200 | −3.806 | −3.906 | −3.888 | −3.888 | |
p = 400 | −3.806 | −3.906 | −3.888 | −3.888 | |
p = 600 | −3.806 | −3.906 | −3.888 | −3.888 | |
σθ (MPa) | p = 10 | −22.220 | −22.287 | −22.277 | −22.277 |
p = 50 | −21.169 | −21.234 | −21.224 | −21.224 | |
p = 100 | −21.040 | −21.105 | −21.095 | −21.095 | |
p = 200 | −20.976 | −21.040 | −21.031 | −21.030 | |
p = 400 | −20.943 | −21.008 | −20.998 | −20.998 | |
p = 600 | −20.933 | −20.997 | −20.988 | −20.988 |
Variable | Method | r = 0.6 m | r = 0.7 m | r = 0.8 m | r = 0.9 m |
---|---|---|---|---|---|
ur (μm) | Present | 36.060 | 34.958 | 35.931 | 38.312 |
FEM | 36.056 | 34.954 | 35.927 | 38.307 | |
Error (%) | 0.011 | 0.011 | 0.011 | 0.011 | |
σr (MPa) | Present | 5.962 | 8.393 | 9.434 | 9.862 |
FEM | 5.975 | 8.402 | 9.438 | 9.863 | |
Error (%) | 0.214 | 0.104 | 0.041 | 0.009 | |
σθ (MPa) | Present | 16.835 | 13.771 | 12.051 | 10.974 |
FEM | 16.861 | 13.783 | 12.059 | 10.981 | |
Error (%) | 0.155 | 0.086 | 0.064 | 0.063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Feng, Z.; Shi, Z.; Xie, H.; Sun, Y.; Gu, Z.; Xiao, J.; Xu, J. Static Analysis of Temperature-Dependent FGM Spherical Shells Under Thermo-Mechanical Loads. Buildings 2025, 15, 2709. https://doi.org/10.3390/buildings15152709
Zhang Z, Feng Z, Shi Z, Xie H, Sun Y, Gu Z, Xiao J, Xu J. Static Analysis of Temperature-Dependent FGM Spherical Shells Under Thermo-Mechanical Loads. Buildings. 2025; 15(15):2709. https://doi.org/10.3390/buildings15152709
Chicago/Turabian StyleZhang, Zhong, Zhiting Feng, Zhan Shi, Honglei Xie, Ying Sun, Zhenyuan Gu, Jie Xiao, and Jiajing Xu. 2025. "Static Analysis of Temperature-Dependent FGM Spherical Shells Under Thermo-Mechanical Loads" Buildings 15, no. 15: 2709. https://doi.org/10.3390/buildings15152709
APA StyleZhang, Z., Feng, Z., Shi, Z., Xie, H., Sun, Y., Gu, Z., Xiao, J., & Xu, J. (2025). Static Analysis of Temperature-Dependent FGM Spherical Shells Under Thermo-Mechanical Loads. Buildings, 15(15), 2709. https://doi.org/10.3390/buildings15152709