Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (182)

Search Parameters:
Keywords = fiber breakage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5979 KiB  
Article
Bending-Induced Progressive Damage of 3D-Printed Sandwich-Structured Composites by Non-Destructive Testing
by Lianhua Ma, Heng Sun, Xu Dong, Zhenyue Liu and Biao Wang
Polymers 2025, 17(14), 1936; https://doi.org/10.3390/polym17141936 - 15 Jul 2025
Viewed by 384
Abstract
With the extensive application of 3D-printed composites across multiple industries, the investigation into their structural reliability under complex loading conditions has become a critical research focus. This study comprehensively employs acoustic emission (AE) monitoring, digital image correlation (DIC) measurement, and micro-computed tomography (Micro-CT) [...] Read more.
With the extensive application of 3D-printed composites across multiple industries, the investigation into their structural reliability under complex loading conditions has become a critical research focus. This study comprehensively employs acoustic emission (AE) monitoring, digital image correlation (DIC) measurement, and micro-computed tomography (Micro-CT) visualization techniques to explore the progressive damage behavior of 3D-printed sandwich-structured composites reinforced with continuous carbon fiber sheets under three-point bending. Mechanical tests show that increasing the fiber content of face sheets from 10% to 20% enhances average bending strength by 56%, while low fiber content compromises stiffness and load-bearing capacity. AE analysis categorizes damage modes into matrix cracking (<50 kHz), debonding/delamination (50–150 kHz), and fiber breakage (>150 kHz) using k-means clustering algorithms. DIC measurement reveals significant structural deformation processes during damage progression. The AE-DIC-Micro-CT combination demonstrates an initial undamaged state, followed by damage initiation and propagation in the subsequent stages. This integrated approach provides an effective method for damage assessment, guiding the design and reliability improvement of 3D-printed composites. Full article
Show Figures

Graphical abstract

21 pages, 8987 KiB  
Article
Modeling and Compensation Methods for Trajectory Errors in Continuous Fiber-Reinforced Thermoplastic Composites Using 3D Printing
by Manxian Liu, Sheng Qu, Shuo Li, Xiaoqiang Yan, Wei Li and Yesong Wang
Polymers 2025, 17(13), 1865; https://doi.org/10.3390/polym17131865 - 3 Jul 2025
Viewed by 360
Abstract
Defects arising from the 3D printing process of continuous fiber-reinforced thermoplastic composites primarily hinder their overall performance. These defects particularly include twisting, folding, and breakage of the fiber bundle, which are induced by printing trajectory errors. This study presents a follow-up theory assumption [...] Read more.
Defects arising from the 3D printing process of continuous fiber-reinforced thermoplastic composites primarily hinder their overall performance. These defects particularly include twisting, folding, and breakage of the fiber bundle, which are induced by printing trajectory errors. This study presents a follow-up theory assumption to address such issues, elucidates the formation mechanism of printing trajectory errors, and examines the impact of key geometric parameters—trace curvature, nozzle diameter, and fiber bundle diameter—on these errors. An error model for printing trajectory is established, accompanied by the proposal of a trajectory error compensation method premised on maximum printable curvature. The presented case study uses CCFRF/PA as an exemplar; here, the printing layer height is 0.1~0.3 mm, the fiber bundle radius is 0.2 mm, and the printing speed is 600 mm/min. The maximum printing curvature, gauged by the printing trajectory of a clothoid, is found to be 0.416 mm−1. Experimental results demonstrate that the error model provides accurate predictions of the printed trajectory error, particularly when the printed trajectory forms an obtuse angle. The average prediction deviations for line profile, deviation kurtosis, and deviation area ratio are 36.029%, 47.238%, and 2.045%, respectively. The error compensation effectively mitigates the defects of fiber bundle folding and twisting, while maintaining the printing trajectory error within minimal range. These results indicate that the proposed method substantially enhances the internal defects of 3D printed components and may potentially be applied to other continuous fiber printing types. Full article
Show Figures

Figure 1

25 pages, 11796 KiB  
Article
Fiber Orientation Effects in CFRP Milling: Multiscale Characterization of Cutting Dynamics, Surface Integrity, and Damage Mechanisms
by Qi An, Jingjie Zhang, Guangchun Xiao, Chonghai Xu, Mingdong Yi, Zhaoqiang Chen, Hui Chen, Chengze Zheng and Guangchen Li
J. Compos. Sci. 2025, 9(7), 342; https://doi.org/10.3390/jcs9070342 - 2 Jul 2025
Viewed by 377
Abstract
During the machining of unidirectional carbon fiber-reinforced polymers (UD-CFRPs), their anisotropic characteristics and the complex cutting conditions often lead to defects such as delamination, burrs, and surface/subsurface damage. This study systematically investigates the effects of different fiber orientation angles (0°, 45°, 90°, and [...] Read more.
During the machining of unidirectional carbon fiber-reinforced polymers (UD-CFRPs), their anisotropic characteristics and the complex cutting conditions often lead to defects such as delamination, burrs, and surface/subsurface damage. This study systematically investigates the effects of different fiber orientation angles (0°, 45°, 90°, and 135°) on cutting force, chip formation, stress distribution, and damage characteristics using a coupled macro–micro finite element model. The model successfully captures key microscopic failure mechanisms, such as fiber breakage, resin cracking, and fiber–matrix interface debonding, by integrating the anisotropic mechanical properties and heterogeneous microstructure of UD-CFRPs, thereby more realistically replicating the actual machining process. The cutting speed is kept constant at 480 mm/s. Experimental validation using T700S/J-133 laminates (with a 70% fiber volume fraction) shows that, on a macro scale, the cutting force varies non-monotonically with the fiber orientation angle, following the order of 0° < 45° < 135° < 90°. The experimental values are 24.8 N/mm < 35.8 N/mm < 36.4 N/mm < 44.1 N/mm, and the simulation values are 22.9 N/mm < 33.2 N/mm < 32.7 N/mm < 42.6 N/mm. The maximum values occur at 90° (44.1 N/mm, 42.6 N/mm), while the minimum values occur at 0° (24.8 N/mm, 22.9 N/mm). The chip morphology significantly changes with fiber orientation: 0° produces strip-shaped chips, 45° forms block-shaped chips, 90° results in particle-shaped chips, and 135° produces fragmented chips. On a micro scale, the microscopic morphology of the chips and the surface damage characteristics also exhibit gradient variations consistent with the experimental results. The developed model demonstrates high accuracy in predicting damage mechanisms and material removal behavior, providing a theoretical basis for optimizing CFRP machining parameters. Full article
Show Figures

Figure 1

18 pages, 2866 KiB  
Article
Mechanisms of Exogenous L-Lysine in Influencing the Quality of Low-Sodium Marinated Braised Beef
by Chongxian Zheng, Pengsen Wang, Mingming Huang, Tong Jiang, Jianying Zhao, Yanwei Mao and Huixin Zuo
Foods 2025, 14(13), 2302; https://doi.org/10.3390/foods14132302 - 28 Jun 2025
Viewed by 287
Abstract
During the processing of marinated braised beef, excessive sodium intake is likely to occur, which can lead to various health issues. Exogenous L-lysine (L-Lys), as an essential amino acid for the human body, has the capability to enhance the quality of low-sodium meat [...] Read more.
During the processing of marinated braised beef, excessive sodium intake is likely to occur, which can lead to various health issues. Exogenous L-lysine (L-Lys), as an essential amino acid for the human body, has the capability to enhance the quality of low-sodium meat products. This study aimed to investigate the effects of exogenous L-Lys on the quality of low-sodium plain boiled beef and marinated braised beef, as well as its underlying mechanisms of action. Among them, the substitution rate of KCl was 60%. This study was conducted with three batches of experiments, each batch serving as an independent parallel. For low-sodium plain boiled beef, the optimal addition level of L-Lys was screened out through the research on the effects on meat quality indicators, water distribution, microstructure, and sensory evaluation. For the quality of low-sodium plain boiled beef, in terms of microstructure, the addition of L-Lys reduced muscle fiber breakage and voids, thereby improving its microstructural characteristics. Combined with quantitative descriptive analysis (QDA), the optimal level of additional L-Lys was subsequently determined to be 0.6%. It was further processed into marinated braised beef in soy sauce, and a comparative analysis was conducted with low-sodium marinated braised beef in soy sauce without L-Lys addition for shear force, meat color, thiobarbituric acid reactive substances (TBARS), and total viable count (TVC) during the storage periods of 0, 3, 6, 9, and 12 d. The results show that the redness (a*) value significantly increased within 0–12 d (p < 0.05), leading to a more stable meat color. Moreover, the addition of L-Lys significantly reduced the shear force and thiobarbituric acid reactive species (TBARS) values in the marinated braised beef (p < 0.05), thereby optimizing the tenderness of the marinated braised beef and inhibiting lipid oxidation. Although the total viable count (TVC) of the L-Lys group was higher than that of conventional low-sodium marinated braised beef in soy sauce from 9 to 12 d, both groups of products had undergone spoilage by day 12; therefore, the addition of L-Lys had no effect on the shelf life of the products. Comprehensive analysis suggested that the addition of exogenous L-Lys could optimize beef quality by enhancing hydration, improving muscle structural properties, and exerting antioxidant synergistic effects. Full article
(This article belongs to the Special Issue Animal Source Food Processing and Quality Control)
Show Figures

Figure 1

23 pages, 5213 KiB  
Article
Fire Test on Insulated Steel Beams with Fire-Protection Coating and Fiber Cement Board
by Weihua Wang, Tao Zhu, Xian Gao, Jingjie Yang, Xilong Chen and Weiyong Wang
Buildings 2025, 15(12), 2121; https://doi.org/10.3390/buildings15122121 - 18 Jun 2025
Viewed by 294
Abstract
Fire safety design for steel beams is crucial in the construction of steel structures. However, there remains a significant gap in the fire resistance testing of insulated steel beams. This study focuses on full-scale experimental research examining the fire resistance performance of steel [...] Read more.
Fire safety design for steel beams is crucial in the construction of steel structures. However, there remains a significant gap in the fire resistance testing of insulated steel beams. This study focuses on full-scale experimental research examining the fire resistance performance of steel beams with varying fire protection methods, cross-sectional dimensions, and heating curves. During the tests, the furnace temperature, specimen temperature, and deflection at mid-span were measured. The test results indicated that specimens mainly failed in lateral–torsional buckling. Additionally, a markedly non-uniform temperature distribution was observed across the cross-section, and the predictions made by GB 51249-2017 were found to be unsafe. The use of fiber cement board for fire protection may be ineffective, as it tends to become brittle at elevated temperatures, making it susceptible to breakage and detachment when the beams begin to bend. Furthermore, due to potential creep deformation, specimens subjected to longer heating durations exhibited lower critical temperatures compared to those with shorter heating durations. Finally, the design method outlined in BS EN 1993-1-2 and ANSI/AISC 360-22 was evaluated against the test results, indicating an accurate prediction of these methods for specimens with shorter heating durations, but an unconservative prediction for specimens with longer heating durations due to ignorance of creep deformation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 3559 KiB  
Article
The Effect of Impactor Geometry on the Damage Patterns Generated by Low-Velocity Impacts on Composite Pressure Vessels
by Shiva Rezaei Akbarieh, Dayou Ma, Claudio Sbarufatti and Andrea Manes
Modelling 2025, 6(2), 41; https://doi.org/10.3390/modelling6020041 - 28 May 2025
Viewed by 783
Abstract
Due to environmental concerns and increasing energy needs, hydrogen is increasingly seen as a promising alternative to fossil fuels. Its advantages include minimal greenhouse gas emissions (depending on origin), high efficiency, and widespread availability. Various storage methods have been developed, with high-pressure storage [...] Read more.
Due to environmental concerns and increasing energy needs, hydrogen is increasingly seen as a promising alternative to fossil fuels. Its advantages include minimal greenhouse gas emissions (depending on origin), high efficiency, and widespread availability. Various storage methods have been developed, with high-pressure storage being currently among the most common due to its cost-effectiveness and simplicity. Composite high-pressure vessels are categorized as type III or IV, with type III using an aluminum alloy liner and type IV utilizing a polymer liner. This paper investigates damage mechanisms in filament wound carbon fiber composite pressure vessels subjected to low-velocity impacts, focusing on two types of impactors (with different geometries) with varying impact energies. The initial section features experimental trials that capture various failure modes (e.g., matrix damage, delamination, and fiber breakage) and how different impactor geometries influence the damage mechanisms of composite vessels. A numerical model was developed and validated with experimental data to support the experimental findings, ensuring accurate damage mechanism simulation. The research then analyzes how the shape and size of impactors influence damage patterns in the curved vessel, aiming to establish a relationship between impactor geometry features and damage, which is crucial for the design and applications of carbon fiber composites in such an engineering application. Full article
Show Figures

Figure 1

23 pages, 9966 KiB  
Article
Study on Winding Forming Process of Glass Fiber Composite Pressure Vessel
by Run Wu, Wenlei Zeng, Fangfang Li, Haobin Tian and Xuelei Li
Materials 2025, 18(11), 2485; https://doi.org/10.3390/ma18112485 - 26 May 2025
Viewed by 623
Abstract
Composite pressure vessels offer significant advantages over traditional metal-lined designs due to their high strength-to-weight ratio, corrosion resistance, and design flexibility. This study investigates the structural design, winding process, finite element analysis, and experimental validation of a glass fiber-reinforced composite low-pressure vessel. A [...] Read more.
Composite pressure vessels offer significant advantages over traditional metal-lined designs due to their high strength-to-weight ratio, corrosion resistance, and design flexibility. This study investigates the structural design, winding process, finite element analysis, and experimental validation of a glass fiber-reinforced composite low-pressure vessel. A high-density polyethylene (HDPE) liner was designed with a nominal thickness of 1.5 mm and manufactured via blow molding. The optimal blow-up ratio was determined as 2:1, yielding a wall thickness distribution between 1.39 mm and 2.00 mm under a forming pressure of 6 bar. The filament winding process was simulated using CADWIND software (version 10.2), resulting in a three-layer winding scheme consisting of two helical layers (19.38° winding angle) and one hoop layer (89.14°). The calculated thickness of the composite winding layer was 0.375 mm, and the coverage rate reached 107%. Finite element analysis, conducted using Abaqus, revealed that stress concentrations occurred at the knuckle region connecting the dome and the cylindrical body. The vessel was predicted to fail at an internal pressure of 5.00 MPa, primarily due to fiber breakage initiated at the polar transition. Experimental hydrostatic burst tests validated the simulation, with the vessel exhibiting failure at an average pressure of 5.06 MPa, resulting in an error margin of only 1.2%. Comparative tests on vessels without adhesive sealing at the head showed early failure at 2.46 MPa, highlighting the importance of head sealing on vessel integrity. Scanning electron microscopy (SEM) analysis confirmed strong fiber–matrix adhesion and ductile fracture characteristics. The close agreement between the simulation and experimental results demonstrates the reliability of the proposed design methodology and validates the use of CADWIND and FEA in predicting the structural performance of composite pressure vessels. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

22 pages, 18253 KiB  
Article
Damage Identification of Fiber-Reinforced Composite Thin Plate by Curvature Modal Shape Scanning Method
by Yougle Chang, Qi Zhao, Hao Han, Xiaodi Zhao, Lingyao Qin, Xiaoye Li, Liyan Wu and Hui Li
Materials 2025, 18(11), 2431; https://doi.org/10.3390/ma18112431 - 22 May 2025
Viewed by 355
Abstract
The damage location detection of the fiber-reinforced composite thin plate (FCTP) is studied through the curvature modal shape scanning method (CMSSM), utilizing the advantages of the sensitivity of curvature modal shapes to local stiffness changes and the high measurement accuracy of a laser [...] Read more.
The damage location detection of the fiber-reinforced composite thin plate (FCTP) is studied through the curvature modal shape scanning method (CMSSM), utilizing the advantages of the sensitivity of curvature modal shapes to local stiffness changes and the high measurement accuracy of a laser vibrometer. Firstly, our research begins with the construction of a laser scanning frame model for the FCTP. Subsequently, during the analysis of modal shape data extraction principles, the two-dimensional five-spot-tripling surface smoothing method is developed, so that the quantitative index for damage location detection of the FCTP, i.e., the damage localization index, can be derived. The operating deflection shapes of the FCTP at different natural frequencies are obtained, and the self-developed laser scanning vibration testing system is employed to scan and measure the vibration. Then, a TC500 fiber/epoxy composite plate is utilized as an experimental object to perform a damage identification experiment. It has been proven that this approach can detect the fiber breakage location of the FCTP with high accuracy. Finally, the influence of parameters such as boundary constraint, excitation level, and laser scanning rate on the damage detection results is also discussed. Through studies on influencing parameters, practical guidance is provided for the application of the damage identification approach of the FCTP. Full article
Show Figures

Figure 1

42 pages, 3290 KiB  
Review
A Review of Damage Tolerance and Mechanical Behavior of Interlayer Hybrid Fiber Composites for Wind Turbine Blades
by Amir Baharvand, Julie J. E. Teuwen and Amrit Shankar Verma
Materials 2025, 18(10), 2214; https://doi.org/10.3390/ma18102214 - 10 May 2025
Viewed by 937
Abstract
This review investigates interlayer hybrid fiber composites for wind turbine blades (WTBs), focusing on their potential to enhance blade damage tolerance and maintain structural integrity. The objectives of this review are: (I) to assess the effect of different hybrid lay-up configurations on the [...] Read more.
This review investigates interlayer hybrid fiber composites for wind turbine blades (WTBs), focusing on their potential to enhance blade damage tolerance and maintain structural integrity. The objectives of this review are: (I) to assess the effect of different hybrid lay-up configurations on the damage tolerance and failure analysis of interlayer hybrid fiber composites and (II) to identify potential fiber combinations for WTBs to supplement or replace existing glass fibers. Our method involves comprehensive qualitative and quantitative analyses of the existing literature. Qualitatively, we assess the damage tolerance—with an emphasis on impact load—and failure analysis under blades operational load of six distinct hybrid lay-up configurations. Quantitatively, we compare tensile and flexural properties—essential for WTBs structural integrity—of hybrid and glass composites. The qualitative review reveals that placing high elongation (HE)-low stiffness (LS) fibers, e.g., glass, on the impacted side reduces damage size and improves residual properties of hybrid composites. Placing low elongation (LE)-high stiffness (HS) fibers, e.g., carbon, in middle layers, protects them during impact load and equips hybrid composites with mechanisms that delay failure under various load conditions. A sandwich lay-up with HE-LS fibers on the outermost and LE-HS fibers in the innermost layers provides the best balance between structural integrity and post-impact residual properties. This lay-up benefits from synergistic effects, including fiber bridging, enhanced buckling resistance, and the mitigation of LE-HS fiber breakage. Quantitatively, hybrid synthetic/natural composites demonstrate nearly a twofold improvement in mechanical properties compared to natural fiber composites. Negligible enhancement (typically 10%) is observed for hybrid synthetic/synthetic composites relative to synthetic fiber composites. Additionally, glass/carbon, glass/flax, and carbon/flax composites are potential alternatives to present glass laminates in WTBs. This review is novel as it is the first attempt to identify suitable interlayer hybrid fiber composites for WTBs. Full article
Show Figures

Figure 1

24 pages, 7220 KiB  
Article
Dynamic Monitoring of Goaf Stress Field and Rock Deformation Driven by Optical Diber Sensing Technology
by Jing Chai, Zhe Yan, Yibo Ouyang, Dingding Zhang, Jianfeng Yang, Gaoyi Yang and Chenyang Ma
Appl. Sci. 2025, 15(8), 4393; https://doi.org/10.3390/app15084393 - 16 Apr 2025
Cited by 1 | Viewed by 416
Abstract
Addressing the critical technological needs for the real-time monitoring of stress distribution in mining areas, a new method for inverting goaf pressure using distributed optical fiber monitoring data is proposed. By coupling the key stratum fracture mechanics model with the subsidence trajectory function [...] Read more.
Addressing the critical technological needs for the real-time monitoring of stress distribution in mining areas, a new method for inverting goaf pressure using distributed optical fiber monitoring data is proposed. By coupling the key stratum fracture mechanics model with the subsidence trajectory function model, a theoretical model is established to accurately describe spatial stress evolution during coal mining. The model quantifies the relationship between goaf pressure changes and key stratum failures through a two-stage analysis of the subsidence process, based on distinct mechanical properties before and after key stratum fracture. Physical model experiments (3 m × 0.2 m × 1.1 m) using Brillouin Optical Time Domain Analysis (BOTDA) technology validated the proposed method, with comprehensive monitoring of key stratum deformations. By coupling the fracture mechanics model of the critical layer and the settlement trajectory function model, the dynamic transformation of the pre-fracture and post-fracture stages is realized, and the stress evolution can be monitored and predicted in real time. The results demonstrate spatial consistency between key stratum fracture locations and goaf peak stress positions. High-precision optical fiber sensing detected an ultimate strain threshold of 4000 με for key stratum failure, with pre-fracture strain measurements consistently below this threshold. The developed stress inversion formula successfully predicted pressure distribution patterns within the goaf, achieving real-time monitoring capabilities. Compared with the BPPS measurements, the deviation in the inverted data is less than 8.88%, the root mean square error (RMSE) is 0.98–1.20 in different propulsion stages, and the coefficient of determination (R2) is between 0.72 and 0.85. These findings provide a crucial theory for predicting peak stress evolution in mining areas, with implications for improving safety monitoring systems and optimizing mining operations. Full article
Show Figures

Figure 1

27 pages, 17457 KiB  
Article
High-Energy Low-Velocity Impact Behavior of Rubber-Coated Sandwich Composite Structure with Buoyancy Material Core: Experimental and Numerical Investigation
by Yi Zhu, Zhiyuan Mei, Haitao Li, Hongbo Tao and Guotao Chen
Materials 2025, 18(8), 1791; https://doi.org/10.3390/ma18081791 - 14 Apr 2025
Viewed by 315
Abstract
The dynamic response and failure of rubber-coated sandwich composite structures with buoyancy material core (RC-BMC-SCS) subjected to high-energy low-velocity impacts were experimentally and numerically investigated. Six types of BMC-SCSs were designed and manufactured, and high-energy low-velocity impact experiments were performed. Based on the [...] Read more.
The dynamic response and failure of rubber-coated sandwich composite structures with buoyancy material core (RC-BMC-SCS) subjected to high-energy low-velocity impacts were experimentally and numerically investigated. Six types of BMC-SCSs were designed and manufactured, and high-energy low-velocity impact experiments were performed. Based on the Mohr-Coulomb theory and the Ogden hyperelasticity constitutive model, a low-velocity impact finite element analysis model was developed. The results indicate that BMC-SCS damage stages could be divided into: (1) matrix damage, (2) core cracks, (3) debonding and fiber breakage. Three distinct damage stages of the RC-BMC-SCS were revealed: (1) rubber layer energy absorption, (2) core cracks, (3) debonding. The rubber layer can enhance the damage threshold by approximately 100% compared to BMC-SCS. However, rubber energy absorption capacity has an upper limit. Additionally, the larger the curvature of the BMC-SCS, the higher the initial stiffness of the structure and the larger the impact damage area. The results of this study provide valuable insights for the multifunctional design of composite deep-sea marine structures. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

13 pages, 1077 KiB  
Article
Synergistic Effect of Microorganisms and Enzymes on Nutritional Value of Corn Stover and Wheat Straw
by Binglong Chen, Jiancheng Liu, Mengjian Liu, Huiling Zhang, Xuanyue Li, Congcong Tian and Yong Chen
Fermentation 2025, 11(4), 210; https://doi.org/10.3390/fermentation11040210 - 10 Apr 2025
Cited by 1 | Viewed by 801
Abstract
In this study, Candida utilis, Lactobacillus plantarum, and non-starch polysaccharide enzymes (cellulase, laccase, β-glucanase, xylanase, and mannanase) were employed to examine the effects of various microorganism–enzyme combinations on the nutritional composition, fiber structure, and fermentation quality of corn stover and wheat [...] Read more.
In this study, Candida utilis, Lactobacillus plantarum, and non-starch polysaccharide enzymes (cellulase, laccase, β-glucanase, xylanase, and mannanase) were employed to examine the effects of various microorganism–enzyme combinations on the nutritional composition, fiber structure, and fermentation quality of corn stover and wheat straw. Furthermore, the synergistic effects of these treatments were assessed through the use of in vitro rumen fermentation. The results showed that the microorganism–enzyme combinations significantly increased the crude protein content (p < 0.05), while reducing the acid detergent fiber and neutral detergent fiber levels (p < 0.05) in both substrates. The fermentation broth pH decreased (p = 0.06 for corn stover; p < 0.05 for wheat straw) as a result of the treatments, with a significant increase in the lactate concentration (p < 0.05). The reducing sugar levels varied across the treatments (p < 0.05). Mycotoxin analysis revealed trace amounts of zearalenone, well below the Chinese feed hygiene standard. Scanning electron microscopy showed structural modifications, including fiber breakage and surface wrinkling, in the treated substrates. In vitro rumen fermentation demonstrated significant changes in the NH3-N production and volatile fatty acid profiles (p < 0.05). In conclusion, the addition of different microorganism–enzyme combinations can effectively improve the nutritional composition, fiber structure, and fermentation quality of corn stover and wheat straw. Among the treatments, the T3 group (25% each of C. utilis, L. plantarum, cellulase, and laccase, with a total addition ratio of 0.3% w/w) exhibited the most pronounced improvement in nutritional value for both corn stover and wheat straw. These findings suggest that microorganism–enzyme combinations effectively enhance the nutritional and fermentative quality of agricultural residues. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

12 pages, 245 KiB  
Article
In Vitro Assessment of the Nutritional Value of Seed Crop Plants Damaged by Hailstorms and Strong Winds as Alternative Forages for Ruminants
by Sonia Tassone, Salvatore Barbera, Rabeb Issaoui, Hatsumi Kaihara, Sara Glorio Patrucco and Khalil Abid
Agriculture 2025, 15(8), 799; https://doi.org/10.3390/agriculture15080799 - 8 Apr 2025
Viewed by 413
Abstract
The increasing frequency of extreme weather events, exacerbated by climate change, has caused significant physical damage to crops worldwide. This study explores the potential of repurposing crop plants that exhibit structural breakage due to hailstorms and strong winds and were originally cultivated for [...] Read more.
The increasing frequency of extreme weather events, exacerbated by climate change, has caused significant physical damage to crops worldwide. This study explores the potential of repurposing crop plants that exhibit structural breakage due to hailstorms and strong winds and were originally cultivated for seed production (amaranth, borage, camelina, flax, quinoa, soybean, and white lupin) as alternative forages for ruminants. Their nutritional value was assessed by analyzing chemical composition, in vitro dry matter degradability (DMD), in vitro neutral detergent fiber degradability (NDFD), estimated dry matter intake (DMI), and relative feed value (RFV) compared to conventional forages (alfalfa and ryegrass hay from undamaged plant). Results revealed significant variability among the damaged crops. Borage, amaranth, and white lupin exhibited superior DMD, NDFD, estimated DMI, and RFV, positioning them as promising forage alternatives. Soybean and quinoa showed protein content, DMD, NDFD, estimated DMI, and RFV comparable to alfalfa hay, suggesting their suitability as substitutes. However, camelina exhibited limited NDFD, while flax had low DMD, NDFD, estimated DMI, and RFV, indicating the need for pre-treatment strategies to optimize their nutritional value. Overall, repurposing weather-damaged borage, amaranth, white lupin, soybean, and quinoa as alternative forages for ruminants provides a promising approach to mitigating feed shortages, improving feed resource utilization, and optimizing resource utilization in livestock production. Full article
22 pages, 5580 KiB  
Article
Improving Eco-Friendly Polymer Adhesive Joints: Innovative Toughening Strategies for Consistent Performance Under Various Loading Conditions
by Shahin Jalali, Ricardo J. C. Carbas, Eduardo A. S. Marques and Lucas F. M. da Silva
Polymers 2025, 17(5), 648; https://doi.org/10.3390/polym17050648 - 28 Feb 2025
Viewed by 871
Abstract
In modern engineering applications, the use of sustainable materials and eco-friendly methods has become increasingly important. Wood joints, especially those strengthened with bio-adhesive, have attracted considerable attention due to their inherent environmental benefits and desirable mechanical properties. Compared to traditional joining methods, adhesive [...] Read more.
In modern engineering applications, the use of sustainable materials and eco-friendly methods has become increasingly important. Wood joints, especially those strengthened with bio-adhesive, have attracted considerable attention due to their inherent environmental benefits and desirable mechanical properties. Compared to traditional joining methods, adhesive joints offer unique advantages such as improved load distribution, reduced stress concentration, and enhanced aesthetic appeal. This study aims to enhance delamination resistance in wooden adhesive joints using a novel method involving reinforced high-toughness resin on surfaces. Additionally, a hybrid substrate approach applies a tough layer to outer plies and a densified wood core with greater fiber direction strength. Normal, toughened, and hybrid single-lap joint specimens were analyzed through both experimental and numerical methods under various loading conditions, including quasi-static and intermediate rates. The proposed method involved bio-adhesive penetration into the wood substrate, forming a reinforced surface zone. The experimentally validated results show a significant improvement in joint strength, exhibiting an approximate 2.8-fold increase for the toughened joints compared to the reference joints under intermediate-rate conditions. Furthermore, the absorbed energy of the toughened joints increased by a substantial factor of up to 4.5 times under the same conditions. The fracture surfaces analysis revealed that the toughening method changed the failure mechanism of the joints from delamination to fiber breakage, indicating that the strength of the substrate was lower than that of the joint under impact conditions. The viscoelastic behavior of the bio-adhesive also influenced the response of the joints to the changing displacement rate. The toughening method enhanced the resilience and load-bearing capacity of the wood joints, making them more suitable for dynamic applications. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Figure 1

18 pages, 10549 KiB  
Article
A Prestressed Concrete Cylinder Pipe Broken Wire Detection Algorithm Based on Improved YOLOv5
by Haoze Li, Ruizhen Gao, Fang Sun, Yv Wang and Baolong Ma
Sensors 2025, 25(3), 977; https://doi.org/10.3390/s25030977 - 6 Feb 2025
Viewed by 1114
Abstract
The failure accidents of prestressed concrete cylinder pipe (PCCP) seriously affect the economic feasibility of the construction site. The traditional method of needing to stop construction for pipe inspection is time-consuming and laborious. This paper studies the PCCP broken wire identification algorithm based [...] Read more.
The failure accidents of prestressed concrete cylinder pipe (PCCP) seriously affect the economic feasibility of the construction site. The traditional method of needing to stop construction for pipe inspection is time-consuming and laborious. This paper studies the PCCP broken wire identification algorithm based on deep learning. A PCCP wire-breaking test platform was built; the Distributed Fiber Acoustic Sensing Monitoring System (DAS) monitors wire-breakage events in DN4000mm PCCPs buried underground. The collected broken wire signal creates a time-frequency spectrum diagram dataset of the simulated broken wire signal through continuous wavelet transform (CWT). Considering the location of equipment limitations, based on the YOLOv5 algorithm, a lightweight algorithm, YOLOv5-Break is proposed for broken wire monitoring. Firstly, MobileNetV3 is used to replace the YOLOv5 network backbone, and Dynamic Conv is used to replace Conv in C3 to reduce redundant computation and memory access; the coordinate attention mechanism is integrated into the C3 module to make the algorithm pay more attention to location information; at the same time, CIOU is replaced by Focal_EIoU to make the algorithm pay more attention to high-quality samples and balance the uneven problem of complex and easy examples. The YOLOv5-Break algorithm achieves a mAP of 97.72% on the self-built broken wire dataset, outperforming YOLOv8, YOLOv9, and YOLOv10. Notably, YOLOv5-Break reduces the model weight to 7.74 MB, 46.25% smaller than YOLOv5 and significantly lighter than YOLOv8s and YOLOv9s. With a computational cost of 8.3 GFLOPs, YOLOv5-Break is 71.0% and 78.5% more efficient than YOLOv8s and YOLOv9s. It can be seen that the lightweight algorithm YOLOv5-Break proposed in this article simplifies the algorithm without losing accuracy. Moreover, the lightweight algorithm does not require high hardware computing power and can be better arranged in the PCCP broken wire monitoring system. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop