Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,612)

Search Parameters:
Keywords = fatty livers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3229 KiB  
Article
AMPK-Targeting Effects of (−)-Epicatechin Gallate from Hibiscus sabdariffa Linne Leaves on Dual Modulation of Hepatic Lipid Accumulation and Glycogen Synthesis in an In Vitro Oleic Acid Model
by Hui-Hsuan Lin, Pei-Tzu Wu, Yu-Hsuan Liang, Ming-Shih Lee and Jing-Hsien Chen
Int. J. Mol. Sci. 2025, 26(15), 7612; https://doi.org/10.3390/ijms26157612 - 6 Aug 2025
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) begins with hepatic lipid accumulation and triggers insulin resistance. Hibiscus leaf extract exhibits antioxidant and anti-atherosclerotic activities, and is rich in (−)-epicatechin gallate (ECG). Despite ECG’s well-known pharmacological activities and its total antioxidant capacity being stronger than [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) begins with hepatic lipid accumulation and triggers insulin resistance. Hibiscus leaf extract exhibits antioxidant and anti-atherosclerotic activities, and is rich in (−)-epicatechin gallate (ECG). Despite ECG’s well-known pharmacological activities and its total antioxidant capacity being stronger than that of other catechins, its regulatory effects on MASLD have not been fully described previously. Therefore, this study attempted to evaluate the anti-MASLD potential of ECG isolated from Hibiscus leaves on abnormal lipid and glucose metabolism in hepatocytes. First, oleic acid (OA) was used as an experimental model to induce lipid dysmetabolism in human primary hepatocytes. Treatment with ECG can significantly (p < 0.05) reduce the OA-induced cellular lipid accumulation. Nile red staining revealed, compared to the OA group, the inhibition percentages of 29, 61, and 82% at the tested doses of ECG, respectively. The beneficial effects of ECG were associated with the downregulation of SREBPs/HMGCR and upregulation of PPARα/CPT1 through targeting AMPK. Also, ECG at 0.4 µM produced a significant (p < 0.01) decrease in oxidative stress by 83%, and a marked (p < 0.05) increase in glycogen synthesis by 145% on the OA-exposed hepatocytes with insulin signaling blockade. Mechanistic assays indicated lipid and glucose metabolic homeostasis of ECG might be mediated via regulation of lipogenesis, fatty acid β-oxidation, and insulin resistance, as confirmed by an AMPK inhibitor. These results suggest ECG is a dual modulator of lipid and carbohydrate dysmetabolism in hepatocytes. Full article
Show Figures

Figure 1

11 pages, 327 KiB  
Article
Metabolic Mediation of the Association Between Hyperandrogenism and Paratubal Cysts in Polycystic Ovary Syndrome: A Structural Equation Modeling Approach
by Jin Kyung Baek, Chae Eun Hong, Hee Yon Kim and Bo Hyon Yun
J. Clin. Med. 2025, 14(15), 5545; https://doi.org/10.3390/jcm14155545 - 6 Aug 2025
Abstract
Objectives: Paratubal cysts (PTCs) are embryological remnants and are potentially hormonally responsive. Since hyperandrogenism (HA) is representative of polycystic ovary syndrome (PCOS), we examined whether biochemical hyperandrogenism is associated with PTCs in women with PCOS and if body mass index (BMI) and [...] Read more.
Objectives: Paratubal cysts (PTCs) are embryological remnants and are potentially hormonally responsive. Since hyperandrogenism (HA) is representative of polycystic ovary syndrome (PCOS), we examined whether biochemical hyperandrogenism is associated with PTCs in women with PCOS and if body mass index (BMI) and insulin resistance (IR) mediate this association. Methods: This retrospective study included 577 women diagnosed with PCOS at a tertiary academic center from 2010 to 2018. Clinical data included age at diagnosis, BMI, and diagnoses of hypertension, non-alcoholic fatty liver disease, and metabolic syndrome. Laboratory measures included total testosterone, sex hormone-binding globulin, anti-Müllerian hormone, luteinizing hormone, fasting glucose, insulin, and triglycerides (TG). Derived indices included a free androgen index (FAI), homeostasis model assessment of insulin resistance (HOMA-IR), and fasting glucose-to-insulin ratio. PTCs were identified through imaging or surgical findings. Structural equation modeling (SEM) assessed direct and indirect relationships between FAI, BMI, HOMA-IR, and PTCs, while adjusting for diagnostic age. Results: PTCs were identified in 2.77% of participants. BMI, FAI, TG, and IR indices were significantly higher for women with PTCs than those without PTCs. SEM revealed significant indirect effects of FAI on PTCs via BMI and HOMA-IR. The direct effect was negative, resulting in a non-significant total effect. A sensitivity model using HOMA-IR as the predictor showed a significant direct effect on PTCs without mediation via FAI. Conclusions: Biochemical HA may influence PTC development in PCOS through metabolic pathways, establishing the need to consider metabolic context when evaluating adnexal cysts in hyperandrogenic women. Full article
Show Figures

Figure 1

18 pages, 2745 KiB  
Article
Obesity-Induced MASLD Is Reversed by Capsaicin via Hepatic TRPV1 Activation
by Padmamalini Baskaran, Ryan Christensen, Kimberley D. Bruce and Robert H. Eckel
Curr. Issues Mol. Biol. 2025, 47(8), 618; https://doi.org/10.3390/cimb47080618 - 4 Aug 2025
Abstract
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, [...] Read more.
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, hepatocellular carcinoma, and ultimately liver failure. Capsaicin (CAP), the primary pungent compound in chili peppers, has previously been shown to prevent weight gain in high-fat diet (HFD)-induced obesity models. In this study, we investigated the potential of dietary CAP to prevent HFD-induced MASLD. Methods: C57BL/6 mice were fed an HFD (60% kcal from fat) with or without 0.01% CAP supplementation for 26 weeks. We evaluated CAP’s effects on hepatic fat accumulation, inflammation, and mitochondrial function to determine its role in preventing MASLD. Results: CAP acts as a potent and selective agonist of the transient receptor potential vanilloid 1 (TRPV1) channel. We confirmed TRPV1 expression in the liver and demonstrated that CAP activates hepatic TRPV1, thereby preventing steatosis, improving insulin sensitivity, reducing inflammation, and enhancing fatty acid oxidation. These beneficial effects were observed in wild-type but not in TRPV1 knockout mice. Mechanistically, CAP-induced TRPV1 activation promotes calcium influx and activates AMPK, which leads to SIRT1-dependent upregulation of PPARα and PGC-1α, enhancing mitochondrial biogenesis and lipid metabolism. Conclusions: Our findings suggest that dietary CAP prevents MASLD through TRPV1 activation. TRPV1 signaling represents a promising therapeutic target for the prevention and management of MASLD in individuals with metabolic disorders. Full article
(This article belongs to the Special Issue Mechanisms and Pathophysiology of Obesity)
Show Figures

Graphical abstract

20 pages, 346 KiB  
Review
Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver
by Barbara Janota, Karolina Janion, Aneta Buzek and Ewa Janczewska
Metabolites 2025, 15(8), 528; https://doi.org/10.3390/metabo15080528 - 4 Aug 2025
Abstract
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. [...] Read more.
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. This review highlights the importance of including antioxidant nutrients in the diet, such as vitamins C and E, CoQ10, and polyphenolic compounds. It also emphasizes substances that support lipid metabolism, including choline, alpha-lipoic acid, and berberine. Among food groups, it is crucial to choose those that help prevent metabolic disturbances. Among carbohydrate-rich foods, vegetables, fruits, and high-fiber products are recommended. For protein sources, eggs, fish, and white meat are preferred. Among fat sources, plant oils and fatty fish are advised due to their content of omega-3 and omega-6 fatty acids. Various dietary strategies aimed at preventing MASLD should include elements of the Mediterranean diet or be personalized to provide anti-inflammatory compounds and substances that inhibit fat accumulation in liver cells. Other recommended dietary models include the DASH diet, the flexitarian diet, intermittent fasting, and diets that limit fructose and simple sugars. Additionally, supplementing the diet with spirulina or chlorella, berberine, probiotics, or omega-3 fatty acids, as well as drinking several cups of coffee per day, may be beneficial. Full article
(This article belongs to the Special Issue Metabolic Dysregulation in Fatty Liver Disease)
Show Figures

Graphical abstract

13 pages, 447 KiB  
Article
The Impact of Social Determinants of Health on Metabolic Dysfunction-Associated Steatotic Liver Disease Among Adults in the United States
by Vidhi Singh, Susan Cheng, Amanda Velazquez, Hirsh D. Trivedi and Alan C. Kwan
J. Clin. Med. 2025, 14(15), 5484; https://doi.org/10.3390/jcm14155484 - 4 Aug 2025
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of chronic liver disease. It has known multifactorial pathophysiology, but the impact of social determinants of health (SDOH) on the rising prevalence of MASLD is poorly understood. We conducted a retrospective [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of chronic liver disease. It has known multifactorial pathophysiology, but the impact of social determinants of health (SDOH) on the rising prevalence of MASLD is poorly understood. We conducted a retrospective cross-sectional study to examine the influence of SDOH on MASLD using nationwide data from the 2017–2018 National Health and Nutrition Examination Survey (NHANES) study. Methods: We identified participants with MASLD based on liver ultrasound-based controlled attenuation parameter measurements consistent with diagnostic guidelines. We then used logistic regression models to examine associations between SDOH variables and MASLD, with a pre-specified focus on education and income, sequentially adjusting for sociodemographic factors, medical comorbidities, and other SDOH. Results: Our study found that higher education (odds ratio [OR] 0.77, 95% confidence interval [CI] 0.62–0.97, p = 0.024) but not higher income (OR 1.12, 95% CI 0.91–1.37, p = 0.3) was associated with lower odds of MASLD in multivariable adjusted models. We also identified a significant interaction between education level and food security, as well as interactions between food security and other significant SDOH. In the stratified analyses, higher education was significantly associated with lower odds of MASLD among participants with food security (OR 0.71, 95% CI 0.55–0.91, p = 0.007) but not among those with food insecurity (OR 1.26, 95% CI 0.76–2.11, p = 0.4). Conclusions: Our findings identify the potential impact of SDOH on odds of MASLD and suggest increased importance of food security relative to other SDOH. Full article
Show Figures

Figure 1

24 pages, 2171 KiB  
Review
Induction of Autophagy as a Therapeutic Breakthrough for NAFLD: Current Evidence and Perspectives
by Yanke Liu, Mingkang Zhang and Yazhi Wang
Biology 2025, 14(8), 989; https://doi.org/10.3390/biology14080989 (registering DOI) - 4 Aug 2025
Viewed by 61
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterised by hepatic steatosis in the absence of significant alcohol consumption or other specific causes of liver injury. It has become one of the leading causes of liver dysfunction worldwide. However, the precise pathophysiological [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterised by hepatic steatosis in the absence of significant alcohol consumption or other specific causes of liver injury. It has become one of the leading causes of liver dysfunction worldwide. However, the precise pathophysiological mechanisms underlying NAFLD remain unclear, and effective therapeutic strategies are still under investigation. Autophagy, a vital intracellular process in eukaryotic cells, enables the degradation and recycling of cytoplasmic components through a membrane trafficking pathway. Recent studies have demonstrated a strong association between impaired or deficient autophagy and the development and progression of NAFLD. Restoring autophagic function may represent a key approach to mitigating hepatocellular injury. Nevertheless, due to the complexity of autophagy regulation and its context-dependent effects on cellular function, therapeutic strategies targeting autophagy in NAFLD remain limited. This review aims to summarise the relationship between autophagy and NAFLD, focusing on autophagy as a central mechanism. We discuss the latest research advances regarding interventions such as diet and exercise, pharmacological therapies (including modern pharmacological therapy and plant-derived compounds), and other approaches (such as hormones, nanoparticles, gut microbiota, and vitamins). Furthermore, we briefly highlight potential autophagy-related molecular targets that may offer novel therapeutic insights for NAFLD management. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Figure 1

20 pages, 3258 KiB  
Article
Loss of SVIP Results in Metabolic Reprograming and Increased Retention of Very-Low-Density Lipoproteins in Hepatocytes
by Vandana Sekhar, Thomas Andl and Shadab A. Siddiqi
Int. J. Mol. Sci. 2025, 26(15), 7465; https://doi.org/10.3390/ijms26157465 - 1 Aug 2025
Viewed by 196
Abstract
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance [...] Read more.
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance of discerning the role of different cellular proteins involved in VLDL biogenesis, transport, and secretion. Small VCP-Interacting Protein (SVIP) has been identified as a component of VLDL transport vesicles and VLDL secretion. This study evaluates the cellular effects stemming from the CRISPR-Cas9-mediated depletion of SVIP in rat hepatocytes. The SVIP-knockout (KO) cells display an increased VLDL retention with elevated intracellular levels of ApoB100 and neutral lipid staining. RNA sequencing studies reveal an impaired PPARα and Nrf2 signaling in the SVIP KO cells, implying a state of metabolic reprograming, with a shift from fatty acid uptake, synthesis, and oxidation to cells favoring the activation of glucose by impaired glycogen storage and increased glucose release. Additionally, SVIP KO cells exhibit a transcriptional profile indicative of acute phase response (APR) in hepatocytes. Many inflammatory markers and genes associated with APR are upregulated in the SVIP KO hepatocytes. In accordance with an APR-like response, the cells also demonstrate an increase in mRNA expression of genes associated with protein synthesis. Together, our data demonstrate that SVIP is critical in maintaining hepatic lipid homeostasis and metabolic balance by regulating key pathways such as PPARα, Nrf2, and APR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

15 pages, 1218 KiB  
Article
Genetic Risk of MASLD in Mongolians: Role of PNPLA3 and FTO SNPs
by Yumchinsuren Tsedendorj, Dolgion Daramjav, Yesukhei Enkhbat, Ganchimeg Dondov, Gantogtokh Dashjamts, Enkhmend Khayankhyarvaa, Amin-Erdene Ganzorig, Bolor Ulziitsogt, Tegshjargal Badamjav, Batbold Batsaikhan, Shiirevnyamba Avirmed and Tulgaa Lonjid
Curr. Issues Mol. Biol. 2025, 47(8), 605; https://doi.org/10.3390/cimb47080605 - 1 Aug 2025
Viewed by 126
Abstract
Background: This study aimed to determine the association between PNPLA3 rs738409, rs2896019, and FTO rs9939609, rs17817449 single-nucleotide polymorphisms and the risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in Mongolian individuals. Methods: We conducted a case-control study, enrolling 100 MASLD patients and 50 [...] Read more.
Background: This study aimed to determine the association between PNPLA3 rs738409, rs2896019, and FTO rs9939609, rs17817449 single-nucleotide polymorphisms and the risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in Mongolian individuals. Methods: We conducted a case-control study, enrolling 100 MASLD patients and 50 subjects without MASLD. We used the PCR-RFLP technique on three genotype SNPs (rs738409, rs2896019 in PNPLA3, and rs9939609 in FTO). We analyzed liver function and lipid metabolism parameters in the peripheral blood of study participants. A p-value below 0.05 was considered a statistically significant result. Results: This study, which included 150 participants aged 23 to 75, had a mean age of 46.73 ± 11.45 years, with 40% of participants being male (60 individuals). We observed the rs738409 (G), rs2896019 (G), and rs9939609 (A) alleles at a statistically significantly enhanced frequency in the case group (32.5%, 33%, and 21%) compared to the control group (19%, 25%, and 19%), indicating an increased risk of MASLD. The FTO rs17817449 SNP did not show a significant difference between groups. PNPLA3 rs738409 GC/GG genotype (OR = 2.39, p = 0.019) and FTO rs9939609 AT/AA (OR = 2.55, p = 0.025) genotype showed a significant association with MASLD. In the evaluation of the FTO rs9939609, rs17817449, and PNPLA3 rs738409, rs2896019 single-nucleotide polymorphisms among the research individuals, 18.7% had no SNPs, 15.3% had one SNP, 29.3% had two SNPs, 25.3% had three SNPs, and 11.3% had four SNPs. The risk of MASLD increased significantly for individuals having four SNPs (OR = 4.23, p = 0.007). Conclusions: We found that PNPLA3 rs738409 GC/GG genotype and FTO rs9939609 AT/AA genotype are strongly associated with an increased risk of MASLD. Notably, individuals with a higher rate of SNP number, had a significantly higher risk of MASLD. Full article
Show Figures

Figure 1

13 pages, 724 KiB  
Article
Investigating the Diagnostic Utility of LncRNA GAS5 in NAFLD Patients
by Maysa A. Mobasher, Alaa Muqbil Alsirhani, Sahar Abdulrahman Alkhodair, Amir Abd-elhameed, Shereen A. Baioumy, Marwa M. Esawy and Marwa A. Shabana
Biomedicines 2025, 13(8), 1873; https://doi.org/10.3390/biomedicines13081873 - 1 Aug 2025
Viewed by 206
Abstract
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver conditions globally. This study aimed to assess the long non-coding RNAs (lncRNAs) growth arrest-specific 5 (GAS5), miR-29a-3p, and neurogenic locus notch homolog protein 2 (NOTCH2) as biomarkers in [...] Read more.
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver conditions globally. This study aimed to assess the long non-coding RNAs (lncRNAs) growth arrest-specific 5 (GAS5), miR-29a-3p, and neurogenic locus notch homolog protein 2 (NOTCH2) as biomarkers in patients with NAFLD and find out if they are related to any clinical factors. Subjects and Methods: Thirty-eight age-matched healthy persons and thirty-eight NAFLD patients were enrolled. Patients were split into the following three groups: non-alcoholic steatohepatitis (NASH) (n = 12), patients with NAFLD-related cirrhosis (n = 8), and patients with NAFLD-related simple steatosis (n = 18). Real-time PCR was utilized to examine the expression. Results: The lncRNA GAS5 and NOTCH2 were higher in NAFLD cases in comparison to controls. On the other hand, microRNA-29a-3p was underexpressed in NAFLD cases in comparison to controls. Regarding NAFLD diagnosis, lncRNA GAS5 was the best single marker with a sensitivity of 100% and a specificity of 94.7% at the cutoff values of ≥1.16-fold change. Regarding different stages of the disease, the highest level of lncRNA GAS5 was in cirrhosis. lncRNA GAS5 expression, among other studied parameters, is still a significant predictor of NAFLD (adjusted odds ratio of 162, C.I. = 5.7–4629) (p = 0.003). LncRNA GAS5 has a positive correlation with NOTCH2 and a negative correlation with miR-29a-3p. LncRNA GAS5, NOTCH2, and RNA-29a-3p were significantly different in NAFLD cases compared to controls. Conclusions: lncRNA GAS5 appears to be the most effective single marker for detecting NAFLD. LncRNA GAS5 expression is a significant independent predictor of NAFLD. LncRNA GAS5 can differentiate different NAFLD stages. Full article
Show Figures

Figure 1

12 pages, 1302 KiB  
Article
Exploring the Relationship Between Insulin Resistance, Liver Health, and Restrictive Lung Diseases in Type 2 Diabetes
by Mani Roshan, Christian Mudrack, Alba Sulaj, Ekaterina von Rauchhaupt, Thomas Fleming, Lukas Schimpfle, Lukas Seebauer, Viktoria Flegka, Valter D. Longo, Elisabeth Kliemank, Stephan Herzig, Anna Hohneck, Zoltan Kender, Julia Szendroedi and Stefan Kopf
J. Pers. Med. 2025, 15(8), 340; https://doi.org/10.3390/jpm15080340 - 1 Aug 2025
Viewed by 163
Abstract
Background: Restrictive lung disease (RLD) is a potential complication in type 2 diabetes (T2D), but its relationship with insulin resistance and liver-related metabolic dysfunction remains unclear. This study evaluated the association between lung function and metabolic markers in T2D and retrospectively assessed [...] Read more.
Background: Restrictive lung disease (RLD) is a potential complication in type 2 diabetes (T2D), but its relationship with insulin resistance and liver-related metabolic dysfunction remains unclear. This study evaluated the association between lung function and metabolic markers in T2D and retrospectively assessed whether metabolic improvements from dietary intervention were accompanied by changes in lung function. Methods: This cross-sectional analysis included 184 individuals (101 with T2D, 33 with prediabetes, and 50 glucose-tolerant individuals). Lung function parameters—vital capacity (VC), total lung capacity by plethysmography (TLC-B), and diffusion capacity for carbon monoxide (TLCO)—were assessed alongside metabolic markers including HOMA2-IR, fatty liver index (FLI), NAFLD score, and Fibrosis-4 index (FIB-4). In a subset of 54 T2D participants, lung function was reassessed after six months following either a fasting-mimicking diet (FMD, n = 14), Mediterranean diet (n = 13), or no dietary intervention (n = 27). Results: T2D participants had significantly lower VC and TLC-B compared to glucose-tolerant and prediabetic individuals, with 18–21% falling below clinical thresholds for RLD. Lung volumes were negatively correlated with HOMA2-IR, FLI, NAFLD score, and FIB-4 across the cohort and within the T2D group. Although the FMD intervention led to significant improvements in HOMA2-IR and FLI, no corresponding changes in lung function were observed over the six-month period. Conclusions: Restrictive lung impairment in T2D is associated with insulin resistance and markers of liver steatosis and fibrosis. While short-term dietary interventions can improve metabolic parameters, their effect on lung function may require a longer duration or additional interventions and targeted follow-up. These findings highlight the relevance of pulmonary assessment in individuals with metabolic dysfunction. Full article
Show Figures

Figure 1

19 pages, 523 KiB  
Review
Whey Proteins and Metabolic Dysfunction-Associated Steatotic Liver Disease Features: Evolving the Current Knowledge and Future Trends
by Maja Milanović, Nataša Milošević, Maja Ružić, Ludovico Abenavoli and Nataša Milić
Metabolites 2025, 15(8), 516; https://doi.org/10.3390/metabo15080516 - 1 Aug 2025
Viewed by 375
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a prevalent, multisystem disease affecting approximately 30% of adults worldwide. Obesity, along with dyslipidemia, type 2 diabetes mellitus, and hypertension, are closely intertwined with MASLD. In people with [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a prevalent, multisystem disease affecting approximately 30% of adults worldwide. Obesity, along with dyslipidemia, type 2 diabetes mellitus, and hypertension, are closely intertwined with MASLD. In people with obesity, MASLD prevalence is estimated to be about 75%. Despite various approaches to MASLD treatment, dietary changes remain the most accessible and safe interventions in MASLD, especially in obese and overweight patients. Whey proteins are rich in bioactive compounds, essential amino acids with antioxidant properties, offering potential benefits for MASLD prevention and management. This state-of-the-art review summarizes whey protein impacts on a spectrum of MASLD-related manifestations, such as obesity, impaired glucose and lipid metabolism, hypertension, liver injury, oxidative stress, and inflammation. The results obtained in clinical environments, with a focus on meta-analysis, propose whey protein supplementation as a promising strategy aimed at managing multifaced MASLD disorders. Well-designed cohort studies are needed for validation of the efficacy and long-term safety of whey proteins in MASLD patients. Full article
(This article belongs to the Special Issue Effects of Diet on Metabolic Health of Obese People)
Show Figures

Figure 1

15 pages, 953 KiB  
Review
Influence of Matcha and Tea Catechins on the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)—A Review of Patient Trials and Animal Studies
by Danuta I. Kosik-Bogacka and Katarzyna Piotrowska
Nutrients 2025, 17(15), 2532; https://doi.org/10.3390/nu17152532 - 31 Jul 2025
Viewed by 427
Abstract
Metabolic dysfunction-associated fatty liver disease (MASLD) is a chronic, non-communicable spectrum of diseases characterized by lipid accumulation. It is often asymptomatic, and its prevalence varies by region, age, gender, and economic status. It is estimated that 25% of the world’s population currently suffer [...] Read more.
Metabolic dysfunction-associated fatty liver disease (MASLD) is a chronic, non-communicable spectrum of diseases characterized by lipid accumulation. It is often asymptomatic, and its prevalence varies by region, age, gender, and economic status. It is estimated that 25% of the world’s population currently suffer from MAFLD, and 20 million patients will die from MAFLD-related diseases. In the last 20 years, tea and anti-obesity research have indicated that regularly consuming tea decreases the risk of cardiovascular disease, stroke, obesity, diabetes, and metabolic syndrome (MeS). In this review, we aimed to present studies concerning the influence of matcha extracts and epigallocatechin-3 gallate (EGCG) supplements on metabolic functions in the context of MAFLD in human and animal studies. The published data show promise. In both human and animal studies, the beneficial effects on body weight, cholesterol levels, and liver metabolism and function were noted, even in short-period experiments. The safety levels for EGCG and green tea extract consumption are marked. More experiments are needed to confirm the results observed in animal studies and to show the mechanisms by which green tea exerts its effects. The preliminary data from research concerning microbiota or epigenetic changes observed after polyphenols and green tea consumption need to be expanded. To improve the efficiency and availability of green tea or supplement consumption as a treatment for MAFLD patients, more research with larger groups and longer study durations is needed. Full article
(This article belongs to the Special Issue Phytonutrients in Diseases of Affluence)
Show Figures

Figure 1

20 pages, 13309 KiB  
Article
Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids
by Hye Young Kim, Ju Hee Oh, Hyun Sung Kim and Dae Won Jun
Antioxidants 2025, 14(8), 943; https://doi.org/10.3390/antiox14080943 (registering DOI) - 31 Jul 2025
Viewed by 273
Abstract
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver [...] Read more.
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver cancer, and the response rate of drugs under clinical research is less than 50%. There is an urgent need for biomarkers to evaluate the efficacy of these drugs. (2) Methods: MASLD was induced in mice using a High-Fat diet (HF), Western diet (WD), and Methionine/Choline-Deficient diet (MCD) for 20 weeks (4 weeks for MCD). Liver tissue biopsies were performed, and the treatment effects of saponin and non-saponin feeds were evaluated. Fat accumulation and hepatic inflammation were measured, and mRNA sequencing analysis was conducted. The therapeutic effects were validated using patient-derived liver organoids. (3) Results: The NAFLD Activity Score (NAS) significantly increased in all MASLD models compared with controls. Saponin treatment decreased NAS in the HF and WD groups but not in the MCD group. RNA sequencing and PCA analysis showed that the HF saponin response samples were similar to normal controls. DAVID analysis revealed significant changes in lipid, triglyceride, and fatty acid metabolic processes. qRT-PCR confirmed decreased fibrosis markers in the HF saponin response group, and GSEA analysis showed reduced HAMP1 gene expression. (4) Conclusions: Among the diets, red ginseng was most effective in the HF diet, with significant effects in the saponin-treated group. The therapeutic efficacy was better when HAMP1 expression was increased. Therefore, we propose HAMP1 as a potential exploratory biomarker to assess the saponin response in a preclinical setting. In addition, the reduction of inflammation and hepatic iron accumulation suggests that saponins may exert antioxidant effects through modulation of oxidative stress. Full article
Show Figures

Graphical abstract

25 pages, 2693 KiB  
Article
Adipokine and Hepatokines in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Current and Developing Trends
by Salvatore Pezzino, Stefano Puleo, Tonia Luca, Mariacarla Castorina and Sergio Castorina
Biomedicines 2025, 13(8), 1854; https://doi.org/10.3390/biomedicines13081854 - 30 Jul 2025
Viewed by 347
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the scientific landscape through bibliometric analysis, identifying emerging domains and future clinical translation directions. Methods: A comprehensive bibliometric analysis of 1002 publications from 2004 to 2025 was performed using thematic mapping, temporal trend evaluation, and network analysis. Analysis included geographical and institutional distributions, thematic cluster identification, and research paradigm evolution assessment, focusing specifically on adipokine–hepatokine signaling mechanisms and clinical implications. Results: The United States and China are at the forefront of research output, whereas European institutions significantly contribute to mechanistic discoveries. The thematic map analysis reveals the motor/basic themes residing at the heart of the field, such as insulin resistance, fatty liver, metabolic syndrome, steatosis, fetuin-A, and other related factors that drive innovation. Basic clusters include metabolic foundations (obesity, adipose tissue, FGF21) and adipokine-centered subjects (adiponectin, leptin, NASH). New themes focus on inflammation, oxidative stress, gut microbiota, lipid metabolism, and hepatic stellate cells. Niche areas show targeted fronts such as exercise therapies, pediatric/novel adipokines (chemerin, vaspin, omentin-1), and advanced molecular processes that focus on AMPK and endoplasmic-reticulum stress. Temporal analysis shows a shift from single liver studies to whole models that include the gut microbiota, mitochondrial dysfunction, and interactions between other metabolic systems. The network analysis identifies nine major clusters: cardiovascular–metabolic links, adipokine–inflammatory pathways, hepatokine control, and new therapeutic domains such as microbiome interventions and cellular stress responses. Conclusions: In summary, this study delineates current trends and emerging areas within the field and elucidates connections between mechanistic research and clinical translation to provide guidance for future research and development in this rapidly evolving area. Full article
(This article belongs to the Special Issue Advances in Hepatology)
Show Figures

Figure 1

12 pages, 2404 KiB  
Article
Analysis of the Mitochondrial Dynamics in NAFLD: Drp1 as a Marker of Inflammation and Fibrosis
by Maël Padelli, Jocelyne Hamelin, Christophe Desterke, Mylène Sebagh, Raphael Saffroy, Claudio Garcia Sanchez, Audrey Coilly, Jean-Charles Duclos-Vallée, Didier Samuel and Antoinette Lemoine
Int. J. Mol. Sci. 2025, 26(15), 7373; https://doi.org/10.3390/ijms26157373 - 30 Jul 2025
Viewed by 208
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, projected to affect 55% globally by 2040. Up to one-third of NAFLD patients develop non-alcoholic steatohepatitis (NASH), with 40% progressing to fibrosis. However, there are currently few reliable tools to predict [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, projected to affect 55% globally by 2040. Up to one-third of NAFLD patients develop non-alcoholic steatohepatitis (NASH), with 40% progressing to fibrosis. However, there are currently few reliable tools to predict disease progression. Impaired mitochondrial dynamics, characterized by dysregulated fission, fusion, and mitophagy, have emerged as key events in NAFLD pathophysiology, contributing to hepatocyte death and inflammation. This study explored the transition from steatosis to NASH through transcriptomic analyses, including data from patients with steatosis and those with NASH at different fibrosis stages. By identifying a transcriptomic signature associated with disease progression, the study revealed increased expression of genes involved in mitochondrial dynamics in NASH compared to steatosis and during NASH-related fibrosis. Histological analyses highlighted the central role of Dynamin-related protein 1 (Drp1), a dynamin GTPase essential for mitochondrial fission and mitophagy. In human liver biopsies, Drp1 expression progressively increased from NAFLD to NASH and NASH-related fibrosis and cirrhosis, predominantly in Kupffer cells. These finding suggest Drp1 is a potential driver of the transition to more severe liver damage, making it a promising biomarker for NASH development and progression and a potential therapeutic target in metabolic disorders. Full article
(This article belongs to the Special Issue Nonalcoholic Liver Disease: Mechanisms, Prevention, and Treatment)
Show Figures

Figure 1

Back to TopTop