Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Study Design
2.2. Liver Biopsy and Randomization
2.3. Preparation of Ginsenoside (Saponin) and Non-Saponin Fractions
2.4. RNA Sequencing and Data Analysis
2.5. Histopathological Analysis
2.6. Blood Biochemical Analysis
2.7. Glucose Tolerance Test (GTT)
2.8. Quantitative Reverse Transcription PCR (qRT-PCR)
2.9. Western Blot Analysis
2.10. Prussian Blue Staining
2.11. ROS Measurement
2.12. Human Liver Organoid Culture
2.13. LipidTOX Staining
2.14. Statistical Analysis
2.15. Chemicals and Reagents
3. Results
3.1. Comparison of Metabolic Dysfunction Associated Steatotic Liver Disease Mouse Models Induced by Three Different Diets
3.2. NAFLD Activity Score and Histological Analysis of Liver Tissue in the Three Inflammation Models
3.3. NAS and Molecular Analysis in Liver Tissue
3.4. mRNA Expression and Protein Analysis in Liver Tissue
3.5. RNA Sequencing and Gene Expression Analysis in High-Fat Diet-Induced Fatty Liver Mice
3.6. Identification of Candidate Genes and Biomarkers from RNA Sequencing Data
3.7. mRNA Expression and Histological Analysis of HAMP1 in Various Diet-Induced Liver Models
3.8. Saponin-Associated Changes in Lipid Accumulation, ROS, and Fibrosis in Mouse and Human Liver Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
MASLD | Metabolic dysfunction associated steatotic liver disease |
HFD | High-fat diet |
H&E | Hematoxylin & Eosin |
GTT | Glucose tolerance test |
GPX | Glutathione peroxidase |
MC | Methylcellulose |
MCD | Methionine and choline deficiency |
NAFLD | Non alcoholic fatty liver disease |
NAS | NAFLD activity scores |
NASH | Non-alcoholic steatohepatitis |
PBS | Phosphate-buffered saline |
SR | Sirius red |
SOD | Superoxide dismutase |
TC | Total cholesterol |
TG | Triglyceride |
ROS | Reactive Oxygen Species |
WD | Western diet |
References
- Im, H.J.; Ahn, Y.C.; Wang, J.-H.; Lee, M.M.; Son, C.G. Systematic review on the prevalence of nonalcoholic fatty liver disease in South Korea. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101526. [Google Scholar] [CrossRef] [PubMed]
- Kwapisz, J.; Slomka, A.; Zekanowska, E. Hepcidin and Its Role in Iron Homeostasis. EJIFCC 2009, 20, 124–128. [Google Scholar]
- Park, T.Y.; Hong, M.; Sung, H.; Kim, S.; Suk, K.T. Effect of Korean Red Ginseng in chronic liver disease. J. Ginseng Res. 2017, 41, 450–455. [Google Scholar] [CrossRef]
- Pirola, C.J.; Sookoian, S. Personalized medicine in nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2022, 28, 935–938. [Google Scholar] [CrossRef]
- Bian, X.B.; Yu, P.-C.; Yang, X.-H.; Han, L.; Wang, Q.-Y.; Zhang, L.; Zhang, L.-X.; Sun, X. The effect of ginsenosides on liver injury in preclinical studies: A systematic review and meta-analysis. Front. Pharmacol. 2023, 14, 1184774. [Google Scholar] [CrossRef]
- Yoon, S.J.; Kim, S.K.; Lee, N.Y.; Choi, Y.R.; Kim, H.S.; Gupta, H.; Youn, G.S.; Sung, H.; Shin, M.J.; Suk, K.T. Effect of Korean Red Ginseng on metabolic syndrome. J. Ginseng Res. 2021, 45, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Koo, J.H.; Lee, J.M.; Joo, M.S.; Kim, T.H.; Kim, H.; Jun, D.W.; Kim, S.G. NRF2-mediated SIRT3 induction protects hepatocytes from ER stress-induced liver injury. FASEB J. 2022, 36, e22170. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Ahn, S.B.; Hong, J.M.; Oh, J.H.; Saeed, W.K.; Kim, G.S.; Kim, H.; Kang, J.K.; Kang, S.; Jun, D.W. BTT-105 ameliorates hepatic fibrosis in non-alcoholic fatty liver animal model. FASEB J. 2021, 35, e21979. [Google Scholar] [CrossRef]
- Hao, L.; Peng, Q.; Li, S.; Hu, X.; Yan, H. Novel insights from meta-analysis: The efficacy of ginsenosides in non-alcoholic fatty liver disease. Front. Pharmacol. 2025, 16, 1564852. [Google Scholar] [CrossRef] [PubMed]
- Bak, M.-J.; Jun, M.; Jeong, W.-S. Antioxidant and hepatoprotective effects of the red ginseng essential oil in H2O2-treated hepG2 cells and CCl4-treated mice. Int. J. Mol. Sci. 2012, 13, 2314–2330. [Google Scholar] [CrossRef]
- Chae, Y.J.; Jun, D.W.; Saeed, W.K.; Kang, H.T.; Oh, J.H.; Lee, S.M.; Jang, K. Feasibility and Stability of Liver Biopsy before Treatment for Preclinical Nonalcoholic Fatty Liver Studies. J. Korean Med. Sci. 2019, 34, e14. [Google Scholar] [CrossRef] [PubMed]
- Leggett, R.M.; Ramirez-Gonzalez, R.H.; Clavijo, B.J.; Waite, D.; Davey, R.P. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Front. Genet. 2013, 4, 288. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, B.; Rood, J.; Singer, E. BBMerge—Accurate paired shotgun read merging via overlap. PLoS ONE 2017, 12, e0185056. [Google Scholar] [CrossRef]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.; Trapnell, C.; Donaghey, J.; Rinn, J.L.; Pachter, L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011, 12, R22. [Google Scholar] [CrossRef]
- Alquier, T.; Poitout, V. Considerations and guidelines for mouse metabolic phenotyping in diabetes research. Diabetologia 2018, 61, 526–538. [Google Scholar] [CrossRef]
- Hu, H.; Gehart, H.; Artegiani, B.; LÖpez-Iglesias, C.; Dekkers, F.; Basak, O.; van Es, J.; de Sousa Lopes, S.M.C.; Begthel, H.; Korving, J.; et al. Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids. Cell 2018, 175, 1591–1606.e19. [Google Scholar] [CrossRef]
- Takahashi, Y.; Soejima, Y.; Fukusato, T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 2012, 18, 2300–2308. [Google Scholar] [CrossRef]
- Lazo, M.; Clark, J.M. The epidemiology of nonalcoholic fatty liver disease: A global perspective. Semin. Liver Dis. 2008, 28, 339–350. [Google Scholar] [CrossRef]
- Hariri, N.; Thibault, L. High-fat diet-induced obesity in animal models. Nutr. Res. Rev. 2010, 23, 270–299. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Goldin, R.D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 2006, 87, 1–16. [Google Scholar] [CrossRef]
- Wang, F.; Park, J.-S.; Ma, Y.; Ma, H.; Lee, Y.-J.; Lee, G.-R.; Yoo, H.-S.; Hong, J.-T.; Roh, Y.-S. Ginseng Saponin Enriched in Rh1 and Rg2 Ameliorates Nonalcoholic Fatty Liver Disease by Inhibiting Inflammasome Activation. Nutrients 2021, 13, 856. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, W.; Ren, J.; Gao, X.; Zhao, Y.; Song, T.; Fu, K.; Zheng, Y.; Yang, J. Effects of curcumin on non-alcoholic fatty liver disease: A scientific metrogy study. Phytomedicine 2024, 123, 155241. [Google Scholar] [CrossRef]
- Guo, T.; Woo, S.L.; Guo, X.; Li, H.; Zheng, J.; Botchlett, R.; Liu, M.; Pei, Y.; Xu, H.; Cai, Y.; et al. Berberine Ameliorates Hepatic Steatosis and Suppresses Liver and Adipose Tissue Inflammation in Mice with Diet-induced Obesity. Sci. Rep. 2016, 6, 22612. [Google Scholar] [CrossRef] [PubMed]
- Colak, Y.; Ozturk, O.; Senates, E.; Tuncer, I.; Yorulmaz, E.; Adali, G.; Doganay, L.; Enc, F.Y. SIRT1 as a potential therapeutic target for treatment of nonalcoholic fatty liver disease. Med. Sci. Monit. 2011, 17, HY5–HY9. [Google Scholar] [CrossRef]
- Vuppalanchi, R.; Jain, A.K.; Deppe, R.; Yates, K.; Comerford, M.; Masuoka, H.C.; Neuschwander-Tetri, B.A.; Loomba, R.; Brunt, E.M.; Kleiner, D.E.; et al. Relationship between changes in serum levels of keratin 18 and changes in liver histology in children and adults with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2014, 12, 2121–2130.e1-2. [Google Scholar] [CrossRef]
- Ravasi, G.; Pelucchi, S.; Trombini, P.; Mariani, R.; Tomosugi, N.; Modignani, G.L.; Pozzi, M.; Nemeth, E.; Ganz, T.; Hayashi, H.; et al. Hepcidin expression in iron overload diseases is variably modulated by circulating factors. PLoS ONE 2012, 7, e36425. [Google Scholar] [CrossRef]
- Vela, D. Low hepcidin in liver fibrosis and cirrhosis; a tale of progressive disorder and a case for a new biochemical marker. Mol. Med. 2018, 24, 5. [Google Scholar] [CrossRef]
- Liu, J.; Sun, B.; Yin, H.; Liu, S. Hepcidin: A Promising Therapeutic Target for Iron Disorders: A Systematic Review. Medicine 2016, 95, e3150. [Google Scholar] [CrossRef]
- Jung, E.; Pyo, M.-K.; Kim, J. Pectin-Lyase-Modified Ginseng Extract and Ginsenoside Rd Inhibits High Glucose-Induced ROS Production in Mesangial Cells and Prevents Renal Dysfunction in db/db Mice. Molecules 2021, 26, 367. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Li, C.; Yang, S.; Song, S.; Hou, W.; Song, Y.; Du, Q. Hypolipidemic effect and molecular mechanism of ginsenosides: A review based on oxidative stress. Front. Pharmacol. 2023, 14, 1166898. [Google Scholar] [CrossRef] [PubMed]
- Marmur, J.; Beshara, S.; Eggertsen, G.; Onelöv, L.; Albiin, N.; Danielsson, O.; Hultcrantz, R.; Stål, P. Hepcidin levels correlate to liver iron content, but not steatohepatitis, in non-alcoholic fatty liver disease. BMC Gastroenterol. 2018, 18, 78. [Google Scholar] [CrossRef] [PubMed]
- Auguet, T.; Aragonès, G.; Berlanga, A.; Martínez, S.; Sabench, F.; Binetti, J.; Aguilar, C.; Porras, J.A.; Molina, A.; Del Castillo, D.; et al. Hepcidin in morbidly obese women with non-alcoholic fatty liver disease. PLoS ONE 2017, 12, e0187065. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer |
---|---|
Gapdh | Forward: 5′-GTT-GTC-TCC-TGC-GAC-TTC-A-3′ Reverse: 5′-GGT-GGT-CCA-GGG-TTT-CTT-A-3′ |
Col1a1 | Forward: 5′-CCT-CAG-GGT-ATT-GCT-GGA-CAA-C-3′ Reverse: 5′-CAG-AAG-GAC-CTT-GTT-TGC-CAG-G-3′ |
Timp1 | Forward: 5′-ATC-TCT-GGC-ATC-TGG-CAT-CC-3′ Reverse: 5′-TTG-CAG-AAG-GCT-GTC-TGT-GG-3′ |
Fn1 | Forward: 5′-CCC-TAT-CTC-TGA-TAC-CGT-TGT-CC-3′ Reverse: 5′-TGC-CGC-AAC-TAC-TGT-GAT-TCG-G-3′ |
Mmp9 | Forward: 5′-GCT-GAC-TAC-GAT-AAG-GAC-GGC-A-3′ Reverse: 5′-TAG-TGG-TGC-AGG-CAG-AGT-AGG-A-3′ |
Il1β | Forward: 5′-CTC-ACA-AGC-AGA-GCA-CAA-GC-3′ Reverse: 5′-TCC-AGC-CCA-TAC-TTT-AGG-AAG-A-3′ |
Srebp1c | Forward: 5′-GAA-ACA-CTC-AGC-AGC-CAC-CA-3′ Reverse: 5′-CAA-GCT-TTG-GAC-CTG-GGT-GT-3′ |
Fas | Forward: 5′-CCC-TTT-TTG-AGG-AGG-CCA-AT-3′ Reverse: 5′-GCT-TCA-CGA-CTC-CAT-CAC-GA-3′ |
Scd-1 | Forward: 5′-AGA-AGG-GCG-GAA-AAC-TGG-AC-3′ Reverse: 5′-AGG-CCG-GGC-TTG-TAG-TAC-CT-3′ |
Mcp-1 | Forward: 5′-CAT-CAC-GGA-CAG-AGG-TTC-TGA-G-3′ Reverse: 5′-TCC-TCT-GTT-GTG-TGG-ATT-CAC-TC-3′ |
Nlrp3 | Forward: 5′-TCA-CAA-CTC-GCC-CAA-GGA-GGA-A-3′ Reverse: 5′-AAG-AGA-CCA-CGG-CAG-AAG-CTA-G-3′ |
Hamp1 | Forward: 5′-CAG-CAC-CAC-CTA-TCT-CCA-TCA-AC-3′ Reverse: 5′-CAG-ATG-GGG-AAG-TTG-GTG-TCT-C-3′ |
Target | Supplier | Cat.no |
---|---|---|
α-SMA | Abcam, Cambridge, UK, | ab124964 |
PI3K | Abcam, Cambridge, UK, | ab86714 |
AKT | Abcam, Cambridge, UK, | ab8805 |
FN1 | Abcam, Cambridge, UK, | ab2413 |
IL-1β | Abcam, Cambridge, UK, | ab254360 |
SREBP1 | Abcam, Cambridge, UK, | ab3259 |
FAS | Abcam, Cambridge, UK, | ab82419 |
HAMP1 | Abcam, Cambridge, UK, | ab190775 |
IL6R | Abcam, Cambridge, UK, | ab271042 |
JAK2 | Cell signaling, Danvers, MA, USA | 3230s |
STAT3 | Cell signaling, Danvers, MA, USA | 9139s |
SMAD4 | Abcam, Cambridge, UK, | ab40759 |
BCR | Abcam, Cambridge, UK, | ab222406 |
β-actin | GENETEX, Irvine, CA, USA | GTX109639 |
Gene | Primer |
---|---|
β-ACTIN | Forward: 5′-AGG-AAG-GAA-GGC-TGG-AAG-AG-3′ Reverse: 5′-AGA-GCT-ACG-AGC-TGC-CTG-AC-3′ |
HAMP1 | Forward: 5′-CTG-ACC-AGT-GGC-TCT-GTT-TTC-C-3′ Reverse: 5′-AAG-TGG-GTG-TCT-CGC-CTC-CTT-C-3′ |
ACC1 | Forward: 5′-TTC-ACT-CCA-CCT-TGT-CAG-CGG-A-3′ Reverse: 5′-GTC-AGA-GAA-GCA-GCC-CAT-CAC-T-3′ |
CYP2E1 | Forward: 5′-GAA-AAC-GAG-TGT-GTG-CTG-GA-3′ Reverse: 5′-CGG-GGA-ATG-ACA-CAG-AGT-TT-3′ |
GSTM1 | Forward: 5′-TGA-TGT-CCT-TGA-CCT-CCA-CCG-T-3′ Reverse: 5′-GCT-GGA-CTT-CAT-GTA-GGC-AGA-G-3′ |
GPX1 | Forward: 5′-GTG-CTC-GGC-TTC-CCG-TGC-AAC-3′ Reverse: 5′-CTC-GAA-GAG-CAT-GAA-GTT-GGG-C-3′ |
SOD1 | Forward: 5′-CTC-ACT-CTC-AGG-AGA-CCA-TTG-C-3′ Reverse: 5′-CCA-CAA-GCC-AAA-CGA-CTT-CCA-G-3′ |
CAT | Forward: 5′-GTG-CGG-AGA-TTC-AAC-ACT-GCC-A-3′ Reverse: 5′-CGG-CAA-TGT-TCT-CAC-ACA-GAC-G-3′ |
SREBP1 | Forward: 5′-TTC-GCT-TTC-TGC-AAC-ACA-GC-3′ Reverse: 5′-AAG-GAG-ACG-AGC-ACC-AAC-AG-3′ |
FASN | Forward: 5′-ATA-AGC-CCT-GTC-CTC-CAG-GT-3′ Reverse: 5′-TGG-AAG-AAA-AAT-GGG-CTT-TG-3′ |
FN1 | Forward: 5′-CGG-TGG-CTG-TCA-GTC-AAA-G-3′ Reverse: 5′-AAA-CCT-CGG-CTT-CCT-CCA-TAA-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.Y.; Oh, J.H.; Kim, H.S.; Jun, D.W. Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids. Antioxidants 2025, 14, 943. https://doi.org/10.3390/antiox14080943
Kim HY, Oh JH, Kim HS, Jun DW. Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids. Antioxidants. 2025; 14(8):943. https://doi.org/10.3390/antiox14080943
Chicago/Turabian StyleKim, Hye Young, Ju Hee Oh, Hyun Sung Kim, and Dae Won Jun. 2025. "Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids" Antioxidants 14, no. 8: 943. https://doi.org/10.3390/antiox14080943
APA StyleKim, H. Y., Oh, J. H., Kim, H. S., & Jun, D. W. (2025). Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids. Antioxidants, 14(8), 943. https://doi.org/10.3390/antiox14080943