Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (870)

Search Parameters:
Keywords = extremity reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 8516 KiB  
Article
Study on Stress Monitoring and Risk Early Warning of Flexible Mattress Deployment in Deep-Water Sharp Bend Reaches
by Chu Zhang, Ping Li, Zebang Cui, Kai Wu, Tianyu Chen, Zhenjia Tian, Jianxin Hao and Sudong Xu
Water 2025, 17(15), 2333; https://doi.org/10.3390/w17152333 - 6 Aug 2025
Abstract
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 [...] Read more.
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 m/s—the risk of structural failures such as displacement, flipping, or tearing of the mattress becomes significant. To improve construction safety and stability, the study integrates numerical modeling and on-site strain monitoring to analyze the mechanical response of flexible mattresses during deployment. A three-dimensional finite element model based on the catenary theory was developed to simulate stress distributions under varying flow velocities and angles, revealing stress concentrations at the mattress’s upper edge and reinforcement junctions. Concurrently, a real-time monitoring system using high-precision strain sensors was deployed on critical shipboard components, with collected data analyzed through a remote IoT platform. The results demonstrate strong correlations between mattress strain, flow velocity, and water depth, enabling the identification of high-risk operational thresholds. The proposed monitoring and early-warning framework offers a practical solution for managing construction risks in extreme riverine environments and contributes to the advancement of intelligent construction management for underwater revetment works. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

19 pages, 5404 KiB  
Article
Combined Effects of Flood Disturbances and Nutrient Enrichment Prompt Aquatic Vegetation Expansion: Sediment Evidence from a Floodplain Lake
by Zhuoxuan Gu, Yan Li, Jingxiang Li, Zixin Liu, Yingying Chen, Yajing Wang, Erik Jeppesen and Xuhui Dong
Plants 2025, 14(15), 2381; https://doi.org/10.3390/plants14152381 - 2 Aug 2025
Viewed by 271
Abstract
Aquatic macrophytes are a vital component of lake ecosystems, profoundly influencing ecosystem structure and function. Under future scenarios of more frequent extreme floods and intensified lake eutrophication, aquatic macrophytes will face increasing challenges. Therefore, understanding aquatic macrophyte responses to flood disturbances and nutrient [...] Read more.
Aquatic macrophytes are a vital component of lake ecosystems, profoundly influencing ecosystem structure and function. Under future scenarios of more frequent extreme floods and intensified lake eutrophication, aquatic macrophytes will face increasing challenges. Therefore, understanding aquatic macrophyte responses to flood disturbances and nutrient enrichment is crucial for predicting future vegetation dynamics in lake ecosystems. This study focuses on Huangmaotan Lake, a Yangtze River floodplain lake, where we reconstructed 200-year successional trajectories of macrophyte communities and their driving mechanisms. With a multiproxy approach we analyzed a well-dated sediment core incorporating plant macrofossils, grain size, nutrient elements, heavy metals, and historical flood records from the watershed. The results demonstrate a significant shift in the macrophyte community, from species that existed before 1914 to species that existed by 2020. Unlike the widespread macrophyte degradation seen in most regional lakes, this lake has maintained clear-water plant dominance and experienced continuous vegetation expansion over the past 50 years. We attribute this to the interrelated effects of floods and the enrichment of ecosystems with nutrients. Specifically, our findings suggest that nutrient enrichment can mitigate the stress effects of floods on aquatic macrophytes, while flood disturbances help reduce excess nutrient concentrations in the water column. These findings offer applicable insights for aquatic vegetation restoration in the Yangtze River floodplain and other comparable lake systems worldwide. Full article
(This article belongs to the Special Issue Aquatic Plants and Wetland)
Show Figures

Figure 1

24 pages, 1508 KiB  
Article
Genomic Prediction of Adaptation in Common Bean (Phaseolus vulgaris L.) × Tepary Bean (P. acutifolius A. Gray) Hybrids
by Felipe López-Hernández, Diego F. Villanueva-Mejía, Adriana Patricia Tofiño-Rivera and Andrés J. Cortés
Int. J. Mol. Sci. 2025, 26(15), 7370; https://doi.org/10.3390/ijms26157370 - 30 Jul 2025
Viewed by 280
Abstract
Climate change is jeopardizing global food security, with at least 713 million people facing hunger. To face this challenge, legumes as common beans could offer a nature-based solution, sourcing nutrients and dietary fiber, especially for rural communities in Latin America and Africa. However, [...] Read more.
Climate change is jeopardizing global food security, with at least 713 million people facing hunger. To face this challenge, legumes as common beans could offer a nature-based solution, sourcing nutrients and dietary fiber, especially for rural communities in Latin America and Africa. However, since common beans are generally heat and drought susceptible, it is imperative to speed up their molecular introgressive adaptive breeding so that they can be cultivated in regions affected by extreme weather. Therefore, this study aimed to couple an advanced panel of common bean (Phaseolus vulgaris L.) × tolerant Tepary bean (P. acutifolius A. Gray) interspecific lines with Bayesian regression algorithms to forecast adaptation to the humid and dry sub-regions at the Caribbean coast of Colombia, where the common bean typically exhibits maladaptation to extreme heat waves. A total of 87 advanced lines with hybrid ancestries were successfully bred, surpassing the interspecific incompatibilities. This hybrid panel was genotyped by sequencing (GBS), leading to the discovery of 15,645 single-nucleotide polymorphism (SNP) markers. Three yield components (yield per plant, and number of seeds and pods) and two biomass variables (vegetative and seed biomass) were recorded for each genotype and inputted in several Bayesian regression models to identify the top genotypes with the best genetic breeding values across three localities on the Colombian coast. We comparatively analyzed several regression approaches, and the model with the best performance for all traits and localities was BayesC. Also, we compared the utilization of all markers and only those determined as associated by a priori genome-wide association studies (GWAS) models. Better prediction ability with the complete SNP set was indicative of missing heritability as part of GWAS reconstructions. Furthermore, optimal SNP sets per trait and locality were determined as per the top 500 most explicative markers according to their β regression effects. These 500 SNPs, on average, overlapped in 5.24% across localities, which reinforced the locality-dependent nature of polygenic adaptation. Finally, we retrieved the genomic estimated breeding values (GEBVs) and selected the top 10 genotypes for each trait and locality as part of a recommendation scheme targeting narrow adaption in the Caribbean. After validation in field conditions and for screening stability, candidate genotypes and SNPs may be used in further introgressive breeding cycles for adaptation. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
Show Figures

Figure 1

26 pages, 8762 KiB  
Article
Clustered Rainfall-Induced Landslides in Jiangwan Town, Guangdong, China During April 2024: Characteristics and Controlling Factors
by Ruizeng Wei, Yunfeng Shan, Lei Wang, Dawei Peng, Ge Qu, Jiasong Qin, Guoqing He, Luzhen Fan and Weile Li
Remote Sens. 2025, 17(15), 2635; https://doi.org/10.3390/rs17152635 - 29 Jul 2025
Viewed by 227
Abstract
On 20 April 2024, an extreme rainfall event occurred in Jiangwan Town Shaoguan City, Guangdong Province, China, where a historic 24 h precipitation of 206 mm was recorded. This triggered extensive landslides that destroyed residential buildings, severed roads, and drew significant societal attention. [...] Read more.
On 20 April 2024, an extreme rainfall event occurred in Jiangwan Town Shaoguan City, Guangdong Province, China, where a historic 24 h precipitation of 206 mm was recorded. This triggered extensive landslides that destroyed residential buildings, severed roads, and drew significant societal attention. Rapid acquisition of landslide inventories, distribution patterns, and key controlling factors is critical for post-disaster emergency response and reconstruction. Based on high-resolution Planet satellite imagery, landslide areas in Jiangwan Town were automatically extracted using the Normalized Difference Vegetation Index (NDVI) differential method, and a detailed landslide inventory was compiled. Combined with terrain, rainfall, and geological environmental factors, the spatial distribution and causes of landslides were analyzed. Results indicate that the extreme rainfall induced 1426 landslides with a total area of 4.56 km2, predominantly small-to-medium scale. Landslides exhibited pronounced clustering and linear distribution along river valleys in a NE–SW orientation. Spatial analysis revealed concentrations on slopes between 200–300 m elevation with gradients of 20–30°. Four machine learning models—Logistic Regression, Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—were employed to assess landslide susceptibility mapping (LSM) accuracy. RF and XGBoost demonstrated superior performance, identifying high-susceptibility zones primarily on valley-side slopes in Jiangwan Town. Shapley Additive Explanations (SHAP) value analysis quantified key drivers, highlighting elevation, rainfall intensity, profile curvature, and topographic wetness index as dominant controlling factors. This study provides an effective methodology and data support for rapid rainfall-induced landslide identification and deep learning-based susceptibility assessment. Full article
(This article belongs to the Special Issue Study on Hydrological Hazards Based on Multi-Source Remote Sensing)
Show Figures

Figure 1

34 pages, 13488 KiB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 212
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

8 pages, 2843 KiB  
Proceeding Paper
Coastal Erosion in Tsunami and Storm Surges-Exposed Areas in Licantén, Maule, Chile: Case Study Using Remote Sensing and In-Situ Data
by Joaquín Valenzuela-Jara, Idania Briceño de Urbaneja, Waldo Pérez-Martínez and Isidora Díaz-Quijada
Eng. Proc. 2025, 94(1), 10; https://doi.org/10.3390/engproc2025094010 - 24 Jul 2025
Viewed by 312
Abstract
This study examines urban expansion, coastal erosion, and extreme wave events in Licantén, Maule Region, following the 2010 earthquake and tsunami. Using multi-source data—Landsat and Sentinel-2 imagery, ERA5 reanalysis, high-resolution Maxar images, UAV surveys, and the CoastSat algorithm—we detected significant urban growth in [...] Read more.
This study examines urban expansion, coastal erosion, and extreme wave events in Licantén, Maule Region, following the 2010 earthquake and tsunami. Using multi-source data—Landsat and Sentinel-2 imagery, ERA5 reanalysis, high-resolution Maxar images, UAV surveys, and the CoastSat algorithm—we detected significant urban growth in tsunami-prone areas: Iloca (36.88%), La Pesca (33.34%), and Pichibudi (20.78%). A 39-year shoreline reconstruction (1985–2024) revealed notable changes in erosion rates and shoreline dynamics using DSAS v6.0, influenced by tides, storm surges, and wave action modeled in R to quantify storm surge events over time. Results underscore the lack of urban planning in hazard-exposed areas and the urgent need for resilient coastal management under climate change. Full article
Show Figures

Figure 1

26 pages, 3959 KiB  
Article
Fault Diagnosis Method of Planetary Gearboxes Based on Multi-Scale Wavelet Packet Energy Entropy and Extreme Learning Machine
by Rui Meng, Junpeng Zhang, Ming Chen and Liangliang Chen
Entropy 2025, 27(8), 782; https://doi.org/10.3390/e27080782 - 24 Jul 2025
Viewed by 251
Abstract
As critical components of planetary gearboxes, gears directly affect mechanical system reliability when faults occur. Traditional feature extraction methods exhibit limitations in accurately identifying fault characteristics and achieving satisfactory diagnostic accuracy. This research is concerned with the gear of the planetary gearbox and [...] Read more.
As critical components of planetary gearboxes, gears directly affect mechanical system reliability when faults occur. Traditional feature extraction methods exhibit limitations in accurately identifying fault characteristics and achieving satisfactory diagnostic accuracy. This research is concerned with the gear of the planetary gearbox and proposes a new approach termed multi-scale wavelet packet energy entropy (MSWPEE) for extracting gear fault features. The signal is split into sub-signals at three different scale factors. Following decomposition and reconstruction using the wavelet packet algorithm, the wavelet packet energy entropy for each node is computed under different operating conditions. A feature vector is formed by combining the wavelet packet energy entropy at different scale factors. Furthermore, this study proposes a method combining multi-scale wavelet packet energy entropy with extreme learning machine (MSWPEE-ELM). The experimental findings validate the precision of this approach in extracting features and diagnosing faults in sun gears with varying degrees of tooth breakage severity. Full article
Show Figures

Figure 1

34 pages, 1247 KiB  
Article
SBCS-Net: Sparse Bayesian and Deep Learning Framework for Compressed Sensing in Sensor Networks
by Xianwei Gao, Xiang Yao, Bi Chen and Honghao Zhang
Sensors 2025, 25(15), 4559; https://doi.org/10.3390/s25154559 - 23 Jul 2025
Viewed by 245
Abstract
Compressed sensing is widely used in modern resource-constrained sensor networks. However, achieving high-quality and robust signal reconstruction under low sampling rates and noise interference remains challenging. Traditional CS methods have limited performance, so many deep learning-based CS models have been proposed. Although these [...] Read more.
Compressed sensing is widely used in modern resource-constrained sensor networks. However, achieving high-quality and robust signal reconstruction under low sampling rates and noise interference remains challenging. Traditional CS methods have limited performance, so many deep learning-based CS models have been proposed. Although these models show strong fitting capabilities, they often lack the ability to handle complex noise in sensor networks, which affects their performance stability. To address these challenges, this paper proposes SBCS-Net. This framework innovatively expands the iterative process of sparse Bayesian compressed sensing using convolutional neural networks and Transformer. The core of SBCS-Net is to optimize key SBL parameters through end-to-end learning. This can adaptively improve signal sparsity and probabilistically process measurement noise, while fully leveraging the powerful feature extraction and global context modeling capabilities of deep learning modules. To comprehensively evaluate its performance, we conduct systematic experiments on multiple public benchmark datasets. These studies include comparisons with various advanced and traditional compressed sensing methods, comprehensive noise robustness tests, ablation studies of key components, computational complexity analysis, and rigorous statistical significance tests. Extensive experimental results consistently show that SBCS-Net outperforms many mainstream methods in both reconstruction accuracy and visual quality. In particular, it exhibits excellent robustness under challenging conditions such as extremely low sampling rates and strong noise. Therefore, SBCS-Net provides an effective solution for high-fidelity, robust signal recovery in sensor networks and related fields. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

24 pages, 743 KiB  
Review
Surgical Treatment, Rehabilitative Approaches and Functioning Assessment for Patients Affected by Breast Cancer-Related Lymphedema: A Comprehensive Review
by Paola Ciamarra, Alessandro de Sire, Dicle Aksoyler, Giovanni Paolino, Carmen Cantisani, Francesco Sabbatino, Luigi Schiavo, Renato Cuocolo, Carlo Pietro Campobasso and Luigi Losco
Medicina 2025, 61(8), 1327; https://doi.org/10.3390/medicina61081327 - 23 Jul 2025
Viewed by 432
Abstract
Introduction: Breast cancer therapy is a common cause of lymphedema. The accumulation of protein-rich fluid in the affected extremity leads to a progressive path—swelling, inflammation, and fibrosis—namely, irreversible changes. Methods: A scientific literature analysis was performed on PubMed/Medline, Scopus, Web of Science (WoS), [...] Read more.
Introduction: Breast cancer therapy is a common cause of lymphedema. The accumulation of protein-rich fluid in the affected extremity leads to a progressive path—swelling, inflammation, and fibrosis—namely, irreversible changes. Methods: A scientific literature analysis was performed on PubMed/Medline, Scopus, Web of Science (WoS), the Cochrane Central Register of Controlled Trials (CENTRAL), and the Physiotherapy Evidence Database (PEDro) from inception until 30 June 2024. Results: Breast cancer-related lymphedema (BCRL) is indeed an important healthcare burden both due to the significant patient-related outcomes and the overall social impact of this condition. Even though lymphedema is not life-threatening, the literature underlined harmful consequences in terms of pain, infections, distress, and functional impairment with a subsequent and relevant decrease in quality of life. Currently, since there is no cure, the therapeutic approach to BCRL aims to slow disease progression and prevent related complications. A comprehensive overview of postmastectomy lymphedema is offered. First, the pathophysiology and risk factors associated with BCRL were detailed; then, diagnosis modalities were depicted highlighting the importance of early detection. According to non-negligible changes in patients’ everyday lives, novel criteria for patients’ functioning assessment are reported. Regarding the treatment modalities, a wide array of conservative and surgical methods both physiologic and ablative were analyzed with their own outcomes and downsides. Conclusions: Combined strategies and multidisciplinary protocols for BCRL, including specialized management by reconstructive surgeons and physiatrists, along with healthy lifestyle programs and personalized nutritional counseling, should be compulsory to address patients’ demands and optimize the treatment of this harmful and non-curable condition. The Lymphedema-specific ICF Core Sets should be included more often in the overall outcome evaluation with the aim of obtaining a comprehensive appraisal of the treatment strategies that take into account the patient’s subjective score. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

10 pages, 1668 KiB  
Case Report
Novel Surgical Reconstruction Using a 3D Printed Cement Mold Following Resection of a Rare Case of Proximal Ulna Osteosarcoma: A Case Report and Description of the Surgical Technique
by Abdulrahman Alaseem, Hisham A. Alsanawi, Waleed Albishi, Ibrahim Alshaygy, Sara Alhomaidhi, Mohammad K. Almashouq, Abdulaziz M. AlSudairi, Yazeed A. Alsehibani and Abdulaziz O. Almuhanna
Curr. Oncol. 2025, 32(8), 411; https://doi.org/10.3390/curroncol32080411 - 22 Jul 2025
Viewed by 220
Abstract
Osteosarcoma is one of the most common primary bone malignancies, typically occurring around the knee. However, the forearm is a rare site, with tumors in the proximal ulna being extremely uncommon. Primary sarcoma in this location presents a surgical challenge due to the [...] Read more.
Osteosarcoma is one of the most common primary bone malignancies, typically occurring around the knee. However, the forearm is a rare site, with tumors in the proximal ulna being extremely uncommon. Primary sarcoma in this location presents a surgical challenge due to the complex anatomy and limited reconstructive options. We report a rare case of a 19-year-old female with non-metastatic, high-grade giant cell-rich osteosarcoma involving the right proximal ulna. To our knowledge, this is only the second reported adult case of this histological subtype in this location. The patient was treated at a specialized oncology center with neoadjuvant and adjuvant chemotherapy, along with wide intra-articular resection for local tumor control. Reconstruction was achieved using a novel, customized 3D-printed articulating cement spacer mold with plate osteosynthesis. Artificial elbow ligamentous reconstruction was performed using FiberTape and FiberWire sutures passed through drill holes, and the triceps tendon was reattached to the cement mold using an endobutton. This cost-effective and personalized surgical approach allowed successful joint reconstruction while maintaining elbow stability and function. Our case highlights a feasible reconstructive option for rare and anatomically challenging osteosarcoma presentations, contributing to the limited literature on proximal ulna giant cell-rich osteosarcoma. Full article
(This article belongs to the Section Bone and Soft Tissue Oncology)
Show Figures

Figure 1

19 pages, 7129 KiB  
Article
Dendroclimatic Reconstruction of Seasonal Precipitation from Two Endangered Spruce Species in Northeastern Mexico
by Christian Wehenkel, Oscar A. Díaz-Carrillo and Jose Villanueva-Díaz
Atmosphere 2025, 16(7), 863; https://doi.org/10.3390/atmos16070863 - 15 Jul 2025
Viewed by 311
Abstract
Water availability is a major constraint on socioeconomic development in northeastern Mexico, highlighting the need for effective water resource planning that accounts for the variability and extremes of precipitation. In this study, seasonal precipitation reconstructions were developed using tree-ring chronologies from spruce species [...] Read more.
Water availability is a major constraint on socioeconomic development in northeastern Mexico, highlighting the need for effective water resource planning that accounts for the variability and extremes of precipitation. In this study, seasonal precipitation reconstructions were developed using tree-ring chronologies from spruce species (Picea spp.). A representative chronology for Picea mexicana Martínez was developed from two populations and spans the period 1786–2020, while a chronology for Picea martinezii T.F. Patterson was established from three populations covering 1746–2020. Both species exhibited significant positive correlations with January–May precipitation (r = 0.65 and 0.71, respectively; p < 0.01) and negative correlations with maximum temperature over the same period (r = −0.52 and −0.59, respectively). Two January–May precipitation reconstructions were produced for periods with adequate sample depth (EPS > 0.85): 1851–2020 for P. mexicana and 1821–2020 for P. martinezii. Both reconstructions revealed pronounced interannual variability, with recurrent droughts and persistently dry conditions, particularly evident in the P. mexicana series. Spatial correlation analyses indicated a historical link between reconstructed precipitation and the El Niño–Southern Oscillation (ENSO). These results highlight the value of spruce species for dendroclimatic reconstruction and their sensitivity to precipitation variability, especially as rising maximum temperatures may compromise their persistence in the Sierra Madre Oriental. Full article
(This article belongs to the Special Issue Forest Ecosystems in a Changing Climate)
Show Figures

Figure 1

38 pages, 4803 KiB  
Review
Charge Density Waves in Solids—From First Concepts to Modern Insights
by Danko Radić
Symmetry 2025, 17(7), 1135; https://doi.org/10.3390/sym17071135 - 15 Jul 2025
Viewed by 493
Abstract
We present a brief overview of the field of charge density waves (CDW) in condensed systems with focus set to the underlying mechanisms behind the CDW ground state. Our intention in this short review is not to count all related facts from the [...] Read more.
We present a brief overview of the field of charge density waves (CDW) in condensed systems with focus set to the underlying mechanisms behind the CDW ground state. Our intention in this short review is not to count all related facts from the vast volume of literature about this decades-old and still developing field, but rather to pinpoint the most important, mostly theoretical ones, presenting the development of the field. Starting from the “early days”, mainly based on weakly coupled, chain-like quasi-1D systems and Peierls instability, in which the Fermi surface nesting has been the predominant and practically paradigmatic mechanism of the CDW ground state stabilisation, we track the change in paradigms while entering the field of layered quasi-2D systems, with Fermi surface far away from the nesting regime, in which rather strong, essentially momentum-dependent interactions and particular reconstructions of the Fermi surface become essential. Examples of real quasi-1D materials, such as organic and inorganic conductors like Bechgaard salts or transition metal trichalcogenides and bronzes, in which experiment and theory have been extremely successful in providing detailed understanding, are contrasted to layered quasi-2D materials, such as high-Tc superconducting cuprates, intercalated graphite compounds or transition metal dichalcogenides, for which the theory explaining an onset of the CDWs constitutes a frontier of this fast-evolving field, strongly boosted by development of modern ab initio calculation methods. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

29 pages, 8743 KiB  
Article
Coupled Simulation of the Water–Food–Energy–Ecology System Under Extreme Drought Events: A Case Study of Beijing–Tianjin–Hebei, China
by Huanyu Chang, Naren Fang, Yongqiang Cao, Jiaqi Yao and Zhen Hong
Water 2025, 17(14), 2103; https://doi.org/10.3390/w17142103 - 15 Jul 2025
Viewed by 411
Abstract
The Beijing–Tianjin–Hebei (BTH) region is one of China’s most water-scarce yet economically vital areas, facing increasing challenges due to climate change and intensive human activities. This study develops an integrated Water–Food–Energy–Ecology (WFEE) simulation and regulation model to assess the system’s stability under coordinated [...] Read more.
The Beijing–Tianjin–Hebei (BTH) region is one of China’s most water-scarce yet economically vital areas, facing increasing challenges due to climate change and intensive human activities. This study develops an integrated Water–Food–Energy–Ecology (WFEE) simulation and regulation model to assess the system’s stability under coordinated development scenarios and extreme climate stress. A 500-year precipitation series was reconstructed using historical drought and flood records combined with wavelet analysis and machine learning models (Random Forest and Support Vector Regression). Results show that during the reconstructed historical megadrought (1633–1647), with average precipitation anomalies reaching −20% to −27%, leading to a regional water shortage rate of 16.9%, food self-sufficiency as low as 44.7%, and a critical reduction in ecological river discharge. Under future recommended scenario with enhanced water conservation, reclaimed water reuse, and expanded inter-basin transfers, the region could maintain a water shortage rate of 2.6%, achieve 69.3% food self-sufficiency, and support ecological water demand. However, long-term water resource degradation could still reduce food self-sufficiency to 62.9% and ecological outflows by 20%. The findings provide insights into adaptive water management, highlight the vulnerability of highly coupled systems to prolonged droughts, and support regional policy decisions on resilience-oriented water infrastructure planning. Full article
(This article belongs to the Special Issue Advanced Perspectives on the Water–Energy–Food Nexus)
Show Figures

Figure 1

27 pages, 8538 KiB  
Article
Optimizing Hyperspectral Desertification Monitoring Through Metaheuristic-Enhanced Wavelet Packet Noise Reduction and Feature Band Selection
by Weichao Liu, Jiapeng Xiao, Rongyuan Liu, Yan Liu, Yunzhu Tao, Tian Zhang, Fuping Gan, Ping Zhou, Yuanbiao Dong and Qiang Zhou
Remote Sens. 2025, 17(14), 2444; https://doi.org/10.3390/rs17142444 - 14 Jul 2025
Viewed by 241
Abstract
Land desertification represents a significant and sensitive global ecological issue. In the Inner Mongolia region of China, soil desertification and salinization are widespread, resulting from the combined effects of extreme drought conditions and human activities. Using Gaofen 5B AHSI imagery as our data [...] Read more.
Land desertification represents a significant and sensitive global ecological issue. In the Inner Mongolia region of China, soil desertification and salinization are widespread, resulting from the combined effects of extreme drought conditions and human activities. Using Gaofen 5B AHSI imagery as our data source, we collected spectral data for seven distinct land cover types: lush vegetation, yellow sand, white sand, saline soil, saline shell, saline soil with saline vegetation, and sandy soil. We applied Particle Swarm Optimization (PSO) to fine-tune the Wavelet Packet (WP) decomposition levels, thresholds, and wavelet basis function, ensuring optimal spectral decomposition and reconstruction. Subsequently, PSO was deployed to optimize key hyperparameters of the Random Forest algorithm and compare its performance with the ResNet-Transformer model. Our results indicate that PSO effectively automates the search for optimal WP decomposition parameters, preserving essential spectral information while efficiently reducing high-frequency spectral noise. The Genetic Algorithm (GA) was also found to be effective in extracting feature bands relevant to land desertification, which enhances the classification accuracy of the model. Among all the models, integrating wavelet packet denoising, genetic algorithm feature selection, the first-order differential (FD), and the hybrid architecture of the ResNet-Transformer, the WP-GA-FD-ResNet-Transformer model achieved the highest accuracy in extracting soil sandification and salinization, with Kappa coefficients and validation set accuracies of 0.9746 and 97.82%, respectively. This study contributes to the field by advancing hyperspectral desertification monitoring techniques and suggests that the approach could be valuable for broader ecological conservation and land management efforts. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

23 pages, 5245 KiB  
Article
Machine Learning Reconstruction of Wyrtki Jet Seasonal Variability in the Equatorial Indian Ocean
by Dandan Li, Shaojun Zheng, Chenyu Zheng, Lingling Xie and Li Yan
Algorithms 2025, 18(7), 431; https://doi.org/10.3390/a18070431 - 14 Jul 2025
Viewed by 276
Abstract
The Wyrtki Jet (WJ), a pivotal surface circulation system in the equatorial Indian Ocean, exerts significant regulatory control over regional climate dynamics through its intense eastward transport characteristics, which modulate water mass exchange, thermohaline balance, and cross-basin energy transfer. To address the scarcity [...] Read more.
The Wyrtki Jet (WJ), a pivotal surface circulation system in the equatorial Indian Ocean, exerts significant regulatory control over regional climate dynamics through its intense eastward transport characteristics, which modulate water mass exchange, thermohaline balance, and cross-basin energy transfer. To address the scarcity of in situ observational data, this study developed a satellite remote sensing-driven multi-parameter coupled model and reconstructed the WJ’s seasonal variations using the XGBoost machine learning algorithm. The results revealed that wind stress components, sea surface temperature, and wind stress curl serve as the primary drivers of its seasonal dynamics. The XGBoost model demonstrated superior performance in reconstructing WJ’s seasonal variations, achieving coefficients of determination (R2) exceeding 0.97 across all seasons and maintaining root mean square errors (RMSE) below 0.2 m/s across all seasons. The reconstructed currents exhibited strong consistency with the Ocean Surface Current Analysis Real-time (OSCAR) dataset, showing errors below 0.05 m/s in spring and autumn and under 0.1 m/s in summer and winter. The proposed multi-feature integrated modeling framework delivers a high spatiotemporal resolution analytical tool for tropical Indian Ocean circulation dynamics research, while simultaneously establishing critical data infrastructure to decode monsoon current coupling mechanisms, advancing early warning systems for extreme climatic events, and optimizing regional marine resource governance. Full article
Show Figures

Figure 1

Back to TopTop