Coupled Simulation of the Water–Food–Energy–Ecology System Under Extreme Drought Events: A Case Study of Beijing–Tianjin–Hebei, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Historical Drought Reconstruction Method
2.2.1. Historical Drought and Flood Data
2.2.2. Precipitation Periodicity Analysis
2.2.3. Machine Learning Model Development and Evaluation
2.2.4. Historical Precipitation Series Reconstruction Method
2.3. WFEE Simulation and Regulation Model
2.3.1. Natural and Societal Water Cycle Simulation
2.3.2. Socioeconomic Water Demand Forecasting Module
2.3.3. Food Production Module
2.3.4. Energy Consumption Module
2.4. Study Data and Scenario Design
3. Results and Discussion
3.1. Historical Extreme Drought Reenactment Results
3.1.1. Historical Drought Patterns in the BTH Region
3.1.2. Precipitation Periodicity Characteristics
3.1.3. Construction and Evaluation of Machine Learning Models
3.1.4. Historical Precipitation Series Reconstruction Result
3.2. Extreme Climate Events and the Security of the WFEE System in BTH
3.2.1. Coupled Simulation Results Under the Future Recommended Scenario
3.2.2. Risk Assessment Under Historical Extreme Drought Reenactment
3.2.3. Risk Assessment of Drought and Future Water Resource Degradation in Inter-Basin Transfer Source Area
3.3. Limitations and Future Research
3.4. Potential Impacts of Expanded Inter-Basin Transfers Under the SNWDP
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chang, Y.; Li, G.J.; Yao, Z.; Zhang, L.; Chen, X. Quantifying the Water-Energy-Food Nexus: Current Status and Trends. Energies 2016, 9, 65. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Q.; Singh, V.P.; Li, C.; Wu, J. Identification of Degradation Areas of Ecological Environment and Degradation Intensity Assessment in the Yellow River Basin. Front. Earth Sci. 2022, 10, 922013. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, L.; Yan, H.; Wang, R.; Liu, Y. Optimization of the Ecological Network Structure Based on Scenario Simulation and Trade-Offs/Synergies among Ecosystem Services in Nanping. Remote Sens. 2022, 14, 5245. [Google Scholar] [CrossRef]
- Lü, D.; Lü, Y. Spatiotemporal Variability of Water Ecosystem Services Can Be Effectively Quantified by a Composite Indicator Approach. Ecol. Indic. 2021, 130, 108061. [Google Scholar] [CrossRef]
- Qi, X.; Qian, S.; Chen, K.; Li, J.; Wu, X.; Wang, Z.; Jiang, J. Dependence of daily precipitation and wind speed over coastal areas: Evidence from China’s coastline. Hydrol. Res. 2023, 54, 491–507. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, Y.; Son, S.; Luo, J.; Oh, S.; Wang, Y. A deep-learning ensemble method to detect atmospheric rivers and its application to projected changes in precipitation regime. J. Geophys. Res. Atmos. 2023, 128, e2022JD037041. [Google Scholar] [CrossRef]
- Du, C.; Bai, X.; Li, Y.; Tan, Q.; Zhao, C.; Luo, G.; Li, M. The restoration of karst rocky desertification has enhanced the carbon sequestration capacity of the ecosystem in southern China. Glob. Planet. Chang. 2024, 243, 104602. [Google Scholar] [CrossRef]
- Liu, P.W.; Famiglietti, J.S.; Purdy, A.J.; Reager, J.T.; Yan, X. Groundwater Depletion in California’s Central Valley Accelerates During Megadrought. Nat. Commun. 2022, 13, 7825. [Google Scholar] [CrossRef]
- Bostic, D.; Mendez-Barrientos, L.; Pauloo, R.; Fogg, G.E.; Harter, T. Thousands of Domestic and Public Supply Wells Face Failure Despite Groundwater Sustainability Reform in California’s Central Valley. Sci. Rep. 2023, 13, 14797. [Google Scholar] [CrossRef]
- Sun, C.; Hao, S. Research on the Competitive and Synergistic Evolution of the Water-Energy-Food System in China. J. Clean. Prod. 2022, 365, 132743. [Google Scholar] [CrossRef]
- Zheng, D.; An, Z.; Yan, C.; Li, J.; Huang, L. Spatial-Temporal Characteristics and Influencing Factors of Food Production Efficiency Based on WEF Nexus in China. J. Clean. Prod. 2022, 330, 129921. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, Y. Water-Energy-Food Nexus and Its Influencing Factors in China. South North Water Transf. Water Sci. Technol. 2022, 20, 243–252. [Google Scholar]
- Li, H.; Wang, H.; Zhao, R.; Wu, J.; Zhang, M. Estimating the Symbiosis Risk Probability of Water-Energy-Food Using Copula Function. Trans. Chin. Soc. Agric. Eng. 2021, 37, 332–340. [Google Scholar]
- Zhang, X.; Ren, L. Simulating and Assessing the Effects of Seasonal Fallow Schemes on the Water-Food-Energy Nexus in a Shallow Groundwater-Fed Plain of the Haihe River Basin of China. J. Hydrol. 2021, 595, 125992. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Hao, Y.; Zhou, Y.; Chen, D. System Dynamics Modeling of Food-Energy-Water Resource Security in a Megacity of China: Insights from the Case of Beijing. J. Clean. Prod. 2022, 355, 131773. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Wang, Y.; Guo, L. Supply-Demand Risk Assessment and Multi-Scenario Simulation of Regional Water-Energy-Food Nexus: A Case Study of the Beijing-Tianjin-Hebei Region. Resour. Conserv. Recycl. 2021, 174, 105799. [Google Scholar] [CrossRef]
- Wen, C.; Dong, W.; Zhang, Q.; Zhao, Y.; Li, X. A System Dynamics Model to Simulate the Water-Energy-Food Nexus of Resource-Based Regions: A Case Study in Daqing City, China. Sci. Total Environ. 2022, 806, 150497. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, Y.; Liu, B. Physics-based predictions of the month-by-month summer western North Pacific anomalous anticyclone. J. Clim. 2025, 38, 2187–2203. [Google Scholar] [CrossRef]
- Nazir, J.; Ali, M.; Sarwar, A.; Khan, S.; Rehman, K.; Fahim, B.; Iqbal, B. Delineation and validation of GIS-based groundwater potential zones under arid to semi-arid environment using multi-influence-factors approach. Geol. Ecol. Landsc. 2024. ahead of print. [Google Scholar] [CrossRef]
- Yue, Q.; Guo, P. Managing Agricultural Water-Energy-Food-Environment Nexus Considering Water Footprint and Carbon Footprint under Uncertainty. Agric. Water Manag. 2021, 252, 106899. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.P.; Huang, G.H.; Zeng, X. Planning Water-Food-Ecology Nexus System under Uncertainty: Tradeoffs and Synergies in Central Asia. Agric. Water Manag. 2022, 266, 107549. [Google Scholar] [CrossRef]
- Rezaei Kalvani, S.; Celico, F. The Water–Energy–Food Nexus in European Countries: A Review and Future Perspectives. Sustainability 2023, 15, 4960. [Google Scholar] [CrossRef]
- Chang, H.; Zhao, Y.; Cao, Y.; Ren, H.; Yao, J.; Liu, R.; Li, W. Evaluating Coupling Security and Joint Risks in Northeast China Agricultural Systems Based on Copula Functions and the Rel–Cor–Res Framework. Agriculture 2025, 15, 1338. [Google Scholar] [CrossRef]
- Chang, H.; Zhang, B.; Han, J.; Zhao, Y.; Cao, Y.; Yao, J.; Shi, L. Evaluation of the Coupling Coordination and Sustainable Development of Water–Energy–Land–Food System on a 40-Year Scale: A Case Study of Hebei, China. Land 2024, 13, 1089. [Google Scholar] [CrossRef]
- De Roo, A.; Trichakis, I.; Bisselink, B.; Gelati, E.; Lavalle, C. The Water-Energy-Food-Ecosystem Nexus in the Mediterranean: Current Issues and Future Challenges. Front. Clim. 2021, 3, 782553. [Google Scholar] [CrossRef]
- Giampietro, M.; Aspinall, R.J.; Bukkens, S.G.F.; Gomiero, T.; López-Ridaura, S.; Ramos-Martin, J. An Innovative Accounting Framework for the Food-Energy-Water Nexus—Application of the MuSIASEM Approach to Three Case Studies; Environment and Natural Resources Management Working Paper; FAO: Rome, Italy, 2013; Available online: http://www.fao.org/3/i3468e/i3468e.pdf (accessed on 3 June 2025).
- Hermann, S.; Welsch, M.; Segerstrom, R.E.; Howells, M.; Rogner, H.H.; Young, C. Climate, Land, Energy and Water (CLEW) Interlinkages in Burkina Faso: An Analysis of Agricultural Intensification and Bioenergy Production. Nat. Resour. Forum. 2012, 36, 245–262. [Google Scholar] [CrossRef]
- Gafy, I.; Grigg, N.; Reagan, W. Dynamic Behaviour of the Water–Food–Energy Nexus: Focus on Crop Production and Consumption. Irrig. Drain. 2017, 66, 19–33. [Google Scholar] [CrossRef]
- Hülsmann, S.; Sušnik, J.; Rinke, K.; Neset, T.S.; Loucks, D.P.; van der Zaag, P. Integrated Modelling and Management of Water Resources: The Ecosystem Perspective on the Nexus Approach. Curr. Opin. Environ. Sustain. 2019, 40, 14–20. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Q.; Zhu, G.; Lin, X.; Qiu, D.; Jiao, Y.; Wang, Y. Dataset of stable isotopes of precipitation in the Eurasian continent. Earth Syst. Sci. Data 2024, 16, 1543–1557. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, G.; Lin, X.; Li, R.; Lu, S.; Jiao, Y.; Wang, Q. The complexity of moisture sources affects the altitude effect of stable isotopes of precipitation in inland mountainous regions. Water Resour. Res. 2024, 60, e2023WR036084. [Google Scholar] [CrossRef]
- Li, F.; Lu, H.; Wang, G.; Qiu, J. Long-term capturability of atmospheric water on a global scale. Water Resour. Res. 2024, 60, e2023WR034757. [Google Scholar] [CrossRef]
- Li, F.; Lu, H.; Wang, H.; Sun, P.; Qiu, J. Atmospheric water resources and their exploitability in the Middle East. J. Hydrometeorol. 2025, 26, 273–291. [Google Scholar] [CrossRef]
- Heard, B.R.; Miller, S.A.; Liang, S.; Xu, M. Emerging Challenges and Opportunities for the Food–Energy–Water Nexus in Urban Systems. Curr. Opin. Chem. Eng. 2017, 17, 48–53. [Google Scholar] [CrossRef]
- Melo, F.P.L.; Parry, L.; Brancalion, P.H.S.; Laurance, W.F. Adding Forests to the Water-Energy-Food Nexus. Nat. Sustain. 2021, 4, 85–92. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, R.; Wang, H.; Qin, L.; Yuan, Y. Updated precipitation reconstruction (AD 1482–2012) for Huashan, north-central China. Theor. Appl. Climatol. 2016, 123, 723–732. [Google Scholar] [CrossRef]
- Gergis, J.; Gallant, A.J.E.; Braganza, K.; Karoly, D.J.; Allen, K.; Cullen, L.; McGregor, S. On the long-term context of the 1997–2009 ‘Big Dry’ in South-Eastern Australia: Insights from a 206-year multi-proxy rainfall reconstruction. Clim. Chang. 2012, 111, 923–944. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, N.; Wei, Y.; Hu, B.; Cao, Q.; Tong, K.; Liang, Y. Eight hundred years of drought and flood disasters and precipitation sequence reconstruction in Wuzhou City, Southwest China. Water 2019, 11, 219. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, Y.; Zhang, X.; Hao, Z. Variation of extreme drought and flood in North China revealed by document-based seasonal precipitation reconstruction for the past 300 years. Clim. Past 2018, 14, 1135–1145. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Zhao, W. Extreme Weather and Climate Events in China under Changing Climate. Natl. Sci. Rev. 2020, 7, 938–943. [Google Scholar] [CrossRef]
- Clarke, B.; Otto, F.; Stuart-Smith, R.; Harrington, L.; Wehner, M.; Frame, D. Extreme Weather Impacts of Climate Change: An Attribution Perspective. Environ. Res. Clim. 2022, 1, 012001. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Stone, D.A.; Mitchell, D.M.; Lewis, S.; King, A.D. On the Attribution of the Impacts of Extreme Weather Events to Anthropogenic Climate Change. Environ. Res. Lett. 2022, 17, 024009. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, G.; Wang, Q.Q.; Ye, L.; Lin, X.; Lu, S.; Jia, C. Influence of Mountain Orientation on Precipitation Isotopes in the Westerly Belt of Eurasia. Glob. Planet. Chang. 2024, 240, 104543. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Z.; Wu, X.; Huang, S.; Li, J.; Lai, C.; Lin, G. Tracking 3D Drought Events Across Global River Basins: Climatology, Spatial Footprint, and Temporal Changes. Geophys. Res. Lett. 2025, 52, e2024GL111442. [Google Scholar] [CrossRef]
- Zhu, Z.; Shao, L.; Lu, R.; Hua, W. Two Contrasting Tropical Convection Modes from the Eastern Pacific to Northern Africa that Drive Eurasian Teleconnections in Boreal Summer. npj Clim. Atmos. Sci. 2025, 8, 56. [Google Scholar] [CrossRef]
- Pang, Q.; Zhao, G.; Wang, D.; Zhu, X.; Xie, L.; Zuo, D.; Chu, W. Water Periods Impact the Structure and Metabolic Potential of the Nitrogen-Cycling Microbial Communities in Rivers of Arid and Semi-Arid Regions. Water Res. 2024, 267, 122472. [Google Scholar] [CrossRef]
- Yu, X.; Shan, K. Common Mechanisms and Disaster Prevention Strategies for Catastrophic Rainfall and Flooding Events in the North China Plain. China Water Resour. 2023, 18, 24–28. [Google Scholar]
- Wang, Y.J.; Lin, X. A Review of Climate Change and Its Impact and Adaptation in Beijing–Tianjin–Hebei Urban Agglomeration. Clim. Chang. Res. 2022, 18, 743–755. [Google Scholar]
- Zhao, Y.; Wang, Q.; Wang, H.; Guo, L. Water Security in Beijing–Tianjin–Hebei Region: Challenges and Strategies. Strateg. Study CAE 2022, 24, 8–18. [Google Scholar] [CrossRef]
- Han, J.; Yang, Y. The Socioeconomic Effects of Extreme Drought Events in Northern China on the Ming Dynasty in the Late Fifteenth Century. Clim. Chang. 2021, 164, 26. [Google Scholar] [CrossRef]
- Chen, K.; Ning, L.; Liu, Z.; Liu, J.; Yan, M.; Sun, W.; Shi, Z. One Drought and One Volcanic Eruption Influenced the History of China: The Late Ming Dynasty Mega-Drought. Geophys. Res. Lett. 2020, 47, e2020GL088124. [Google Scholar] [CrossRef]
- Lin, K.H.E.; Wang, P.K.; Pai, P.L.; Lin, Y.S.; Wang, C.W. Historical Droughts in the Qing Dynasty (1644–1911) of China. Clim. Past 2020, 16, 911–931. [Google Scholar] [CrossRef]
- China Meteorological Administration. Yearly Charts of Dryness/Wetness in China for the Last 500-Year Period; Chinese Cartographic Publishing House: Beijing, China, 1981. [Google Scholar]
- Zhang, D.E.; Li, X.Q.; Liang, Y.Y. Continuation (1992–2000) of the Yearly Charts of Dryness/Wetness in China for the Last 500 Years Period. J. Appl. Meteorol. Sci. 2003, 14, 379–384. [Google Scholar] [CrossRef]
- Zhang, D.E.; Liu, C.Z. Continuation (1980–1992) of the Yearly Charts of Dryness/Wetness in China for the Last 500 Years Period. Meteorol. Mon. 1993, 11, 41–45. [Google Scholar]
- Molini, A.; Katul, G.G.; Porporato, A. Causality across Rainfall Time Scales Revealed by Continuous Wavelet Transforms. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Chong, K.L.; Huang, Y.F.; Koo, C.H.; Ahmed, A.N.; El-Shafie, A. Spatiotemporal Variability Analysis of Standardized Precipitation Indexed Droughts Using Wavelet Transform. J. Hydrol. 2022, 605, 127299. [Google Scholar] [CrossRef]
- En-Nagre, K.; Aqnouy, M.; Ouarka, A.; Naqvi, S.A.A.; Bouizrou, I.; El Messari, J.E.S.; Tariq, A.; Soufan, W.; Li, W.; El-Askary, H. Assessment and Prediction of Meteorological Drought Using Machine Learning Algorithms and Climate Data. Clim. Risk Manag. 2024, 45, 100630. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Shang, K.; Xu, L.; Liu, X.; Yin, Z.; Liu, Z.; Li, X.; Yin, L.; Zheng, W. Study of Urban Heat Island Effect in Hangzhou Metropolitan Area Based on SW-TES Algorithm and Image Dichotomous Model. Sage Open 2023, 13, 21582440231208851. [Google Scholar] [CrossRef]
- Jayanthi, S.L.S.V.; Keesara, V.R.; Sridhar, V. Prediction of Future Lake Water Availability Using SWAT and Support Vector Regression (SVR). Sustainability 2022, 14, 6974. [Google Scholar] [CrossRef]
- Cai, C.; Wang, J.; Li, Z. Improving TIGGE Precipitation Forecasts Using an SVR Ensemble Approach in the Huaihe River Basin. Adv. Meteorol. 2018, 2018, 7809302. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Wang, G.; Tan, Q. Actual Evapotranspiration Estimation over the Tuojiang River Basin Based on a Hybrid CNN-RF Model. J. Hydrol. 2022, 610, 127788. [Google Scholar] [CrossRef]
- Chang, H.; Zhao, Y.; Sang, X.; Yang, Y.; Wang, Q. Research on the Coordinated Regulation of Water Resources–Food–Energy–Ecology in Beijing–Tianjin–Hebei Region I: Methods and Model. J. Hydraul. Eng. 2022, 53, 655–665. [Google Scholar]
- Chang, H.; Zhao, Y.; Cao, Y.; He, G.; Wang, Q.; Liu, R.; Li, W. Evaluating Sustainability of Water–Energy–Food–Ecosystems Nexus in Water-Scarce Regions via Coupled Simulation Model. Agriculture 2025, 15, 1271. [Google Scholar] [CrossRef]
- Sang, X.; Wang, H.; Wang, J.; He, L. Water Resources Comprehensive Allocation and Simulation Model (WAS), Part I. Theory and Development. J. Hydraul. Eng. 2018, 49, 1451–1459. [Google Scholar]
- Chang, H.; Sang, X.; He, G.; Wang, Q.; Jiang, S.; He, F.; Zhao, Y. Research and Application of the Mutual Feedback Mechanism of a Regional Natural-Social Dualistic Water Cycle: A Case Study in Beijing–Tianjin–Hebei, China. Water 2022, 14, 3227. [Google Scholar] [CrossRef]
- Li, L. Water Production Function of Crops. Irrig. Drain. 1989, 3, 43–45. [Google Scholar]
- Doorenbos, J.; Plusje, J.M.G.A.; Kassam, A.H.; Branscheid, V.; Bentvelsen, C.L.M. Yield Response to Water. In Irrigation and Agricultural Development; Coward, E.W., Jr., Ed.; Cornell University Press: Baghdad, Iraq, 1980; pp. 257–280. [Google Scholar]
- Li, Z.; Liu, H.; Zhao, W. Revisiting Crop Water Production Functions in Terms of Cross-Regional Applications. Chin. J. Eco-Agric. 2018, 26, 1781–1794. [Google Scholar]
- Lei, X. Spatiotemporal Characteristics and Evolution Mechanism of Human Water Use. Ph.D. Thesis, Tsinghua University, Beijing, China, 2020. [Google Scholar]
- Jiang, S. Analysis and Coupling Simulation of Water–Energy Nexus. Ph.D. Thesis, China Institute of Water Resources and Hydropower Research, Beijing, China, 2017. [Google Scholar]
- Zhu, Y. Research on Energy Consumption Evaluation Method for the Whole Process of Social Water Cycle. Ph.D. Thesis, China Institute of Water Resources and Hydropower Research, Beijing, China, 2017. [Google Scholar]
- Bi, Y.; Zhao, J.; Wu, D.; Zhao, Y. Spatiotemporal Variations of Future Potential Evapotranspiration in the Beijing–Tianjin–Hebei Region under GFDL-ESM2M Climate Model. Trans. Chin. Soc. Agric. Eng. 2020, 36, 140–149. [Google Scholar]
- Zhao, Y.; Chang, H.; Sang, X. Research on the Coordinated Regulation of Water Resources–Food–Energy–Ecology in Beijing–Tianjin–Hebei Region II: Application. J. Hydraul. Eng. 2022, 53, 1251–1261. [Google Scholar]
- Zhao, Y. Research and Demonstration on Integrated Technologies for Water Resources Security in the Beijing–Tianjin–Hebei Region; Research Report; China Institute of Water Resources and Hydropower Research: Beijing, China, 2021. [Google Scholar]
- GB/T 20481-2017; Meteorological Drought Classification. Standardization Administration of China: Beijing, China, 2018.
- Chen, S.; Su, Y.; Chen, X.; Yang, L.E. The Spatial–Temporal Evolution of the Chongzhen Drought (1627–1644) in China and Its Impact on Famine. Clim. Past Discuss. 2024, 20, 2287–2307. [Google Scholar]
- Zhang, D.E.; Liang, Y. A Long Lasting and Extensive Drought Event over China in 1876–1878. Adv. Clim. Chang. Res. 2010, 1, 91–99. [Google Scholar] [CrossRef]
- Hao, Z.; Bai, M.; Xiong, D.; Liu, Y.; Zheng, J. The Severe Drought of 1876–1878 in North China and Possible Causes. Clim. Chang. 2021, 167, 7. [Google Scholar] [CrossRef]
- Wan, J.; Yan, D.; Fu, G.; Hao, L.; Yue, Y.; Li, R.; Deng, J. Temporal and Spatial Variations of Drought in China: Reconstructed from Historical Memorial Archives during 1689–1911. PLoS ONE 2016, 11, e0148072. [Google Scholar] [CrossRef]
- Chang, H.; Zhao, Y.; Wang, Q.; Wang, J.; Li, H.; Zhai, J.; Jiang, S. Available Water Supplies in Beijing, China, under Single- and Multi-Year Drought. J. Am. Water Resour. Assoc. 2020, 56, 230–246. [Google Scholar] [CrossRef]
- Luo, J.; Guo, Y.; Qi, Y.; Shen, Y. Pathways to Balancing Water and Food for Agricultural Sustainable Development in the Beijing-Tianjin-Hebei Region, China. Agric. Water Manag. 2025, 310, 109344. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Shi, M. Restrictive Effects of Water Scarcity on Urban Economic Development in the Beijing-Tianjin-Hebei City Region. Sustainability 2019, 11, 2452. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.; Ridoutt, B.G.; Chen, F. Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region. Water 2015, 7, 7066–7077. [Google Scholar] [CrossRef]
- Ye, Q.; Li, Y.; Zhuo, L.; Zhang, W.; Xiong, W.; Wang, C.; Wang, P. Optimal Allocation of Physical Water Resources Integrated with Virtual Water Trade in Water Scarce Regions: A Case Study for Beijing, China. Water Res. 2018, 129, 264–276. [Google Scholar] [CrossRef]
- Chang, H.; Zhao, Y.; Cao, Y.; Liu, R.; Li, W.; Ren, H.; Yao, J. Quantifying China’s Food Self-Sufficiency and Security Transition Based on Flow and Consumption Analyses. Sustainability 2025, 17, 5965. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Q.; Cheng, Z. Evaluating the Impact of the South-to-North Water Diversion Project on Regional Grain Production. npj Sustain. Agric. 2025, 3, 36. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.M.; Lian, X.; Zhu, Q.; Horgan, F.G.; Zhang, Q. Analysis of the Impact of the South-to-North Water Diversion Project on Water Balance and Land Subsidence in Beijing, China between 2007 and 2020. J. Hydrol. 2021, 603, 126990. [Google Scholar] [CrossRef]
- Changjiang Water Resources Commission. Study on Regulated Water Quantity of Danjiangkou Reservoir in the Han River; Research Report; Changjiang Water Resources Commission: Wuhan, China, 2001.
- Long, D.; Yang, W.; Scanlon, B.R.; Zhao, J.; Liu, D.; Burek, P.; Pan, Y.; You, L.; Wada, Y. South-to-North Water Diversion Stabilizing Beijing’s Groundwater Levels. Nat. Commun. 2023, 14, 12345. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.; Barnett, J.; Webber, M.; Finlayson, B.; Wang, M. Governmentality and the Conduct of Water: China’s South–North Water Transfer Project. Trans. Inst. Br. Geogr. 2016, 41, 429–443. [Google Scholar] [CrossRef]
- National Development and Reform Commission. Notice on the Initial Water Pricing Policy for the Main Works of the First Phase of the Middle Route of the South-to-North Water Diversion Project (NDRC Price [2014] No. 2959). Available online: http://www.gov.cn/xinwen/2019-04/12/content_5381953.htm (accessed on 3 June 2025).
- Liu, D. Study on Problems and Countermeasures of Water Price Management of Urban Residents in Beijing-Tianjin-Hebei Region. Master’s Thesis, Central China Normal University, Wuhan, China, 2020. [Google Scholar]
- Wang, X.; Yin, H.; Luo, Y. Lifting Space of Agricultural Water Price on Farmers’ Affordability in the Groundwater Overmining Area of Hebei. J. Northwest Univ. (Nat. Sci. Ed.) 2020, 50, 234–240. [Google Scholar]
- Zhang, Q. The South-to-North Water Transfer Project of China: Environmental Implications and Monitoring Strategy. J. Am. Water Resour. Assoc. 2010, 45, 1238–1247. [Google Scholar] [CrossRef]
- Hu, Y.; Liang, Z.; Xiong, L.; Sun, L.; Wang, K.; Yang, J.; Wang, J.; Li, B. Assessment on Annual Precipitation Change in the Headwater Source of the Middle Route of China’s South to North Water Diversion Project. Theor. Appl. Climatol. 2019, 137, 1015–1029. [Google Scholar] [CrossRef]
- Chen, D.; Webber, M.; Finlayson, B.; Barnett, J.; Chen, Z.; Wang, M. The Impact of Water Transfers from the Lower Yangtze River on Water Security in Shanghai. Appl. Geogr. 2013, 45, 303–310. [Google Scholar] [CrossRef]
Drought and Flood Grades | Beijing | Tianjin | Tangshan | Baoding | Cangzhou | Shijiazhuang | Handan |
---|---|---|---|---|---|---|---|
−2 | 48 | 46 | 49 | 54 | 54 | 57 | 48 |
−1 | 110 | 141 | 136 | 106 | 149 | 122 | 125 |
0 | 186 | 212 | 199 | 213 | 166 | 179 | 169 |
1 | 152 | 117 | 126 | 135 | 128 | 134 | 155 |
2 | 52 | 32 | 38 | 40 | 45 | 56 | 51 |
Model | Beijing | Tianjin | Tangshan | Baoding | Cangzhou | Shijiazhuang | Handan | |
---|---|---|---|---|---|---|---|---|
RF | RMSE | 91.047 | 68.018 | 67.667 | 89.764 | 93.163 | 98.675 | 107.123 |
MAE | 70.099 | 59.973 | 56.528 | 69.927 | 60.467 | 68.073 | 82.504 | |
SVR | RMSE | 85.465 | 79.69 | 63.88 | 126.91 | 107.79 | 114.305 | 108.264 |
MAE | 60.929 | 65.862 | 56.984 | 95.758 | 86.35 | 99.664 | 72.363 | |
Best Model | SVR | RF | SVR | RF | RF | RF | SVR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.; Fang, N.; Cao, Y.; Yao, J.; Hong, Z. Coupled Simulation of the Water–Food–Energy–Ecology System Under Extreme Drought Events: A Case Study of Beijing–Tianjin–Hebei, China. Water 2025, 17, 2103. https://doi.org/10.3390/w17142103
Chang H, Fang N, Cao Y, Yao J, Hong Z. Coupled Simulation of the Water–Food–Energy–Ecology System Under Extreme Drought Events: A Case Study of Beijing–Tianjin–Hebei, China. Water. 2025; 17(14):2103. https://doi.org/10.3390/w17142103
Chicago/Turabian StyleChang, Huanyu, Naren Fang, Yongqiang Cao, Jiaqi Yao, and Zhen Hong. 2025. "Coupled Simulation of the Water–Food–Energy–Ecology System Under Extreme Drought Events: A Case Study of Beijing–Tianjin–Hebei, China" Water 17, no. 14: 2103. https://doi.org/10.3390/w17142103
APA StyleChang, H., Fang, N., Cao, Y., Yao, J., & Hong, Z. (2025). Coupled Simulation of the Water–Food–Energy–Ecology System Under Extreme Drought Events: A Case Study of Beijing–Tianjin–Hebei, China. Water, 17(14), 2103. https://doi.org/10.3390/w17142103