Charge Density Waves in Solids—From First Concepts to Modern Insights
Abstract
1. Introduction
2. Basic Model: Condensation Energy of the CDW State and Kohn Anomaly
3. The Early Days: Quasi-1D Systems
3.1. Materials
- Bechgaard salts (TMTSF)2X, where TMTSF stands for tetramethyltetraselenafulvalene and X is an inorganic anion, e.g., , , , , B, etc., or related Fabre salts (TMTTF)2X, where TMTTF stands for tetramethyltetrathiafulvalene, in which selenium is substituted with sulphur. The unit cell is of triclinic symmetry. The crystal structure consists of stacked TMTSF or TMTTF organic molecules with overlapping -orbitals, resulting in high conductivity directed along the stacks, between which inorganic anions are placed. Those are so-called charge transfer salts in which 1/2 electrons are transferred from an organic molecule to an inorganic anion on average, resulting in three-quarter-filled electron bands. The slight structural dimerisation along the stacks, pronounced more in TMTTF than in TMTSF stacks, results in a small dimerisation gap opening and a half-filled conduction band. Typical low-temperature ground states, among others, are the spin–Peierls CDW, SDW, or superconductor, depending on the organic molecule and anion in the structure.
- Transition metal trichalcogenides , where M stands for group IV or V transition metal and X for chalcogen atom, such as , , , etc. The basic structural unit is a triangular prism , with M in the centre, from which chains are formed by stacking them along a line. Depending on the material, there is a different number of neighbouring chains with slight geometrical variations (for example, in , this number is three), resulting in triclinic () or monoclinic () unit cell symmetry. The electron band is quarter-filled. The common low-temperature ground state of these materials is CDW.
- Transition metal bronzes refer to the oxides of transition metals that may attain different crystal structures, i.e., layered or 3D structure of interconnected chains, with alkali metal atoms intercalated into the structure. The most well-known quasi-1D bronzes are those of molybdenum, , where X stands for K, Rb, or Tl, also known as “blue bronzes”. The structure is orthorhombic, with stacked clusters along the chain direction and alkali atoms intercalated between the chains. A rather complex band structure due to periodic distortion along the chains, resulting in a rather large unit cell, however, yields two overlapping, three-quarter-filled electron-conducting bands. This material is a typical low-temperature CDW system.
- TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane) is an organic compound consisting of stacked planar molecules into parallel linear chains. Electrons are transferred from the TTF to TCNQ molecule (approximately 0.6 electrons per molecule), resulting in a partially filled electron band and room-temperature conducting properties. The low-temperature ground state is CDW.
- -(BEDT-TTF)4MHg(XCN)4, where BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene, M = K, Tl and X = S, Se, is a monoclinic layered (conducting BEDT-TTF layers intertwined with insulating MHg(XCN)4 layers) organic charge-transfer salt with three-quarters-filled band. Together with open Fermi surface sheets, it also features closed Fermi pockets, with that involving its quasi-2D aspects. The low-temperature ground state is CDW.
3.2. The Minimal Model of the CDW Transition in Quasi-1D Metal
4. Modern Concepts: Quasi-2D Systems
4.1. Materials
- superconducting cuprates and related materials, e.g., (“YBCO”), (“LaSCO”), (“BSCCO”), (Hg-1212) and many others, where p determines stoichiometry that regulates amount of carrier doping, and thus the Fermi surface. The crystal structure of most of them is tetragonal (except YBCO, which is orthorhombic); see Figure 9a. Varying the stoichiometry of material by controlling amount of oxygen (p) in synthesis, copper–oxygen planes can be doped by holes or electrons resulting in an extremely rich phase diagram containing a vast number of phases among which charge ordering (different CDW phases) is the focus of this review; see Figure 10a. At zero-doping, the material is in an antiferromagnetic state due to band half-filling and perfect nesting of the square Fermi surface with wave vector. By doping, the nesting condition is deteriorated; the Fermi surface becomes a large, closed, hole-like pocket, almost circular; and other phases take place, i.e., superconductivity at lower temperatures and the so-called “pseudo-gap regime” above it. The pseudo-gap regime is characterised by a vastly reduced spectral function in the anti-nodal regions (i.e., , ) of the Fermi surface, leaving what resembles so-called “Fermi arcs” of high intensity around the nodal points in ARPES spectra. Charge ordering appears within the pseudo-gap phase already at rather high critical temperatures of the order of K, which is an order of magnitude higher than in weakly coupled quasi-1D materials, implying significantly stronger coupling responsible for it. Applying a strong magnetic field, on the order of several dozen Tesla perpendicular to the conducting plane, the “CDW dome” appears inside the SC phase where the charge ordering is significantly enhanced, gaining an-order-of magnitude-longer correlation lengths and even 3D ordering. A similar scenario is possible by doping the material with electrons, yielding an analogous but not a mirroring phase diagram.
- Graphite intercalation compounds (GICs), with chemical formula , are composed of graphite intercalated between the graphene layers comprising it, with alkali or alkaline earth metals X at each n carbon atoms (); see Figure 9b. The intercalation process yields a number of stable structures such as , , , , etc, exhibiting interesting low-temperature superconductivity, and some of them a CDW phase at rather high critical temperatures on the order of K. The intercalation of atoms between graphene layers, coupled by van der Waals interactions, increases the distance between layers and even inter-carbon distances inside them (e.g., in the interlayer distance is increased from Å to Å and the carbon–carbon distance from Å to Å). Charge transfer, taking place from metallic atoms to -bands in graphene sheets, performs a chemical doping of carbon with electrons. It can attain high values compared to electrostatic doping and shift the Fermi energy by an order of electron volt, creating a well-developed Fermi surface in a metallic state of the material.
- Transition metal dichalcogenides (TMDs) with chemical formula , where M stands for transition metal (e.g., Mo, Ti, W, Nb, V) and X for chalcogen atom (e.g., S, Se, Te), form stable compounds that can be semiconducting (e.g., , , ) or metallic (e.g., , ). In the context of this review, the metallic TMDs are more interesting since they can exhibit low-temperature superconducting or CDW ground states; see Figure 10b. Their crystal structure is layered, similar to that of graphite, where the layers are coupled by van der Waals interactions, while the transition metal atoms within each monolayer are covalently bonded to chalcogen atoms from two layers sandwiching it in X-M-X structure; see Figure 9c. The Fermi surface in these materials is rather complex, in certain circumstances containing properties like saddle point or even partial nesting, rendering TMDs as materials very difficult for analytical analysis and requiring a comprehensive ab initio approach.
4.2. The Minimal Model of the CDW Transition in Quasi-2D Metal
4.3. Test of the Model: The CDW Ground State in
4.4. And Beyond Analytics
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jérome, D.; Caron, L.G. (Eds.) Low-Dimensional Conductors and Superconductors; NATO ASI Series, Series B: Physics; Springer Science+Business Media: New York, NY, USA, 1987; Volume 155. [Google Scholar]
- Schlenker, C. (Ed.) Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides; Physics and Chemistry of Materials with Low-Dimensional Structures; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1989; Volume 11. [Google Scholar]
- Schlenker, C.; Dumas, J.; Greenblatt, M.; van Smaalen, S. (Eds.) Physics and Chemistry of Low-Dimensional Inorganic Conductors; NATO ASI Series, Series B: Physics; Plenum Press: New York, NY, USA; London, UK, 1996; Volume 354. [Google Scholar]
- Lebed, A.G. (Ed.) The Physics of Organic Superconductors and Conductors; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 110. [Google Scholar]
- Bianconi, A.; Saini, N. (Eds.) Stripes and Related Phenomena; Springer: New York, NY, USA, 2001. [Google Scholar]
- Peierls, R.E. Zur Theorie der elektrischen und thermischen Leitfähigkeit von Metallen. Ann. Phys. 1930, 4, 121. [Google Scholar] [CrossRef]
- Peierls, R.E. Quantum Theory of Solids; Clarendon Press: Oxford, UK, 1955; p. 108. [Google Scholar]
- Kohn, W. Image of the Fermi surface in the vibration spectrum of a metal. Phys. Rev. Lett. 1959, 2, 393. [Google Scholar] [CrossRef]
- Sólyom, J. Fundamentals of the Physics of Solids; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, p. 350. [Google Scholar]
- Sólyom, J. Fundamentals of the Physics of Solids; Springer: Berlin/Heidelberg, Germany, 2009; Chapter 33.4; Volume 3, p. 357. [Google Scholar]
- Overhauser, A.W. Giant Spin Density Waves. Phys. Rev. Lett. 1960, 4, 462. [Google Scholar] [CrossRef]
- Sólyom, J. Fundamentals of the Physics of Solids; Springer: Berlin/Heidelberg, Germany, 2009; Chapter 33.3; Volume 3, p. 342. [Google Scholar]
- Pytte, E. Peierls Instability in Heisenberg Chains. Phys. Rev. B 1974, 10, 2309. [Google Scholar] [CrossRef]
- Cross, M.C.; Fischer, D.S. A new theory of the spin-Peierls transition with special relevance to the experiments on TTFCuBDT. Phys. Rev. B 1979, 19, 402. [Google Scholar] [CrossRef]
- Schulz, H.J. The Crossover from One to Three Dimensions: Peierls and Spin-Peierls Instabilities. In Low-Dimensional Conductors and Superconductors; Jérome, D., Caron, L.G., Eds.; NATO ASI Series, Series B: Physics; Springer Science+Business Media: New York, NY, USA, 1987; Volume 155, p. 95. [Google Scholar]
- Emery, V.J. Basic Ideas in the Theory of Organic Conductors. In Low-Dimensional Conductors and Superconductors; Jérome, D., Caron, L.G., Eds.; NATO ASI Series, Series B: Physics; Springer Science+Business Media: New York, NY, USA, 1987; Volume 155, p. 47. [Google Scholar]
- Grüner, G. The Dynamics of Charge Density Waves. Rev. Mod. Phys. 1988, 60, 1129–1181. [Google Scholar] [CrossRef]
- Jérome, D. Organic Conductors: From Charge Density Wave TTF-TCNQ to Superconducting (TMTSF)2PF6. Chem. Rev. 2004, 104, 5565–5591. [Google Scholar] [CrossRef]
- Dressel, M. Ordering Phenomena in Quasi-one-dimensional Organic Conductors. Naturwissenschaften 2007, 94, 527–541. [Google Scholar] [CrossRef]
- Pouget, J.-P. Structural Aspects of the Bechgaard and Fabre Salts: An Update. Crystals 2012, 2, 466–520. [Google Scholar] [CrossRef]
- Monceau, P. Electronic Crystals: An Experimental Overview. Adv. Phys. 2012, 61, 325–581. [Google Scholar] [CrossRef]
- Overhauser, A.W. Spin Density Waves in an Electron Gas. Phys. Rev. 1962, 128, 1437–1452. [Google Scholar] [CrossRef]
- Montambaux, G. Metal—Spin-Density-Wave Transition in a Quasi-one-dimensional Conductor: Pressure and Magnetic Field Effects. Phys. Rev. B 1988, 38, 4788–4795. [Google Scholar] [CrossRef] [PubMed]
- Gor’kov, L.P.; Lebed, A.G. On the Stability of the Quasi-onedimensional Metallic Phase in Magnetic Fields Against the Spin Density Wave Formation. J. Physique Lett. 1984, 45, L433–L440. [Google Scholar] [CrossRef]
- Montambaux, G.; Héritier, M.; Lederer, P. Spin Susceptibility of the Two-Dimensional Electron Gas with Open Fermi Surface under Magnetic Field. Phys. Rev. Lett. 1985, 55, 2078–2081. [Google Scholar] [CrossRef]
- Pesty, F.; Garoche, P.; Bechgaard, K. Cascade of Field-Induced Phase Transitions in the Organic Metal Tetramethyltetraselenafulvalenium Perchlorate [(TMTSF)2C104]. Phys. Rev. Lett. 1985, 55, 2495–2498. [Google Scholar] [CrossRef]
- Bjeliš, A.; Zanchi, D. Pauli Coupling of the External Magnetic Field to Spin-Density Wave. Phys. Rev. B 1994, 49, 5968–5977. [Google Scholar] [CrossRef]
- Christ, P.; Biberacher, W.; Kartsovnik, M.V.; Steep, E.; Balthes, E.; Weiss, H.; Müller, H. Magnetic Field–Temperature Phase Diagram of the Organic Conductor α-(BEDT-TTF)2 KHg(SCN)4. JETP Lett. 2000, 71, 303. [Google Scholar] [CrossRef]
- Kartsovnik, M.V. Layered Organic Conductors in Strong Magnetic Fields. In The Physics of Organic Superconductors and Conductors; Lebed, A.G., Ed.; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 110, p. 185. [Google Scholar]
- Lebed, A.G. Universal Field-Induced Charge-Density-Wave Phase Diagram: Theory versus Experiment. Phys. Rev. Lett. 2009, 103, 046401. [Google Scholar] [CrossRef]
- Kadigrobov, A.M.; Bjeliš, A.; Radić, D. Magnetic Breakdown Induced Peierls Transition. Phys. Rev. Lett. 2008, 100, 206402. [Google Scholar] [CrossRef]
- Kadigrobov, A.M.; Bjeliš, A.; Radić, D. Peierls-type structural phase transition in a crystal induced by magnetic breakdown. Eur. Phys. J. B 2013, 86, 276. [Google Scholar] [CrossRef]
- Tranquada, J.; Sternlieb, B.; Axe, J.D.; Nakamura, Y.; Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 1995, 375, 561–563. [Google Scholar] [CrossRef]
- Keimer, B.; Kivelson, S.; Norman, M.; Uchida, S.; Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 2015, 518, 179–186. [Google Scholar] [CrossRef]
- Rahnejat, K.C.; Howard, C.A.; Shuttleworth, N.E.; Schofield, S.R.; Iwaya, K.; Hirjibehedin, C.F.; Renner, C.; Aeppli, G.; Ellerby, M. Charge density waves in the graphene sheets of the superconductor CaC6. Nat. Commun. 2011, 2, 558. [Google Scholar] [CrossRef]
- Shimizu, R.; Sugawara, K.; Kanetani, K.; Iwaya, K.; Sato, T.; Takahashi, T.; Hitosugi, T. Charge-Density Wave in Ca-Intercalated Bilayer Graphene Induced by Commensurate Lattice Matching. Phys. Rev. Lett. 2015, 114, 146103. [Google Scholar] [CrossRef] [PubMed]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Klemm, R.A. Pristine and Intercalated Transition Metal Dichalcogenide Superconductors. Phys. C Supercond. Its Appl. 2015, 514, 86–94. [Google Scholar] [CrossRef]
- Wilson, J.A.; Di Salvo, F.J.; Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 1975, 24, 117–201. [Google Scholar] [CrossRef]
- Rice, T.M.; Scott, G.K. New Mechanism for a Charge-Density-Wave Instability. Phys. Rev. Lett. 1975, 35, 120. [Google Scholar] [CrossRef]
- Tonjes, W.C.; Greanya, V.A.; Liu, R.; Olson, C.G.; Molinić, P. Charge-density-wave mechanism in the 2H-NbSe2 family: Angle-resolved photoemission studies. Phys. Rev. B 2001, 63, 235101. [Google Scholar] [CrossRef]
- Kawakami, T.; Sugawara, K.; Oka, H.; Nakayama, K.; Yaegashi, K.; Souma, S.; Takahashi, T.; Fukumura, T.; Sato, T. Charge-density wave associated with higher-order Fermi surface nesting in monolayer VS2. npj 2D Mater. Appl. 2023, 7, 35. [Google Scholar] [CrossRef]
- Chan, S.-K.; Heine, V. Spin density wave and soft phonon mode from nesting Fermi surfaces. J. Phys. F 1973, 3, 795. [Google Scholar] [CrossRef]
- Doran, N.J.; Ricco, B.; Schreiber, M.; Titterington, D.; Wexler, G. A calculation of the electronic response function in 2H-NbSe2 including electron-phonon matrix element effects. J. Phys. C Solid State Phys. 1978, 11, 699. [Google Scholar] [CrossRef]
- Varma, C.M.; Simons, A.L. Strong-Coupling Theory of Charge-Density-Wave Transitions. Phys. Rev. Lett. 1983, 51, 138. [Google Scholar] [CrossRef]
- Zhu, X.; Caoa, Y.; Zhang, J.; Plummer, E.W.; Guo, J. Classification of charge density waves based on their nature. Proc. Natl. Acad. Sci. USA 2015, 112, 2367–2371. [Google Scholar] [CrossRef]
- McMillan, W.L. Microscopic model of charge-density waves in 2H-TaSe2. Phys. Rev. B 1977, 16, 643. [Google Scholar] [CrossRef]
- Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 2011, 23, 213001. [Google Scholar] [CrossRef] [PubMed]
- Jérome, D.; Rice, T.M.; Kohn, W. Excitonic insulator. Phys. Rev. 1967, 158, 462. [Google Scholar] [CrossRef]
- Cercellier, H.; Monney, C.; Clerc, F.; Battaglia, C.; Despont, L.; Garnier, M.G.; Beck, H.; Aebi, P.; Patthey, L.; Berger, H.; et al. Evidence for an excitonic insulator phase in 1T-TiSe2. Phys. Rev. Lett. 2007, 99, 146403. [Google Scholar] [CrossRef]
- Kogar, A.; Rak, M.S.; Vig, S.; Husain, A.A.; Flicker, F.; Joe, Y.I.; Venema, L.; Mac-Dougall, G.J.; Chiang, T.C.; Fradkin, E.; et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 2017, 358, 1314. [Google Scholar] [CrossRef]
- Shen, D.W.; Xie, B.P.; Zhao, J.F.; Yang, L.X.; Fang, L.; Shi, J.; He, R.H.; Lu, D.H.; Wen, H.H.; Feng, D.L. Novel Mechanism of a Charge Density Wave in a Transition Metal Dichalcogenide. Phys. Rev. Lett. 2007, 99, 216404. [Google Scholar] [CrossRef]
- Kadigrobov, A.M.; Bjeliš, A.; Radić, D. Topological instability of two-dimensional conductors. Phys. Rev. B 2018, 97, 235439. [Google Scholar] [CrossRef]
- Spaić, M.; Radić, D. Onset of pseudogap and density wave in a system with a closed Fermi surface. Phys. Rev. B 2021, 103, 075133. [Google Scholar] [CrossRef]
- Grozić, P.; Keran, B.; Kadigrobov, A.M.; Radić, D. Charge stripes in the graphene-based materials. Sci. Rep. 2023, 13, 18931. [Google Scholar] [CrossRef] [PubMed]
- Calandra, M.; Profeta, G.; Mauri, F. Adiabatic and nonadiabatic phonon dispersion in a Wannier function approach. Phys. Rev. B 2010, 82, 165111. [Google Scholar] [CrossRef]
- Calandra, M.; Mauri, F. Charge-Density Wave and Superconducting Dome in TiSe2 from Electron-Phonon Interaction. Phys. Rev. Lett. 2011, 106, 196406. [Google Scholar] [CrossRef]
- Bianco, R.; Monacelli, L.; Calandra, M.; Mauri, F.; Errea, I. Weak Dimensionality Dependence and Dominant Role of Ionic Fluctuations in the Charge-Density-Wave Transition of NbSe2. Phys. Rev. Lett. 2020, 125, 106101. [Google Scholar] [CrossRef]
- Novko, D.; Torbatian, Z.; Lončarić, I. Electron correlations rule phonon-driven instability in single layer TiSe2. Phys. Rev. B 2022, 106, 245108. [Google Scholar] [CrossRef]
- Wu, T.; Mayaffre, H.; Krämer, S.; Horvatić, M.; Berthier, C.; Hardy, W.N.; Liang, R.; Bonn, D.A.; Julien, M.-H. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature 2011, 477, 191–194. [Google Scholar] [CrossRef]
- Laliberté, F.; Chang, J.; Doiron-Leyraud, N.; Hassinger, E.; Daou, R.; Rondeau, M.; Ramshaw, B.J.; Liang, R.; Bonn, D.A.; Hardy, W.N.; et al. Fermi-surface reconstruction by stripe order in cuprate superconductors. Nat. Commun. 2011, 2, 432. [Google Scholar] [CrossRef]
- Badoux, S.; Tabis, W.; Laliberté, F.; Grissonnanche, G.; Vignolle, B.; Vignolles, D.; Béard, J.; Bonn, D.A.; Hardy, W.N.; Liang, R.; et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 2016, 531, 210. [Google Scholar] [CrossRef]
- Kadigrobov, A.M.; Radić, D.; Bjeliš, A. Density wave and topological reconstruction of an isotropic two-dimensional electron band in external magnetic field. Phys. Rev. B 2019, 100, 115108. [Google Scholar] [CrossRef]
- LeBoeuf, D.; Doiron-Leyraud, N.; Levallois, J.; Daou, R.; Bonnemaison, J.-B.; Hussey, N.E.; Balicas, L.; Ramshaw, B.J.; Liang, R.; Bonn, D.A.; et al. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature 2007, 450, 533. [Google Scholar] [CrossRef] [PubMed]
- Kadigrobov, A.M.; Keran, B.; Radić, D. Magnetoconductivity of a metal with a closed Fermi surface reconstructed by a biaxial density wave. Phys. Rev. B 2021, 104, 155143. [Google Scholar] [CrossRef]
- Grozić, P.; Kadigrobov, A.M.; Rukelj, Z.; Kupčić, I.; Radić, D. Magnetoconductivity and quantum oscillations in intercalated graphite CaC6 with the Fermi surface reconstructed by the uniaxial charge density wave. Phys. Rev. B 2025, 111, 045127. [Google Scholar] [CrossRef]
- Tomić, S.; Jérome, D.; Bechgaard, K. Effects of non-magnetic disorder in organic superconductors. In Low-Dimensional Conductors and Superconductors; Jérome, D., Caron, L.G., Eds.; NATO ASI Series, Series B: Physics; Springer Science+Business Media: New York, NY, USA, 1987; Volume 155, p. 335. [Google Scholar]
- Uji, S.; Yasuzuka, S.; Konoike, T.; Enomoto, K.; Yamada, J.; Choi, E.S.; Graf, D.; Brooks, J.S. Quantum Oscillation of Hall Resistance in the Extreme Quantum Limit of an Organic Conductor (TMTSF)2ClO4. Phys. Rev. Lett. 2005, 94, 077206. [Google Scholar] [CrossRef] [PubMed]
- Radić, D.; Bjeliš, A.; Zanchi, D. Magnetic oscillations and field induced spin density waves in (TMTSF)2ClO4. Phys. Rev. B 2004, 69, 014411. [Google Scholar] [CrossRef]
- Sólyom, S. The Fermi gas model of one-dimensional conductors. J. Adv. Phys. 1979, 28, 201–303. [Google Scholar] [CrossRef]
- Bourbonnais, C.; Jérome, D. Interacting Electrons in Quasi-One-Dimensional Organic Superconductors. In The Physics of Organic Superconductors and Conductors; Lebed, A.G., Ed.; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 110, p. 357. [Google Scholar]
- Kang, W.; Hannahs, S.T.; Chaikin, P.M. Toward a Unified Phase Diagram in (TMTSF)2X. Phys. Rev. Lett. 1993, 70, 3091. [Google Scholar] [CrossRef]
- Wang, Z.; Girard, J.; Pasquier, C.; Jérome, D.; Bechgaard, K. Scanning tunneling microscopy in TTF-TCNQ: Phase and amplitude modulated charge density waves. Phys. Rev. B 2003, 67, R-121401. [Google Scholar] [CrossRef]
- Bjeliš, A.; Barišić, S. Commensurate Ordering in Tetrathiafulvalene-Tetracyanoquinodimethane. Phys. Rev. Lett. 1976, 37, 1517–1519. [Google Scholar] [CrossRef]
- Berthier, C.; Molinié, P.; Jérome, D. Evidence for a connection between charge density waves and the pressure enhancement of superconductivity in 2H-NbSe2. Solid State Commun. 1976, 18, 1393–1395. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Jaramillo, R.; van Wezel, J.; Haravifard, S.; Srajer, G.; Liu, Y.; Xu, Z.-A.; Littlewood, P.B.; Rosenbaum, T.F. Order parameter fluctuations at a buried quantum critical point. Proc. Natl. Acad. Sci. USA 2012, 109, 7224–7229. [Google Scholar] [CrossRef] [PubMed]
- Suderow, H.; Tissen, V.G.; Brison, J.P.; Martínez, J.L.; Vieira, S. Pressure Induced Effects on the Fermi Surface of Superconducting 2H-NbSe2. Phys. Rev. Lett. 2005, 95, 117006. [Google Scholar] [CrossRef]
- Hossain, M.; Mottershead, J.; Fournier, D.; Bostwick, A.; McChesney, J.L.; Rotenberg, E.; Liang, R.; Hardy, W.N.; Sawatzky, G.A.; Elfimov, I.S.; et al. In situ doping control of the surface of high-temperature superconductors. Nat. Phys. 2008, 4, 527–531. [Google Scholar] [CrossRef]
- Valla, T.; Camacho, J.; Pan, Z.-H.; Fedorov, A.V.; Walters, A.C.; Howard, C.A.; Ellerby, M. Anisotropic Electron-Phonon Coupling and Dynamical Nesting on the Graphene Sheets in Superconducting CaC6 using Angle-Resolved Photoemission Spectroscopy. Phys. Rev. Lett. 2009, 102, 107007. [Google Scholar] [CrossRef]
- Borisenko, S.V.; Kordyuk, A.A.; Yaresko, A.N.; Zabolotnyy, V.B.; Inosov, D.S.; Schuster, R.; Büchner, B.; Weber, R.; Follath, R.; Patthey, L.; et al. Pseudogap and Charge Density Waves in Two Dimensions. Phys. Rev. Lett. 2008, 100, 196402. [Google Scholar] [CrossRef]
- Kuz’min, V.I.; Visotin, M.A.; Nikolaev, S.V.; Ovchinnikov, S.G. Doping and temperature evolution of pseudogap and spin-spin correlations in the two-dimensional Hubbard model. Phys. Rev. B 2020, 101, 115141. [Google Scholar] [CrossRef]
- Eremin, M.; Eremin, I.; Seibold, G.; Varlamov, S. Influence of incommensurability on SDW and CDW amplitudes in underdoped cuprates. Phys. C 2000, 341–348, 937–938. [Google Scholar] [CrossRef]
- Miao, H.; Fumagalli, R.; Rossi, M.; Lorenzana, J.; Seibold, G.; Yakhou-Harris, F.; Kummer, K.; Brookes, N.B.; Gu, G.D.; Braicovich, L.; et al. Formation of Incommensurate Charge Density Waves in Cuprates. Phys. Rev. X 2019, 9, 031042. [Google Scholar] [CrossRef]
- Lee, S.; Huang, E.W.; Johnson, T.A.; Guo, X.; Husain, A.A.; Mitrano, M.; Lu, K.; Zakrzewski, A.V.; de la Peña, G.A.; Peng, Y.; et al. Generic character of charge and spin density waves in superconducting cuprates. Proc. Natl. Acad. Sci. USA 2022, 119, e2119429119. [Google Scholar] [CrossRef]
- Joe, Y.I.; Chen, X.M.; Ghaemi, P.; Finkelstein, K.D.; de la Peña, G.A.; Gan, Y.; Lee, J.C.T.; Yuan, S.; Geck, J.; MacDougall, G.J.; et al. Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2. Nat. Phys. 2014, 10, 421–425. [Google Scholar] [CrossRef]
- Kogar, A.; de la Peña, G.A.; Lee, S.; Fang, Y.; Sun, S.X.-L.; Lioi, D.B.; Karapetrov, G.; Finkelstein, K.D.; Ruff, J.P.C.; Abbamonte, P.; et al. Observation of a Charge Density Wave Incommensuration Near the Superconducting Dome in CuxTiSe2. Phys. Rev. Lett. 2017, 118, 027002. [Google Scholar] [CrossRef]
- Yan, S.; Iaia, D.; Morosan, E.; Fradkin, E.; Abbamonte, P.; Madhavan, V. Influence of Domain Walls in the Incommensurate Charge Density Wave State of Cu Intercalated 1T-TiSe2. Phys. Rev. Lett. 2017, 118, 106405. [Google Scholar] [CrossRef]
- Mazin, I.I. Intercalant-Driven Superconductivity in YbC6 and CaC6. Phys. Rev. Lett. 2005, 95, 227001. [Google Scholar] [CrossRef] [PubMed]
- Calandra, M.; Mauri, F. Theoretical Explanation of Superconductivity in C6Ca. Phys. Rev. Lett. 2005, 95, 237002. [Google Scholar] [CrossRef]
- Calandra, M.; Mauri, F. Electronic structure of heavily doped graphene: The role of foreign atom states. Phys. Rev. B 2007, 76, 161406. [Google Scholar] [CrossRef]
- Profeta, G.; Calandra, M.; Mauri, F. Phonon-mediated superconductivity in graphene by lithium deposition. Nature Phys. 2012, 8, 131–134. [Google Scholar] [CrossRef]
- Fedorov, A.; Verbitskiy, N.; Haberer, D.; Struzzi, C.; Petaccia, L.; Usachov, D.; Vilkov, O.Y.; Vyalikh, D.V.; Fink, J.; Knupfer, M.; et al. Observation of a universal donor-dependent vibrational mode in graphene. Nat. Commun. 2014, 5, 3257. [Google Scholar] [CrossRef]
- Margine, E.; Lambert, H.; Giustino, F. Electron-phonon interaction and pairing mechanism in superconducting Ca-intercalated bilayer graphene. Sci. Rep. 2016, 6, 21414. [Google Scholar] [CrossRef]
- Novko, D. Dopant-Induced Plasmon Decay in Graphene. Nano Lett. 2017, 17, 6991–6996. [Google Scholar] [CrossRef]
- Fröhlich, H. Superconductivity and the Many Body Problem; Perspectives in Modern Physics; Marshak, R.E., Ed.; Interscience: New York, NY, USA, 1966; pp. 539–552. [Google Scholar]
- Mitra, T.K. The rigid-ion method in the Wannier representation. J. Phys. C (Solid St. Phys.) 1969, 2, 52–54. [Google Scholar] [CrossRef]
- Barišić, S. Rigid-Atom Electron-Phonon Coupling in the Tight-Binding Approximation I. Phys. Rev. B 1972, 5, 932–941. [Google Scholar] [CrossRef]
- Deegan, R.A. Electron-Phonon Interaction in the Tight-Binding Approximation: Validity of the Bloch Formulation. Phys. Rev. B 1972, 5, 1183–1186. [Google Scholar] [CrossRef]
- Csányi, G.; Littlewood, P.B.; Nevidomskyy, A.H.; Pickard, C.J.; Simons, B.D. The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds. Nat. Phys. 2005, 1, 42–45. [Google Scholar] [CrossRef]
- Johannes, M.D.; Mazin, I.I.; Howells, C.A. Fermi-surface nesting and the origin of the charge-density wave in NbSe2. Phys. Rev. B 2006, 73, 205102. [Google Scholar] [CrossRef]
- Calandra, M.; Mazin, I.I.; Mauri, F. Effect of dimensionality on the charge-density wave in few-layer 2H-NbSe2. Phys. Rev. B 2009, 80, 241108(R). [Google Scholar] [CrossRef]
- Moncton, D.E.; Axe, J.D.; DiSalvo, F.J. Study of Superlattice Formation in 2H-NbSe2 and 2H-TaSe2 by Neutron Scattering. Phys. Rev. Lett. 1975, 34, 734. [Google Scholar] [CrossRef]
- Weber, F.; Rosenkranz, S.; Castellan, J.-P.; Osborn, R.; Hott, R.; Heid, R.; Bohnen, K.-P.; Egami, T.; Said, A.H.; Reznik, D. Extended Phonon Collapse and the Origin of the Charge-Density Wave in 2H-NbSe2. Phys. Rev. Lett. 2011, 107, 107403. [Google Scholar] [CrossRef]
- Soumyanarayanan, A.; Yee, M.M.; He, Y.; van Wezel, J.; Rahn, D.J.; Rossnagel, K.; Hudson, E.W.; Norman, M.R.; Hoffman, J.E. Quantum phase transition from triangular to stripe charge order in NbSe2. Proc. Natl Acad. Sci. USA 2013, 110, 1623–1627. [Google Scholar] [CrossRef]
- Flicker, F.; van Wezel, J. Charge order from orbital-dependent coupling evidenced by NbSe2. Nat. Commun. 2015, 6, 7034. [Google Scholar] [CrossRef]
- Maklar, J.; Windsor, Y.W.; Nicholson, C.W.; Puppin, M.; Walmsley, P.; Esposito, V.; Porer, M.; Rittmann, J.; Leuenberger, D.; Kubli, M.; et al. Nonequilibrium charge-density-wave order beyond the thermal limit. Nat. Commun. 2021, 12, 2499. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zong, A.; Wu, L.; Meng, Q.; Xia, W.; Qi, F.; Zhu, P.; Zou, X.; Jiang, T.; Guo, Y.; et al. Ultrafast formation of topological defects in a two-dimensional charge density wave. Nat. Phys. 2024, 20, 54–60. [Google Scholar] [CrossRef]
- Duan, S.; Xia, W.; Huang, C.; Wang, S.; Gu, L.; Liu, H.; Xiang, D.; Qian, D.; Guo, Y.; Zhang, W. Ultrafast Switching from the Charge Density Wave Phase to a Metastable Metallic State in 1T-TiSe2. Phys. Rev. Lett. 2023, 130, 226501. [Google Scholar] [CrossRef] [PubMed]
- Kundu, A.K.; Rajapitamahuni, A.; Vescovo, E.; Klimovskikh, I.I.; Berger, H.; Valla, T. Charge density waves and the effects of uniaxial strain on the electronic structure of 2H-NbSe2. Commun. Mater. 2024, 5, 208. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radić, D. Charge Density Waves in Solids—From First Concepts to Modern Insights. Symmetry 2025, 17, 1135. https://doi.org/10.3390/sym17071135
Radić D. Charge Density Waves in Solids—From First Concepts to Modern Insights. Symmetry. 2025; 17(7):1135. https://doi.org/10.3390/sym17071135
Chicago/Turabian StyleRadić, Danko. 2025. "Charge Density Waves in Solids—From First Concepts to Modern Insights" Symmetry 17, no. 7: 1135. https://doi.org/10.3390/sym17071135
APA StyleRadić, D. (2025). Charge Density Waves in Solids—From First Concepts to Modern Insights. Symmetry, 17(7), 1135. https://doi.org/10.3390/sym17071135