Optimizing Hyperspectral Desertification Monitoring Through Metaheuristic-Enhanced Wavelet Packet Noise Reduction and Feature Band Selection
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
3. Methodology
3.1. Metaheuristic Search Algorithm
3.2. PSO Optimizing Globally Optimal Wavelet Packet
3.3. Modeling Method
3.3.1. PSO Optimization Random Forest Modeling
3.3.2. ResNet-Transformer Modeling
3.4. Evaluation Indicators
- (1)
- Overall accuracy rate:
- (2)
- The Kappa coefficient is as follows:
- (3)
- Cross-Entropy Loss is as follows:
4. Results
4.1. PSO for Wavelet Packet Optimization Process
4.2. Metaheuristic Algorithm Feature Bands Selection
4.2.1. Optimize Parameter Settings
4.2.2. Bands Selection Iteration Process
4.2.3. Bands and Runtime
4.2.4. Feature Bands Selected
4.2.5. Bands’ Importance
4.3. Desertification (Sand and Saline Soil) Information Extraction Based on the ResNet-Transformer Model
4.3.1. Model Evaluation
4.3.2. Loss in Training and Validation Sets
4.3.3. Confusion Matrix
4.3.4. Extraction in Land Desertification Areas
5. Discussion
5.1. Limitations of PSO-Optimized Wavelet Packet
5.2. Uncertainty in Feature Selection Bands
5.3. Confusion Between Saline and White Sands
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Verstraete, M.M. Defining desertification: A review. Clim. Change 1986, 9, 5–18. [Google Scholar] [CrossRef]
- Xie, J.; Lu, Z.; Feng, K. Effects of Climate Change and Human Activities on Aeolian Desertification Reversal in Mu Us Sandy Land, China. Sustainability 2022, 14, 1669. [Google Scholar] [CrossRef]
- Dregne, H.; Kassas, M.; Rozanov, B. A new assessment of the world status of desertification. Desertif. Control. Bull. 1991, 20, 7–18. [Google Scholar]
- Hulme, M.; Kelly, M. Exploring the links between desertification and climate change. Environ. Sci. Policy Sustain. Dev. 1993, 35, 4–45. [Google Scholar] [CrossRef]
- Su, Y.Z.; Zhao, W.Z.; Su, P.X.; Zhang, Z.H.; Wang, T.; Ram, R. Ecological effects of desertification control and desertified land reclamation in an oasis–desert ecotone in an arid region: A case study in Hexi Corridor, northwest China. Ecol. Eng. 2007, 29, 117–124. [Google Scholar] [CrossRef]
- Zhang, Z.; Huisingh, D. Combating desertification in China: Monitoring, control, management and revegetation. J. Clean. Prod. 2018, 182, 765–775. [Google Scholar] [CrossRef]
- Cai, J.; Yu, W.; Fang, Q.; Zi, R.; Fang, F.; Zhao, L. Extraction of Rocky Desertification Information in the Karst Area Based on the Red-NIR-SWIR Spectral Feature Space. Remote Sens. 2023, 15, 3056. [Google Scholar] [CrossRef]
- Gao, L.; Wang, D.; Zhuang, L.; Sun, X.; Huang, M.; Plaza, A. BS 3 LNet: A new blind-spot self-supervised learning network for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–18. [Google Scholar]
- West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar]
- Chen, L.; Tan, K.; Wang, X.; Chen, Y. A rapid soil Chromium pollution detection method based on hyperspectral remote sensing data. International J. Appl. Earth Obs. Geoinf. 2024, 128, 103759. [Google Scholar] [CrossRef]
- Feng, Q.; Ma, H.; Jiang, X.; Wang, X.; Cao, S. What has caused desertification in China? Sci. Rep. 2015, 5, 15998. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Ma, H.W.; Wang, Y.F.; Guo, E.L. Remote sensing monitoring of aeolian desertification in Ongniud Banner based on GEE. Arid. Zone Res. 2023, 40, 504–516. [Google Scholar]
- Guo, B.; Ye, W. An Optimal Monitoring Model of Desertification in Naiman Banner Based on Feature Space Utilizing Landsat8 OLI Image. IEEE Access 2020, 8, 4761–4768. [Google Scholar] [CrossRef]
- Liu, Y.; Ci, L. The evaluating indicator system of grass land desertification in Mu US sandy land. J. Desert Res. 1998, 18, 366–371. [Google Scholar]
- Chen, H.; Ma, Y.; Zhu, A.; Wang, Z.; Zhao, G.; Wei, Y. Soil salinity inversion based on differentiated fusion of satellite image and ground spectra. International J. Appl. Earth Obs. Geoinf. 2021, 101, 102360. [Google Scholar] [CrossRef]
- Uddin, M.P.; Mamun, M.A.; Hossain, M.A. PCA-based feature reduction for hyperspectral remote sensing image classification. IETE Tech. Rev. 2021, 38, 377–396. [Google Scholar] [CrossRef]
- Lavanya, K.; Obaid, J.A.; Sumaiya Thaseen, I.; Abhishek, K.; Saboo, K.; Paturkar, R. Terrain mapping of LandSat8 images using MNF and classifying soil properties using ensemble modelling. Int. J. Nonlinear Anal. Appl. 2020, 11, 527–541. [Google Scholar]
- Sadeghian, Z.; Akbari, E.; Nematzadeh, H.; Motameni, H. A review of feature selection methods based on meta-heuristic algorithms. J. Exp. Theor. Artif. Intell. 2023, 37, 1–51. [Google Scholar] [CrossRef]
- Zhao, H.; Bruzzone, L.; Guan, R.; Zhou, F.; Yang, C. Spectral-spatial genetic algorithm-based unsupervised band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9616–9632. [Google Scholar] [CrossRef]
- Sun, X.; Lin, P.; Shang, X.; Pang, H.; Fu, X. MOBS-TD: Multi-objective band selection with ideal solution optimization strategy for hyperspectral target detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 10032–10050. [Google Scholar] [CrossRef]
- Ou, X.; Wu, M.; Tu, B.; Zhang, G.; Li, W. Multi-objective unsupervised band selection method for hyperspectral images classification. IEEE Trans. Image Process. 2023, 32, 1952–1965. [Google Scholar] [CrossRef]
- Liu, W.; Huo, H.; Zhou, P.; Li, M.; Wang, Y. Research on Hyperspectral Modeling of Total Iron Content in Soil Applying LSSVR and CNN Based on Shannon Entropy Wavelet Packet Transform. Remote Sens. 2023, 15, 4681. [Google Scholar] [CrossRef]
- Bhandari, A.K.; Kumar, A.; Singh, G.K.; Soni, V. Performance study of evolutionary algorithm for different wavelet filters for satellite image denoising using sub-band adaptive threshold. J. Exp. Theor. Artif. Intell. 2016, 28, 71–95. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Zhu, Y.; Yang, X.; Hao, Y. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Glob. Ecol. Conserv. 2020, 22, e00971. [Google Scholar] [CrossRef]
- Li, P.; Chen, P.; Shen, J.; Deng, W.; Kang, X.; Wang, G.; Zhou, S. Dynamic Monitoring of Desertification in Ningdong Based on Landsat Images and Machine Learning. Sustainability 2022, 14, 7470. [Google Scholar] [CrossRef]
- Aldabbagh, Y.A.N.; Shafri, H.Z.M.; Mansor, S.; Ismail, M.H. Desertification prediction with an integrated 3D convolutional neural network and cellular automata in Al-Muthanna, Iraq. Environ. Monit. Assess. 2022, 94, 715. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wang, W.; Jiang, Y.; Wang, G.; Guo, F.; Li, Z.; Liu, B. Multi-Scale LBP Texture Feature Learning Network for Remote Sensing Interpretation of Land Desertification. Remote Sens. 2022, 14, 3486. [Google Scholar] [CrossRef]
- Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial transformer networks. Adv. Neural Inf. Process. Syst. 2015, 2, 2017–2025. [Google Scholar]
- Jiang, H.; Wu, R.; Zhang, Y.; Li, M.; Lian, H.; Fan, Y.; Yang, W.; Zhou, P. Classification Model of Grassland Desertification Based on Deep Learning. Sustainability 2024, 16, 8307. [Google Scholar] [CrossRef]
- Du, K.L.; Swamy, M.N.S. Search and Optimization by Metaheuristics. Techniques and Algorithms Inspired by Nature; Springer Nature: Berlin/Heidelberg, Germany, 2016; pp. 1–10. [Google Scholar]
- Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic algorithms: A comprehensive review. Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 185–231. [Google Scholar]
- Haldurai, L.; Madhubala, T.; Rajalakshmi, R. A study on genetic algorithm and its applications. Int. J. Comput. Sci. Eng. 2016, 4, 139–143. [Google Scholar]
- Yang, X.S.; Hossein Gandomi, A. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483. [Google Scholar] [CrossRef]
- Mayer, D.G.; Kinghorn, B.P.; Archer, A.A. Differential evolution—An easy and efficient evolutionary algorithm for model optimisation. Agric. Syst. 2005, 83, 315–328. [Google Scholar] [CrossRef]
- Schutte, J.F.; Reinbolt, J.A.; Fregly, B.J.; Haftka, R.T.; George, A.D. Parallel global optimization with the particle swarm algorithm. Int. J. Numer. Methods Eng. 2004, 61, 2296–2315. [Google Scholar] [CrossRef]
- Hosseini, H.; Syed-Yusof, S.K.B.; Fisal, N.; Farzamnia, A. Compressed wavelet packet-based spectrum sensing with adaptive thresholding for cognitive radio. Can. J. Electr. Comput. Eng. 2015, 38, 31–36. [Google Scholar] [CrossRef]
- Mingliang, L.; Keqi, W.; Laijun, S.; Jianfeng, Z. A new fault diagnosis method for high voltage circuit breakers based on wavelet packet and radical basis function neural network. Open Cybern. Syst. J. 2014, 8, 410–417. [Google Scholar]
- Liu, D.; Sun, K. Random forest solar power forecast based on classification optimization. Energy 2019, 187, 115940. [Google Scholar] [CrossRef]
- Das, O.; Bagci Das, D. Smart machine fault diagnostics based on fault specified discrete wavelet transform. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 55. [Google Scholar] [CrossRef]
- Yousef, A.N.; Behzad, T.; Abolghasem, K.R.; Shahram, S.; Kaveh, K.; Amin, J. A combined Parzen-wavelet approach for detection of vuggy zones in fractured carbonate reservoirs using petrophysical logs. J. Pet. Sci. Eng. 2014, 119, 1–7. [Google Scholar] [CrossRef]
- Bannari, A.; El-Battay, A.; Bannari, R.; Rhinane, H. Sentinel-MSI VNIR and SWIR Bands Sensitivity Analysis for Soil Salinity Discrimination in an Arid Landscape. Remote Sens. 2018, 10, 855. [Google Scholar] [CrossRef]
- Chapman, J.E.; Rothery, D.A.; Francis, P.W.; Pontual, A. Remote sensing of evaporite mineral zonation in salt flats (salars). Remote Sens. 1989, 10, 245–255. [Google Scholar] [CrossRef]
- Drake, N.A. Reflectance spectra of evaporite minerals (400–2500 nm): Applications for remote sensing. Int. J. Remote Sens. 1995, 16, 2555–2571. [Google Scholar] [CrossRef]
- GB/T 24255-2009; Technical Specifications for Monitoring Desertified Land. Standards Press of China: Beijing, China, 2009.
- Verma, K.S.; Saxena, R.K.; Barthwal, A.K.; Deshmukh, S.N. Remote sensing technique for mapping salt affected soils. Int. J. Remote Sens. 1994, 15, 1901–1914. [Google Scholar] [CrossRef]
Parameters | GF-5B AHSI |
---|---|
Orbital altitude | 705 km |
Revisit cycle | 51 days |
Spectral range | 0.4–2.5 μm |
Spatial resolution | 30 m |
Swath width | 60 km |
Spectral resolution | VNIR: 5 nm SWIR: 10 nm |
Method | Particles Size | Max Iteration | W | Acceleration Coefficient | Topology | Classifier | Evaluation Indicator |
---|---|---|---|---|---|---|---|
Wavelet Packet | 5 | 100 | 0.9 | c1 = 0.5 c2 = 0.5 | Global Topology | Decision tree | Kappa |
RF Hyperparameter Tuning | 10 | 100 | 0.9 | c1 = 0.5 c2 = 0.5 | Global Topology | Random forest | Validation set accuracy |
Hyperparameters | Value |
---|---|
Batch size | 1000 |
Loss | CrossEntropyLoss |
Weight decay | L2 regularization |
Optimizer | Adam |
Learning rate | 0.0005 |
Learning rate decay | 0.2 |
Max epochs | 500 |
Step size | 200 |
Dropout | 0.1 |
Spectral Pretreatments | Optimal Decomposition Threshold | Optimal Decomposition Level | Optimal Wavelet Basis Function |
---|---|---|---|
OS | 0.043 | 4 | Bior3.1 |
FD | 5 | 4 | Sym2 |
CR | 0.076 | 2 | Bior3.1 |
Method | Number of Iterations | Classifiers | Individuals | Fitness Function | Threshold | Bounds | Special Parameter |
---|---|---|---|---|---|---|---|
GA | 1000 | Random forest | 10 | Cost | 0.5 | upper bound = 1 lower bound = 0 | Crossover rate = 0.8 Mutation rate = 0.01 |
BA | 1000 | Random forest | 10 | Cost | 0.5 | upper bound = 1 lower bound = 0 | maximum frequency = 2 minimum frequency = 0 maximum loudness = 2 maximum pulse rate = 1 flight rate alpha = 0.9 pulse rate gamma = 0.9 |
PSO | 1000 | Random forest | 10 | Cost | 0.5 | upper bound = 1 lower bound = 0 | inertia weight = 0.9 c1 = 0.5 c2 = 0.5 |
DE | 1000 | Random forest | 10 | Cost | 0.5 | upper bound = 1 lower bound = 0 | crossover rate = 0.9 constant factor = 0.5 |
Classifiers | Spectral Pretreatments | Whether it Undergoes WP | Feature Selection Methods | Kappa | Validation Accuracy |
---|---|---|---|---|---|
RF | OS | NO | - | 0.9398 | 0.9422 |
GA | 0.9464 | 0.9558 | |||
YES | - | 0.9504 | 0.9592 | ||
GA | 0.9545 | 0.9626 | |||
FD | NO | - | 0.9714 | 0.9734 | |
GA | 0.9746 | 0.9768 | |||
YES | - | 0.9720 | 0.9762 | ||
GA | 0.9746 | 0.9782 | |||
CR | NO | - | 0.9173 | 0.9320 | |
DE | 0.9298 | 0.9422 | |||
YES | - | 0.9188 | 0.9319 | ||
DE | 0.9338 | 0.9456 | |||
Resnet -Transformer | OS | NO | - | 0.9690 | 0.9745 |
GA | 0.9768 | 0.9809 | |||
YES | - | 0.9721 | 0.9771 | ||
GA | 0.9772 | 0.9813 | |||
FD | NO | - | 0.9764 | 0.9788 | |
GA | 0.9788 | 0.9801 | |||
YES | - | 0.9801 | 0.9815 | ||
GA | 0.9876 | 0.9898 | |||
CR | NO | - | 0.9458 | 0.9515 | |
DE | 0.9513 | 0.9548 | |||
YES | - | 0.9525 | 0.9610 | ||
DE | 0.9563 | 0.9619 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Xiao, J.; Liu, R.; Liu, Y.; Tao, Y.; Zhang, T.; Gan, F.; Zhou, P.; Dong, Y.; Zhou, Q. Optimizing Hyperspectral Desertification Monitoring Through Metaheuristic-Enhanced Wavelet Packet Noise Reduction and Feature Band Selection. Remote Sens. 2025, 17, 2444. https://doi.org/10.3390/rs17142444
Liu W, Xiao J, Liu R, Liu Y, Tao Y, Zhang T, Gan F, Zhou P, Dong Y, Zhou Q. Optimizing Hyperspectral Desertification Monitoring Through Metaheuristic-Enhanced Wavelet Packet Noise Reduction and Feature Band Selection. Remote Sensing. 2025; 17(14):2444. https://doi.org/10.3390/rs17142444
Chicago/Turabian StyleLiu, Weichao, Jiapeng Xiao, Rongyuan Liu, Yan Liu, Yunzhu Tao, Tian Zhang, Fuping Gan, Ping Zhou, Yuanbiao Dong, and Qiang Zhou. 2025. "Optimizing Hyperspectral Desertification Monitoring Through Metaheuristic-Enhanced Wavelet Packet Noise Reduction and Feature Band Selection" Remote Sensing 17, no. 14: 2444. https://doi.org/10.3390/rs17142444
APA StyleLiu, W., Xiao, J., Liu, R., Liu, Y., Tao, Y., Zhang, T., Gan, F., Zhou, P., Dong, Y., & Zhou, Q. (2025). Optimizing Hyperspectral Desertification Monitoring Through Metaheuristic-Enhanced Wavelet Packet Noise Reduction and Feature Band Selection. Remote Sensing, 17(14), 2444. https://doi.org/10.3390/rs17142444