Clustered Rainfall-Induced Landslides in Jiangwan Town, Guangdong, China During April 2024: Characteristics and Controlling Factors
Abstract
1. Introduction
2. Background
2.1. Study Area
2.2. The Rainstorm Event
3. Data and Methods
3.1. Data
3.2. Landslide Mapping and Validation
- (1)
- Slope Constraint: Incorporating terrain factors, a slope threshold (>5°) applied to exclude misclassified areas in flat or anomalous terrain.
- (2)
- Area Threshold Filtering: Isolated noise patches smaller than the minimum expected landslide area (100 m2) were removed.
- (3)
- Morphological Operations: Erosion and dilation operations were performed to:
- Enhance boundary delineation.
- Fill holes within pixel-dense regions.
- Improve the spatial coherence and geometric integrity of landslide patches.
3.3. Landslide Distribution Pattern Analysis
3.4. Landslide Susceptibility Modeling
3.4.1. Conditioning Factors
3.4.2. Mapping Units
3.4.3. Modeling Approach
- (1)
- LR
- (2)
- Support Vector Machine (SVM)
- (3)
- RF
- (4)
- XGBoost
4. Results
4.1. Landslide Inventory
4.2. Characteristics of Landslide Development
4.2.1. Elevation
4.2.2. Slope
4.2.3. Aspect
4.2.4. Rainfall
4.3. Landslide Susceptibility Mapping
5. Discussion
5.1. Interpretability of Machine Learning Models
5.2. Soil Moisture and Precipitation Response
6. Conclusions
- (1)
- Employing NDVI differencing of pre- and post-rainfall imagery coupled with threshold segmentation enabled rapid automated extraction of landslides in Jiangwan Town, a total of 1426 landslides were identified, covering an aggregate area of 4.56 km2.
- (2)
- Landslides predominantly exhibited small-to-medium scales with significant clustering effects, forming a linear distribution pattern aligned northeast–southwest along river valleys. Spatial analysis revealed concentrated occurrences on slopes at 200–300 m elevation with 20–30° gradients.
- (3)
- Landslide susceptibility analysis using LR, SVM, RF, and XGBoost demonstrated superior classification performance for the RF and XGBoost models. High-susceptibility zones were primarily distributed on valley slopes. SHAP-based quantification identified elevation, precipitation, profile curvature, and topographic wetness index as dominant controlling factors.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Q.; Xu, F.; Pu, C.; Li, W.; Fan, X.; Dong, X.; Wang, X.; Li, Z. Preliminary Analysis of Extreme Rainfall-Induced Cluster Landslides in Jiangwan Township, Shaoguan, Guangdong, April 2024. Geomat. Inf. Sci. Wuhan Univ. (In Chinese). 2024, 49, 1264–1274. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, L.; Qin, Y.; Yang, T.; Chen, S. Clustered landslides induced by rainfall in Jiangwan Town, Shaoguan City, Guangdong Province, China. Landslides 2025, 22, 1325–1338. [Google Scholar] [CrossRef]
- Chen, L.; Xiang, X.; Wen, H.; Xiao, J.; Song, C.; Zhou, X.; Yu, J. Improve unsupervised Learning-based landslides detection by band ratio processing of RGB optical images: A case study on rainfall-induced landslide clusters. Geomat. Nat. Hazards Risk 2024, 15, 2363406. [Google Scholar] [CrossRef]
- Kovács, I.P.; Tessari, G.; Ogushi, F.; Riccardi, P.; Ronczyk, L.; Kovács, D.M.; Lóczy, D.; Pasquali, P. Do We Need a Higher Resolution? Case Study: Sentinel-1-Based Change Detection of the 2018 Hokkaido Landslides, Japan. Remote Sens. 2022, 14, 1350. [Google Scholar] [CrossRef]
- Aman, M.A.; Chu, H.-J.; Yunus, A.P. Exploration of Multi-Decadal Landslide Frequency and Vegetation Recovery Conditions Using Remote-Sensing Big Data. Earth Syst. Environ. 2025, 9, 197–213. [Google Scholar] [CrossRef]
- Notti, D.; Cignetti, M.; Godone, D.; Cardone, D.; Giordan, D. The unsuPervised shAllow laNdslide rapiD mApping: PANDA method applied to severe rainfalls in northeastern appenine (Italy). Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103806. [Google Scholar] [CrossRef]
- Wang, H.; Fan, S.; Huang, X.; Qiu, P.; Yu, J.; Li, J. Research on Real-Time Automatic Landslide Recognition Technology Based on Optical Image. Spacecr. Recovery Remote Sens. 2024, 45, 147–160. (In Chinese) [Google Scholar] [CrossRef]
- Yang, M.; Li, S.; Feng, Z. Post-seismic landslide extraction by combining texture analysis and emissivity estimating. Natl. Remote Sens. Bull. 2018, 22, 212–223. (In Chinese) [Google Scholar]
- Mohan, A.; Singh, A.K.; Kumar, B.; Dwivedi, R. Review on remote sensing methods for landslide detection using machine and deep learning. Trans. Emerging Telecommun. Technol. 2021, 32, e3998. [Google Scholar] [CrossRef]
- Yang, Z.; Qi, W.; Xu, C.; Shao, X. Exploring deep learning for landslide mapping: A comprehensive review. China Geol. 2024, 7, 330–350. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Wang, Y.; Chen, G.; Liu, S. Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China. Remote Sens. Environ. 2014, 152, 291–301. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A.; Nan, X.; Zhang, Z.; Lei, G. Postearthquake Landslides Mapping From Landsat-8 Data for the 2015 Nepal Earthquake Using a Pixel-Based Change Detection Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1758–1768. [Google Scholar] [CrossRef]
- Sun, D.; Xu, J.; Wen, H.; Wang, D. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest. Eng. Geol. 2021, 281, 105972. [Google Scholar] [CrossRef]
- Goyes-Peñafiel, P.; Hernandez-Rojas, A. Landslide susceptibility index based on the integration of logistic regression and weights of evidence: A case study in Popayan, Colombia. Eng. Geol. 2021, 280, 105958. [Google Scholar] [CrossRef]
- Selamat, S.N.; Abd Majid, N.; Taha, M.R.; Osman, A. Landslide Susceptibility Model Using Artificial Neural Network (ANN) Approach in Langat River Basin, Selangor, Malaysia. Land 2022, 11, 833. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, J.; Zhou, C.; Wang, Y.; Huang, J.; Zhu, L. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 2020, 17, 217–229. [Google Scholar] [CrossRef]
- Sun, D.; Wen, H.; Wang, D.; Xu, J. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology 2020, 362, 107201. [Google Scholar] [CrossRef]
- Shan, Y.; Xu, Z.; Zhou, S.; Lu, H.; Yu, W.; Li, Z.; Cao, X.; Li, P.; Li, W. Landslide Hazard Assessment Combined with InSAR Deformation: A Case Study in the Zagunao River Basin, Sichuan Province, Southwestern China. Remote Sens. 2024, 16, 99. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Teke, A. Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost). Arab. J. Sci. Eng. 2022, 47, 7367–7385. [Google Scholar] [CrossRef]
- Pham, B.T.; Nguyen-Thoi, T.; Qi, C.; Phong, T.V.; Dou, J.; Ho, L.S.; Le, H.V.; Prakash, I. Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. Catena 2020, 195, 104805. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Luo, H.; He, J.; Cheung, R.W.M. AI-powered landslide susceptibility assessment in Hong Kong. Eng. Geol. 2021, 288, 106103. [Google Scholar] [CrossRef]
- Hakim, W.L.; Rezaie, F.; Nur, A.S.; Panahi, M.; Khosravi, K.; Lee, C.-W.; Lee, S. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. J. Environ. Manag. 2022, 305, 114367. [Google Scholar] [CrossRef]
- Shang, H.; Su, L.; Liu, Y.; Tsangaratos, P.; Ilia, I.; Chen, W.; Cui, S.; Duan, Z. Assessment of the effects of characterization methods selection on the landslide susceptibility: A comparison between logistic regression (LR), naive bayes (NB) and radial basis function network (RBF Network). Bull. Eng. Geol. Environ. 2025, 84, 134. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Huang, F.; Mao, D.; Jiang, S.-H.; Zhou, C.; Fan, X.; Zeng, Z.; Catani, F.; Yu, C.; Chang, Z.; Huang, J.; et al. Uncertainties in landslide susceptibility prediction modeling: A review on the incompleteness of landslide inventory and its influence rules. Geosci. Front. 2024, 15, 101886. [Google Scholar] [CrossRef]
- Liu, X.; Shao, S.; Zhang, C.; Shao, S. Effect of different mapping units, spatial resolutions, and machine learning algorithms on landslide susceptibility mapping at the township scale. Environ. Earth Sci. 2025, 84, 138. [Google Scholar] [CrossRef]
- Mao, Y.; Li, Y.; Teng, F.; Sabonchi, A.K.S.; Azarafza, M.; Zhang, M. Utilizing Hybrid Machine Learning and Soft Computing Techniques for Landslide Susceptibility Mapping in a Drainage Basin. Water 2024, 16, 380. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B.; Li, Y.; Catani, F.; Pourghasemi, H.R. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China. Comput. Geosci. 2018, 112, 23–37. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, J.; Lin, W. Zoning strategies for ecological restoration in the karst region of Guangdong province, China: A perspective from the “social-ecological system”. Front. Environ. Sci. 2024, 12, 1369635. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; He, C.; Wu, X.; Kong, Z.; Li, X. China national digital geological map (public version at 1: 200,000 scale) spatial database. Geol. China 2019, 46, 1–10. [Google Scholar]
- Wu, J.; Zha, X.; Chen, S.; Mao, L.; Huang, B. Variations of Rainfall Erosivity of Different Magnitudes in Shaoguan from 1951 to 2018. J. Soil Water Conserv. 2021, 35, 21–26. (In Chinese) [Google Scholar] [CrossRef]
- Shan, Y.; Dai, X.; Li, W.; Yang, Z.; Wang, Y.; Qu, G.; Liu, W.; Ren, J.; Li, C.; Liang, S.; et al. Detecting Spatial-Temporal Changes of Urban Environment Quality by Remote Sensing-Based Ecological Indices: A Case Study in Panzhihua City, Sichuan Province, China. Remote Sens. 2022, 14, 4137. [Google Scholar] [CrossRef]
- Li, R.; Ye, S.; Bai, Z.; Nedzved, A.; Tuzikov, A. Moderate Red-Edge vegetation index for High-Resolution multispectral remote sensing images in urban areas. Ecol. Indic. 2024, 167, 112645. [Google Scholar] [CrossRef]
- Fang, C.; Fan, X.; Wang, X.; Nava, L.; Zhong, H.; Dong, X.; Qi, J.; Catani, F. A globally distributed dataset of coseismic landslide mapping via multi-source high-resolution remote sensing images. Earth Syst. Sci. Data 2024, 16, 4817–4842. [Google Scholar] [CrossRef]
- Ma, H.; Wang, F.; Fu, Z.; Feng, Y.; You, Q.; Li, S. Characterizing the clustered landslides triggered by extreme rainfall during the 2024 typhoon Gaemi in Zixing City, Hunan Province, China. Landslides 2025, 22, 2311–2329. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Gao, L.; Chen, X.; Ma, S.; Yuan, R. Spatial Clustering and distribution characteristics of large landslides in the Yalong River Basin, China. Geomorphology 2025, 475, 109667. [Google Scholar] [CrossRef]
- Sun, D.; Gu, Q.; Wen, H.; Xu, J.; Zhang, Y.; Shi, S.; Xue, M.; Zhou, X. Assessment of landslide susceptibility along mountain highways based on different machine learning algorithms and mapping units by hybrid factors screening and sample optimization. Gondwana Res. 2023, 123, 89–106. [Google Scholar] [CrossRef]
- Alvioli, M.; Guzzetti, F.; Marchesini, I. Parameter-free delineation of slope units and terrain subdivision of Italy. Geomorphology 2020, 358, 107124. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, X.; Tang, L.; Yin, Y.; Liu, D.; Zhang, Y. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. Gondwana Res. 2022, 109, 1–17. [Google Scholar] [CrossRef]
- Lombardo, L.; Mai, P.M. Presenting logistic regression-based landslide susceptibility results. Eng. Geol. 2018, 244, 14–24. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Wu, J.; Chen, S.; Xu, H.; Sun, Z.; Yang, G.; Jiang, J.; Chen, J. Voltage Sag Source Identification Method Based on VMD and IAO-SVM. Guangdong Electr. Power 2023, 36, 59–67. (In Chinese) [Google Scholar] [CrossRef]
- Chauhan, V.K.; Dahiya, K.; Sharma, A. Problem formulations and solvers in linear SVM: A review. Artif. Intell. Rev. 2019, 52, 803–855. [Google Scholar] [CrossRef]
- Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random forests and decision trees. Int. J. Comput. Sci. Issues 2012, 9, 272. [Google Scholar]
- Yao, H.; Li, B.; Huang, Z. Small Signal Stability Assessment and Correction Control of Power System Based on Random Forest Algorithm. Guangdong Electr. Power 2023, 36, 60–69. (In Chinese) [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Qiu, H.; Hu, S.; Yang, D.; He, Y.; Pei, Y.; Kamp, U. Comparing landslide size probability distribution at the landscape scale (Loess Plateau and the Qinba Mountains, Central China) using double Pareto and inverse gamma. Bull. Eng. Geol. Environ. 2021, 80, 1035–1046. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslide inventories and their statistical properties. Earth Surf. Process. Landf. 2004, 29, 687–711. [Google Scholar] [CrossRef]
- Qiu, H.; Su, L.; Tang, B.; Yang, D.; Ullah, M.; Zhu, Y.; Kamp, U. The effect of location and geometric properties of landslides caused by rainstorms and earthquakes. Earth Surf. Process. Landf. 2024, 49, 2067–2079. [Google Scholar] [CrossRef]
- Lee, S.; Ryu, J.-H.; Kim, I.-S. Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: Case study of Youngin, Korea. Landslides 2007, 4, 327–338. [Google Scholar] [CrossRef]
- Wei, A.; Ke, H.; He, S.; Jiang, M.; Yao, Z.; Yi, J. Enhanced Landslide Risk Evaluation in Hydroelectric Reservoir Zones Utilizing an Improved Random Forest Approach. Water 2025, 17, 946. [Google Scholar] [CrossRef]
- Ke, C.; Sun, P.; Zhang, S.; Li, R.; Sang, K. Influences of non-landslide sampling strategies on landslide susceptibility mapping: A case of Tianshui city, Northwest of China. Bull. Eng. Geol. Environ. 2025, 84, 123. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Zhang, J.; Sun, D.; Zhou, X.; Mi, C.; Wen, H. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J. Environ. Manag. 2023, 332, 117357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zeng, R.; Meng, X.; Zhao, S.; Wang, S.; Ma, J.; Wang, H. Effects of changes in soil properties caused by progressive infiltration of rainwater on rainfall-induced landslides. Catena 2023, 233, 107475. [Google Scholar] [CrossRef]
- Liu, W.; Bai, R.; Sun, X.; Yang, F.; Zhai, W.; Su, X. Rainfall- and Irrigation-Induced Landslide Mechanisms in Loess Slopes: An Experimental Investigation in Lanzhou, China. Atmosphere 2024, 15, 162. [Google Scholar] [CrossRef]
Data Type | LSM Factors | Scale | Sources of Data |
---|---|---|---|
Optical satellite imagery | — | 3 × 3 m | https://www.planet.com/explorer (accessed on 9 June 2024) |
Copernicus DEM | Elevation | 30 × 30 m | https://panda.copernicus.eu/panda (accessed on 15 June 2024) |
Slope | |||
Aspect | |||
Curvature | |||
TWI | |||
Relief | |||
River | Distance from the river | 1:250,000 | 1:250,000 National Fundamental Geographic Database of China National Catalogue Service For Geographic Information |
Lithology | Lithology | 1:200,000 | 1:20,000 Digital Geological Map Spatial Database of China [30] |
Precipitation | Precipitation | — | National Meteorological Science Data Center (China) https://data.cma.cn/site/index.html (accessed on 14 August 2024) |
Model | Number of Trees | Max Depth | Min Samples Split | Min Samples Leaf | Learning Rate | Subsample Ratio |
---|---|---|---|---|---|---|
RF | 200 | Unlimited | 5 | 2 | — | — |
XGBoost | 100 | 6 | — | — | 0.1 | 0.8 |
Model | Landslide Susceptibility Level | Number of Slope Units | Zone Area (km2) | Area Percentage A | Number of Landslides | Landslide Percentage N | Ratio (N/A) |
---|---|---|---|---|---|---|---|
LR | Very low | 994 | 86.19 | 38.15% | 56 | 3.96% | 0.10 |
Low | 638 | 48.95 | 21.66% | 124 | 8.77% | 0.40 | |
Medium | 535 | 43.29 | 19.16% | 340 | 24.05% | 1.26 | |
High | 420 | 31.89 | 14.11% | 510 | 36.07% | 2.56 | |
Very high | 239 | 15.63 | 6.92% | 384 | 27.16% | 3.93 | |
SVM | Very low | 1219 | 96.88 | 42.88% | 71 | 5.02% | 0.12 |
Low | 560 | 45.79 | 20.26% | 139 | 9.83% | 0.49 | |
Medium | 408 | 34.66 | 15.34% | 271 | 19.17% | 1.25 | |
High | 312 | 23.99 | 10.62% | 320 | 22.63% | 2.13 | |
Very high | 327 | 24.63 | 10.90% | 613 | 43.35% | 3.98 | |
RF | Very low | 1336 | 108.94 | 48.21% | 72 | 5.09% | 0.11 |
Low | 603 | 45.58 | 20.17% | 186 | 13.15% | 0.65 | |
Medium | 342 | 27.44 | 12.14% | 221 | 15.63% | 1.29 | |
High | 301 | 24.89 | 11.02% | 404 | 28.57% | 2.59 | |
Very high | 244 | 19.11 | 8.46% | 531 | 37.55% | 4.44 | |
XGBoost | Very low | 1695 | 130.72 | 57.85% | 153 | 10.82% | 0.19 |
Low | 357 | 28.53 | 12.63% | 189 | 13.37% | 1.06 | |
Medium | 212 | 19.41 | 8.59% | 171 | 12.09% | 1.41 | |
High | 212 | 18.48 | 8.18% | 218 | 15.42% | 1.88 | |
Very high | 350 | 28.80 | 12.75% | 683 | 48.30% | 3.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, R.; Shan, Y.; Wang, L.; Peng, D.; Qu, G.; Qin, J.; He, G.; Fan, L.; Li, W. Clustered Rainfall-Induced Landslides in Jiangwan Town, Guangdong, China During April 2024: Characteristics and Controlling Factors. Remote Sens. 2025, 17, 2635. https://doi.org/10.3390/rs17152635
Wei R, Shan Y, Wang L, Peng D, Qu G, Qin J, He G, Fan L, Li W. Clustered Rainfall-Induced Landslides in Jiangwan Town, Guangdong, China During April 2024: Characteristics and Controlling Factors. Remote Sensing. 2025; 17(15):2635. https://doi.org/10.3390/rs17152635
Chicago/Turabian StyleWei, Ruizeng, Yunfeng Shan, Lei Wang, Dawei Peng, Ge Qu, Jiasong Qin, Guoqing He, Luzhen Fan, and Weile Li. 2025. "Clustered Rainfall-Induced Landslides in Jiangwan Town, Guangdong, China During April 2024: Characteristics and Controlling Factors" Remote Sensing 17, no. 15: 2635. https://doi.org/10.3390/rs17152635
APA StyleWei, R., Shan, Y., Wang, L., Peng, D., Qu, G., Qin, J., He, G., Fan, L., & Li, W. (2025). Clustered Rainfall-Induced Landslides in Jiangwan Town, Guangdong, China During April 2024: Characteristics and Controlling Factors. Remote Sensing, 17(15), 2635. https://doi.org/10.3390/rs17152635