Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (590)

Search Parameters:
Keywords = expansion displacement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3497 KB  
Article
Investigation of Geometrical and Numerical Parameters on Ultra-High-Performance Concrete Link Slab Performance Using Finite Element Modeling
by Homa Haghighi and Girum Urgessa
Appl. Mech. 2026, 7(1), 14; https://doi.org/10.3390/applmech7010014 - 4 Feb 2026
Viewed by 38
Abstract
Traditional expansion joints in bridge structures are prone to durability problems, such as leakage, corrosion, and high maintenance demands, which can significantly reduce service life. To overcome these limitations, ultra-high-performance concrete (UHPC) link slabs have emerged as an effective jointless solution; however, their [...] Read more.
Traditional expansion joints in bridge structures are prone to durability problems, such as leakage, corrosion, and high maintenance demands, which can significantly reduce service life. To overcome these limitations, ultra-high-performance concrete (UHPC) link slabs have emerged as an effective jointless solution; however, their mechanical performance and sensitivity to key design and modeling parameters are not yet fully understood. This study presents a nonlinear finite element investigation of UHPC link slabs using the Concrete Damaged Plasticity (CDP) model in ABAQUS. A baseline model, validated against the experimental results, was established with a link slab length of 1100 mm and representative material and detailing properties. A systematic sensitivity analysis was then performed by varying five geometrical parameters (link slab length and thickness, debonding length, reinforcement diameter, and reinforcement spacing) and five numerical/material parameters (non-debonding and debonding interface friction coefficient, UHPC and normal concrete compressive strength, and steel yield strength). For each case, the load–displacement response was examined through initial stiffness (K0), yield and peak load–deformation values (Py, Δy and Pu, Δu), and ductility ratio (μ). The results highlight the dominant role of reinforcement detailing; larger bar diameters and closer spacing substantially increased stiffness and strength while maintaining ductility. Debonding length emerged as a critical tuning parameter, with longer debonding improving ductility but slightly reducing strength. Slab thickness primarily influenced stiffness, whereas overall length showed minor effects on peak capacity. On the numerical side, steel yield strength proved to be the most influential input, affecting all response measures, while the non-debonding interface friction coefficient strongly governed yield capacity. Variations in the debonding friction coefficient, UHPC compressive strength, and normal concrete strength exhibited secondary influence within the tested ranges. Overall, the findings provide practical guidance for both the designing and detailing of UHPC link slabs and the calibration of FEM (finite element modeling) models. By clarifying which parameters most strongly govern stiffness, strength, and ductility, this study supports more reliable structural design and efficient numerical modeling of UHPC link slabs in accelerated bridge construction applications. Full article
(This article belongs to the Topic Advances on Structural Engineering, 3rd Edition)
24 pages, 7500 KB  
Review
Reviews of Efficient Green Exploitation Theories and Technologies for Organic-Rich Shale
by Mengyi Wang, Lihong Yang, Hao Zeng, Yuan Wang and Chaofan Zhu
Energies 2026, 19(3), 798; https://doi.org/10.3390/en19030798 - 3 Feb 2026
Viewed by 73
Abstract
Organic-rich shale, as a significant alternative energy source, possesses abundant resources. Classified by maturity, it comprises three categories: medium-high maturity shale oil, medium-low maturity shale oil, and oil shale. Medium-high maturity shale oil faces challenges such as tight reservoirs and poor fluidity; medium-low [...] Read more.
Organic-rich shale, as a significant alternative energy source, possesses abundant resources. Classified by maturity, it comprises three categories: medium-high maturity shale oil, medium-low maturity shale oil, and oil shale. Medium-high maturity shale oil faces challenges such as tight reservoirs and poor fluidity; medium-low maturity shale oil is characterized by a high proportion of retained hydrocarbons and poor mobility; and oil shale requires high-temperature conversion. Addressing the inherent characteristics of these three resource types, this paper systematically reviews the theoretical foundations and key technologies from two dimensions: “CO2 injection for medium-high maturity shale oil extraction” and “in situ conversion of medium-low maturity shale/oil shale”. The results indicate that CO2 injection technology for medium-high maturity shale oil utilizes its supercritical diffusion properties to reduce miscibility pressure by 40–60% compared to conventional reservoirs, efficiently displacing crude oil in nanopores while establishing a geological storage system for greenhouse gases, thereby pioneering an integrated “displacement–drive–storage” model for carbon-reduced oil production. The autothermic pyrolysis in situ conversion process for medium-low maturity shale/oil shale significantly reduces costs by leveraging the oxidation latent heat of kerogen. Under temperature and pressure conditions of 350–450 °C, the shale pore network expansion rate reaches 200–300%, with permeability increasing by two orders of magnitude. Assisted natural gas injection further optimizes the thermal field distribution within the reservoir. Future research should focus on two key directions: synergistic cost reduction and carbon sequestration through CO2 injection, and the matching of in situ conversion with complex fracture networks. This study delineates key technological pathways for the low-carbon and efficient development of different types of organic-rich shale, contributing to energy security. Full article
Show Figures

Figure 1

28 pages, 15765 KB  
Article
Monitoring Changes in Urban–Agricultural–Ecological Space Competition and Assessing Its Impact on Ecosystem Service Value in China’s Key Agricultural Regions
by Xuyang Chen, Hongen Hu, Ziao Xu and Tianyi Cai
Land 2026, 15(2), 260; https://doi.org/10.3390/land15020260 - 3 Feb 2026
Viewed by 80
Abstract
Human activity-driven territorial spatial competition profoundly affects ecosystem service value (ESV). However, the spatiotemporal patterns of “urban–agricultural–ecological space” (UAES) competition in China’s key agricultural regions and their quantitative effects on ESV have not been systematically investigated. Therefore, this study first constructed a “UAES [...] Read more.
Human activity-driven territorial spatial competition profoundly affects ecosystem service value (ESV). However, the spatiotemporal patterns of “urban–agricultural–ecological space” (UAES) competition in China’s key agricultural regions and their quantitative effects on ESV have not been systematically investigated. Therefore, this study first constructed a “UAES competition–ESV response” analytical framework and selected Henan Province, a representative key agricultural region in China, as the study area. Subsequently, utilizing land-use remote sensing monitoring data from five periods (1980 to 2020), this study systematically analyzed the spatiotemporal competition characteristics of UAES in Henan Province and its impact on ESV using GIS spatial analysis method, the Geo-informatic Tupu method, and improved ESV evaluation model. The results indicate that from 1980 to 2020, Henan Province experienced a gradual shrinkage of agricultural space, rapid urban expansion, and a slight decline in ecological space. Urban encroachment on agricultural land is the primary spatial competition manifestation, which is most pronounced in the core area of the Central Plains Urban Agglomeration. This urban expansion and subsequent agricultural encroachment on ecological land are key ESV loss drivers, causing losses of USD 812.41 million and USD 1663.24 million, respectively. The indirect ESV loss from cropland displacement substantially exceeded direct losses from urban expansion. This study provides critical insights into the trade-offs between urban expansion, agricultural development, and ecological protection in agricultural regions undergoing urbanization. The findings inform spatial planning and ecological conservation strategies in Henan Province and other similar agricultural regions. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

15 pages, 2699 KB  
Article
Preliminary Diagnostic Seismic Analysis of an In-Service Curved Prestressed Concrete Box Girder Bridge with a Mid-Span Hinge
by Stefano Bozza, Alessandro Mazelli, Marco Fasan, Eric Puntel, Natalino Gattesco and Chiara Bedon
Buildings 2026, 16(3), 623; https://doi.org/10.3390/buildings16030623 - 2 Feb 2026
Viewed by 102
Abstract
Since a significant part of the Italian territory was not seismically classified until 2003, most existing bridges have been designed—for decades—disregarding earthquake-induced excitations. In fact, this means that load-bearing devices and shear keys of presently in-service infrastructures may not be up to current [...] Read more.
Since a significant part of the Italian territory was not seismically classified until 2003, most existing bridges have been designed—for decades—disregarding earthquake-induced excitations. In fact, this means that load-bearing devices and shear keys of presently in-service infrastructures may not be up to current codes, both in terms of resistance and displacement capacity. Robust investigations are hence required for verifications and possible retrofit. In this study, the seismic behaviour of a case study post-tensioned concrete bridge built in the 1980s is numerically analysed. The examined structure is 440 m long and composed of nine spans, built with precast segments using the balance cantilever construction method. The deck is divided into two parts connected by a hinged joint in the middle of the central span, obtained with three shear keys and originally designed to allow for thermal expansion only. Most importantly, the mid-span hinge, the end joints and the bearing devices were originally designed without considering the effects of seismic action. In order to preliminarily investigate the performance of devices and joints, the case study bridge is analysed by means of non-linear dynamic time history simulations, formulating different hypotheses about the non-linear behaviour of the load bearings. Forces and displacements over time are obtained for a set of seven accelerograms, and maximum values are compared to the capacity of the bridge devices. Results are then critically discussed. Full article
Show Figures

Figure 1

23 pages, 6514 KB  
Article
Influence of Conductors on the Dynamic Responses of Reinforced Concrete Pole–Conductor Systems Under Seismic Action
by Yijun Yan, Ke Wang, Jiang He, Teng Ma, Xiulan Li, Chaojie Xin and Guifeng Zhao
Buildings 2026, 16(3), 618; https://doi.org/10.3390/buildings16030618 - 2 Feb 2026
Viewed by 118
Abstract
With the expansion of the power system scale and the increasing complexity of distribution network structures, the safety of power facilities has become increasingly prominent under natural disasters, such as earthquakes. As the core support of distribution networks, the seismic performance of reinforced [...] Read more.
With the expansion of the power system scale and the increasing complexity of distribution network structures, the safety of power facilities has become increasingly prominent under natural disasters, such as earthquakes. As the core support of distribution networks, the seismic performance of reinforced concrete pole–conductor systems directly affects the safe operation of power systems. Compared with single-pole structures, the coupling effect between poles and conductors significantly complicates the mechanical characteristics of the system. This paper focuses on a typical 10 kV distribution line-reinforced concrete pole–conductor system. A refined “three-pole two-conductor” finite element model considering the geometric nonlinearity of conductors is established via ANSYS (Analysis System) software. Through modal analysis and nonlinear dynamic time–history analysis, the natural vibration frequencies, displacement responses of poles, and root stress distribution patterns under different conductor spans (60 m, 80 m, and 100 m) and span-to-height ratios (5–6.7) were systematically investigated. The results indicate that the mass–sag effect of conductors reduces the natural vibration frequency of the pole–conductor system by 10–18%, and its dynamic influence exhibits nonlinear differences as the span increases. When the span-to-height ratio is within the range of 5–6.7, the vibration of conductors significantly amplifies the stress at the pole roots, suggesting that a dynamic amplification factor of up to 1.17 was observed in this study, which can serve as a reference for the seismic design of similar distribution lines. Full article
(This article belongs to the Special Issue Structural Engineering in Building)
Show Figures

Figure 1

12 pages, 12941 KB  
Interesting Images
“Dry Tap” Fine-Needle Aspiration Biopsy as a Diagnostic Clue in Cyst-like Juvenile Jaw Lesions Mimicking Dentigerous Cysts on Panoramic Radiography and Cone-Beam Computed Tomography
by Kamil Nelke, Klaudiusz Łuczak, Ömer Uranbey, Büşra Ekinci, Angela Rosa Caso, Michał Gontarz, Maciej Janeczek, Zygmunt Stopa, Piotr Kuropka and Maciej Dobrzyński
Diagnostics 2026, 16(3), 439; https://doi.org/10.3390/diagnostics16030439 - 1 Feb 2026
Viewed by 119
Abstract
Pediatric odontogenic tumors are rare but are frequently overlooked because they often mimic simple cysts on routine radiographic examinations. The radiographic appearance on panoramic imaging and cone-beam computed tomography (CBCT) frequently does not correlate with the true biological nature of these lesions. On [...] Read more.
Pediatric odontogenic tumors are rare but are frequently overlooked because they often mimic simple cysts on routine radiographic examinations. The radiographic appearance on panoramic imaging and cone-beam computed tomography (CBCT) frequently does not correlate with the true biological nature of these lesions. On CBCT, classic odontogenic tumors often demonstrate mixed radiolucent–radiopaque patterns with ill-defined borders, internal calcifications, septations, or other structural features. The diagnostic challenge arises when an odontogenic tumor mimics a unilateral, well-defined radiolucent area or a cystic lesion with clear borders and no associated tooth displacement, erosion, root resorption, or cortical bone dehiscence. Panoramic radiography has inherent diagnostic limitations but remains widely used for routine dental screening. CBCT provides enhanced three-dimensional assessment and improves diagnostic accuracy in the evaluation of jaw lesions. A marked increase in dental follicle diameter necessitates differentiation between cystic transformation, inflammatory processes, and other odontogenic pathologies. Cortical swelling and bone asymmetry warrant careful evaluation. In this context, an atypical cyst-like lesion detected on routine panoramic radiography prompted a needle aspiration biopsy, which revealed a dry tap and suggested a solid lesion. This prompted CBCT evaluation. Two juvenile cases are presented in which clinical findings, panoramic radiography, and CBCT provided discordant diagnostic impressions of cystic-appearing lesions with well-defined borders and bone expansion. These cases illustrate a diagnostic pathway in which imaging demonstrates a cyst-like appearance with benign radiological features, fine-needle aspiration biopsy reveals the absence of cystic fluid, and histopathology confirms that radiology alone cannot reliably distinguish true cysts from solid odontogenic tumors in pediatric patients. Full article
(This article belongs to the Special Issue Pathology and Diagnosis of Head and Neck Diseases)
Show Figures

Figure 1

25 pages, 4866 KB  
Article
Research and Application of an Adaptive Rebound Displacement Compensation Device for Bridge Widening Structures
by Chunhua Rao, Risheng Zhu, Yeqi Liao, Kai Jiang, Tengfei Zhao, Fengying Xiao and Shuiping Fang
Buildings 2026, 16(3), 573; https://doi.org/10.3390/buildings16030573 - 29 Jan 2026
Viewed by 88
Abstract
To address the high bending stresses and potential structural failure risks caused by differential settlement at expansion joints during bridge widening projects of straight bridges, this paper proposes an “Adaptive Rebound Displacement Compensation Device”. Existing research primarily focuses on analyzing settlement patterns and [...] Read more.
To address the high bending stresses and potential structural failure risks caused by differential settlement at expansion joints during bridge widening projects of straight bridges, this paper proposes an “Adaptive Rebound Displacement Compensation Device”. Existing research primarily focuses on analyzing settlement patterns and passive control standards, with limited attention to active dynamic regulation. Notably, the bending stress induced by new pier settlements can reach 3–5 times that of vehicle loads, posing serious safety concerns. Through theoretical derivation, this study clarifies the relationship between superstructure loss of strength and factors such as pier settlement, device stiffness, friction coefficient, and L-shaped baffle angle, and a comprehensive design framework is established accordingly. Combining numerical simulations, laboratory tests, and field measurements from engineering practices, multiple validation approaches are employed. The simulation results demonstrate that the proposed device can limit deck subsidence to 10–20% of pier settlement height, and experimental outcomes align closely with theoretical predictions. This device has been successfully implemented in a bridge widening project on a highway section in Jiangxi Province. It should be noted that all data presented in the paper are derived from finite element method (FEM) numerical simulations, and there are currently no on-site measurements of the device’s performance. FEM analysis indicates that the device demonstrates certain feasibility for practical engineering applications. Compared to scenarios without the installation of this device, bridge deck displacements can be reduced by approximately 16.5%. By enabling adaptive rebound through self-adjustment mechanisms for settlement compensation, this device significantly alleviates bending stresses at expansion joints, breaking through traditional passive control limitations. This study provides an innovative approach for actively controlling settlement differences in the widening of straight bridges, offering significant implications both at the theoretical and practical levels. Full article
(This article belongs to the Special Issue Advance in Eco-Friendly Building Materials and Innovative Structures)
Show Figures

Figure 1

26 pages, 5958 KB  
Article
A Material–Structure Integrated Approach for Soft Rock Roadway Support: From Microscopic Modification to Macroscopic Stability
by Sen Yang, Yang Xu, Feng Guo, Zhe Xiang and Hui Zhao
Processes 2026, 14(3), 414; https://doi.org/10.3390/pr14030414 - 24 Jan 2026
Viewed by 174
Abstract
As a cornerstone of China’s energy infrastructure, the coal mining industry relies heavily on the stability of its underground roadways, where the support of soft rock formations presents a critical and persistent technological challenge. This challenge arises primarily from the high content of [...] Read more.
As a cornerstone of China’s energy infrastructure, the coal mining industry relies heavily on the stability of its underground roadways, where the support of soft rock formations presents a critical and persistent technological challenge. This challenge arises primarily from the high content of expansive clay minerals and well-developed micro-fractures within soft rock, which collectively undermine the effectiveness of conventional support methods. To address the soft rock control problem in China’s Longdong Mining Area, an integrated material–structure control approach is developed and validated in this study. Based on the engineering context of the 3205 material gateway in Xin’an Coal Mine, the research employs a combined methodology of micro-mesoscopic characterization (SEM, XRD), theoretical analysis, and field testing. The results identify the intrinsic instability mechanism, which stems from micron-scale fractures (0.89–20.41 μm) and a high clay mineral content (kaolinite and illite totaling 58.1%) that promote water infiltration, swelling, and strength degradation. In response, a novel synergistic technology was developed, featuring a high-performance grouting material modified with redispersible latex powder and a tiered thick anchoring system. This technology achieves microscale fracture sealing and self-stress cementation while constructing a continuous macroscopic load-bearing structure. Field verification confirms its superior performance: roof subsidence and rib convergence in the test section were reduced to approximately 10 mm and 52 mm, respectively, with grouting effectively sealing fractures to depths of 1.71–3.92 m, as validated by multi-parameter monitoring. By integrating microscale material modification with macroscale structural optimization, this study provides a systematic and replicable solution for enhancing the stability of soft rock roadways under demanding geo-environmental conditions. Soft rock roadways, due to their characteristics of being rich in expansive clay minerals and having well-developed microfractures, make traditional support difficult to ensure roadway stability, so there is an urgent need to develop new active control technologies. This paper takes the 3205 Material Drift in Xin’an Coal Mine as the engineering background and adopts an integrated method combining micro-mesoscopic experiments, theoretical analysis, and field tests. The soft rock instability mechanism is revealed through micro-mesoscopic experiments; a high-performance grouting material added with redispersible latex powder is developed, and a “material–structure” synergistic tiered thick anchoring reinforced load-bearing technology is proposed; the technical effectiveness is verified through roadway surface displacement monitoring, anchor cable axial force monitoring, and borehole televiewer. The study found that micron-scale fractures of 0.89–20.41 μm develop inside the soft rock, and the total content of kaolinite and illite reaches 58.1%, which is the intrinsic root cause of macroscopic instability. In the test area of the new support scheme, the roof subsidence is about 10 mm and the rib convergence is about 52 mm, which are significantly reduced compared with traditional support; grouting effectively seals rock mass fractures in the range of 1.71–3.92 m. This synergistic control technology achieves systematic control from micro-mesoscopic improvement to macroscopic stability by actively modifying the surrounding rock and optimizing the support structure, significantly improving the stability of soft rock roadways. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

20 pages, 6174 KB  
Article
Underground Coal Gasification Induced Multi-Physical Field Evolution and Overlying Strata Fracture Propagation: A Case Study Targeting Deep Steeply Inclined Coal Seams
by Jing Li, Shuguang Yang, Ziqiang Wang, Bin Zhang, Xin Li and Shuxun Sang
Energies 2026, 19(2), 559; https://doi.org/10.3390/en19020559 - 22 Jan 2026
Viewed by 71
Abstract
Underground coal gasification (UCG) is a controlled combustion process of in situ coal that produces combustible gases through thermal and chemical reactions. In order to investigate the UCG induced multi-physical field evolution and overlying strata fracture propagation of deep steeply inclined coal seam [...] Read more.
Underground coal gasification (UCG) is a controlled combustion process of in situ coal that produces combustible gases through thermal and chemical reactions. In order to investigate the UCG induced multi-physical field evolution and overlying strata fracture propagation of deep steeply inclined coal seam (SICS), which play a vital role in safety and sustainable UCG project, this study established a finite element model based on the actual geological conditions of SICS and the controlled retracting injection point (CRIP) technology. The results are listed as follows: (1) the temperature field influence ranges of the shallow and deep parts of SICS expanded from 15.56 m to 17.78 m and from 26.67 m to 28.89 m, respectively, when the burnout cavity length increased from 100 m to 400 m along the dip direction; (2) the floor mudstone exhibited uplift displacement as a result of thermal expansion, while the roof and overlying strata showed stepwise-increasing subsidence displacement over time, which was caused by stress concentration and fracture propagation, reaching a maximum subsidence of 3.29 m when gasification ended; (3) overlying strata rock damages occurred with induced fractures developing and propagating during UCG. These overlying strata fractures can reach a maximum height of 204.44 m that may result in groundwater influx and gasification failure; (4) considering the significant asymmetry in the evolution of multi-physical fields of SICS, it is suggested that the dip-direction length of a single UCG channel be limited to 200 m. The conclusions of this study can provide theoretical guidance and technical support for the design of UCG of SICS. Full article
(This article belongs to the Section B2: Clean Energy)
Show Figures

Figure 1

22 pages, 10592 KB  
Article
Dominant Role of Horizontal Swelling Pressure in Progressive Failure of Expansive Soil Slopes: An Integrated FAHP and 3D Numerical Analysis
by Chao Zheng, Shiguang Xu, Lixiong Deng, Jiawei Zhang, Zhihao Lu and Xian Li
Appl. Sci. 2026, 16(2), 1110; https://doi.org/10.3390/app16021110 - 21 Jan 2026
Viewed by 105
Abstract
Directional swelling pressure is a critical yet often overlooked factor governing the instability of expansive soil slopes. Most existing studies simplify swelling behavior as a uniform or purely vertical stress, thereby underestimating the distinct contribution of horizontal swelling pressure. In this study, an [...] Read more.
Directional swelling pressure is a critical yet often overlooked factor governing the instability of expansive soil slopes. Most existing studies simplify swelling behavior as a uniform or purely vertical stress, thereby underestimating the distinct contribution of horizontal swelling pressure. In this study, an integrated framework combining the Fuzzy Analytic Hierarchy Process (FAHP), multivariate regression analysis based on 35 expansive soil samples, and three-dimensional strength-reduction numerical modeling was developed to systematically evaluate the mechanistic roles of vertical and horizontal swelling pressures in slope deformation. The FAHP and regression analyses indicate that water content is the dominant factor controlling both the free swell ratio and swelling pressure, leading to predictive relationships that link swelling behavior to fundamental physical indices. These empirical correlations were subsequently incorporated into a three-dimensional numerical model of a representative Neogene expansive soil slope. The simulation results demonstrate that neglecting swelling pressure results in substantial discrepancies between predicted and observed displacements. Vertical swelling pressure induces moderate surface uplift but exerts a limited influence on overall failure patterns. In contrast, horizontal swelling pressure markedly amplifies downslope displacement—by more than four times under saturated conditions—reduces the factor of safety by 24.7%, and promotes the progressive development of a continuous slip surface. These findings clearly demonstrate that horizontal swelling pressure is the dominant driver of progressive failure in expansive soil slopes. This study provides new mechanistic insights into swelling-induced deformation and offers a quantitative framework for incorporating directional swelling stresses into slope stability assessment, design optimization, and mitigation strategies for geotechnical structures in expansive soil regions. Full article
Show Figures

Figure 1

23 pages, 6872 KB  
Article
Experimental Evaluation of Tensile Behavior and Hygrothermal Degradation of Glass Fiber Composites
by Ciprian Ionuț Morăraș, Viorel Goanță, Lucia Raluca Maier, Teodor Adrian Badea and Paul Doru Bârsănescu
Polymers 2026, 18(2), 277; https://doi.org/10.3390/polym18020277 - 20 Jan 2026
Viewed by 190
Abstract
Glass fiber-reinforced polymer (GFRP) composites are widely used in structural applications due to their high specific strength and durability; however, their mechanical performance strongly depends on fiber architecture and environmental exposure. This study evaluates the mechanical behavior and moisture-induced degradation of GFRP laminates [...] Read more.
Glass fiber-reinforced polymer (GFRP) composites are widely used in structural applications due to their high specific strength and durability; however, their mechanical performance strongly depends on fiber architecture and environmental exposure. This study evaluates the mechanical behavior and moisture-induced degradation of GFRP laminates through tensile tests, impact tests, dynamic mechanical analysis (DMA), and thermomechanical analysis (TMA) performed on a bi-directional glass–epoxy GFRP laminate ([0°/90°]). Tensile tests revealed a maximum longitudinal strength of 369 MPa in dry specimens, while water immersion for up to 21 days led to a significant reduction in tensile strength, from 207 MPa to 63 MPa, in diagonally cut specimens. Impact tests conducted at 12 J showed larger displacements in specimens cut along directions not aligned with the fibers, indicating matrix-dominated behavior. Dynamic mechanical analysis demonstrated strong dependence of stiffness on fiber orientation, with storage modulus values decreasing by approximately 45% in 45° specimens compared with the principal directions, while the glass transition temperature remained within 59–62 °C. Thermomechanical analysis confirmed an increase in the coefficient of thermal expansion after aging, from 205.6 to 291.65 µm/(m·°C) below Tg. These results provide insights into the structure–property–environment relationships governing the durability of GFRP composites and support the optimization of their design for long-term polymer-based applications. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

21 pages, 12162 KB  
Article
Thermal Displacement with CO2 for E-CBM Recovery: Mechanisms and Efficacy of Temperature–Pressure Synergy in Permeability Enhancement
by Xiaohu Xu, Tengze Ge, Ersi Gao, Shuguang Li, Kai Wei, Yulong Liu and Ao Wang
Energies 2026, 19(2), 496; https://doi.org/10.3390/en19020496 - 19 Jan 2026
Viewed by 163
Abstract
The efficient development of coalbed methane (CBM) faces persistent challenges due to low recovery rates. While CO2 thermal displacement offers a promising approach, the pore–fracture structure (PFC) evolution and gas displacement mechanisms under temperature–pressure coupling remain insufficiently clear. To address this knowledge [...] Read more.
The efficient development of coalbed methane (CBM) faces persistent challenges due to low recovery rates. While CO2 thermal displacement offers a promising approach, the pore–fracture structure (PFC) evolution and gas displacement mechanisms under temperature–pressure coupling remain insufficiently clear. To address this knowledge gap, the in situ, dynamic quantification of pore–fracture evolution during CO2 displacement was achieved by an integrated system with NMR and CT scanning, revealing the expansion, connection, and reconfiguration of coal PFC under temperature–pressure synergy and establishing the intrinsic relationship between supercritical CO2 (ScCO2)-induced permeability enhancement and methane displacement efficiency. Experimental results identify an observed transition in permeability near 80 °C under the tested conditions as a critical permeability transition point: below this value, permeability declines from 0.61 mD to 0.49 mD, reflecting pore structure adjustment; above it, permeability rises markedly to 1.18 mD, indicating a structural shift toward fracture-dominated flow. A “pressure-dominated, temperature-assisted” mechanism is elucidated, wherein pressure acts as the primary driver in creating macro-fractures and forming percolation pathways, while temperature—mainly via thermal stress—promotes micro-fracture development and assists gas desorption, offering only limited direct contribution to permeability. Although elevated injection pressure enhances permeability and establishes fracture networks, displacement efficiency eventually reaches a physical limit. To transcend this constraint, a synergistic production mechanism is proposed in which pressure builds flow channels while temperature activates microporous desorption. This study provides an integrated, in situ quantification of the pore–fraction evolution under high-temperature ScCO2 conditions. The elucidated synergy between pressure and temperature offers insights and an experimental basis for the design of deep CBM recovery and CO2 storage strategies. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoirs and Enhanced Oil Recovery)
Show Figures

Figure 1

17 pages, 4116 KB  
Article
Degradation Mechanism, Performance Impact, and Maintenance Strategies for Expansion Devices of Large-Span Railway Bridges
by Yunchao Ye, Aiguo Yan, Pengcheng Yin, Jinbao Liang and Zhiqiang Zhu
Infrastructures 2026, 11(1), 30; https://doi.org/10.3390/infrastructures11010030 - 19 Jan 2026
Viewed by 200
Abstract
To ensure the coordinated interaction between the beam and track of large-span bridges and achieve smooth rail transition at beam joints, rail expansion regulators and beam-end expansion devices are essential at bridge ends. However, these devices are structurally fragile, making them a weak [...] Read more.
To ensure the coordinated interaction between the beam and track of large-span bridges and achieve smooth rail transition at beam joints, rail expansion regulators and beam-end expansion devices are essential at bridge ends. However, these devices are structurally fragile, making them a weak link in the seamless track system. This study selected a long-span railway bridge and its expansion devices as research objects, summarized typical in-service diseases of beam-end expansion devices (e.g., adjustable sleeper offset, sleeper skewing, and expansion device jamming), and constructed a train–track–bridge coupled model incorporating these devices. The model was used to analyze the structural performance and train operation safety under defective conditions. Based on the analysis findings, a maintenance evaluation method for the beam-end region was proposed. Criteria include adjustable sleeper offset, lateral displacement difference between adjacent beam-ends, horizontal rotation angle of adjacent beams, vertical rotation angle of beam-ends, and longitudinal expansion amount of beam-end expansion devices in order to address the corresponding issues and achieve sustainable maintenance and operation of bridge structures. Full article
(This article belongs to the Special Issue Sustainable Bridge Engineering)
Show Figures

Figure 1

14 pages, 7040 KB  
Article
Mechanism of Hydrogen Bonding at Oil–Water Interfaces on Crude Oil Migration Under Nanoconfinement
by Xiong Liu, Yuchan Cheng, Lingxuan Peng, Yueqi Cui and Yue Gong
Processes 2026, 14(2), 343; https://doi.org/10.3390/pr14020343 - 19 Jan 2026
Viewed by 238
Abstract
Aiming at the unclear mechanisms of fluid migration in nanopore-throat systems within tight oil reservoirs, this study focuses on the microscopic interactions at the oil–water interface in nanoconfined spaces. Based on molecular dynamics simulation, water-flooding models within nanopores of tight oil reservoirs under [...] Read more.
Aiming at the unclear mechanisms of fluid migration in nanopore-throat systems within tight oil reservoirs, this study focuses on the microscopic interactions at the oil–water interface in nanoconfined spaces. Based on molecular dynamics simulation, water-flooding models within nanopores of tight oil reservoirs under varying salinity conditions were constructed. The microscopic flow behaviors of oil and water in the pores were investigated, and the mechanism by which interfacial hydrogen bonding influences displacement efficiency under nanoconfinement was elucidated. The results demonstrate that due to the strong hydrogen bonding interactions between acetic acid and water, it is impossible to establish an effective displacement process or form stable displacement pathways within the pores. The extensive hydrogen-bonding network formed by acetic acid molecules at the oil–water interface severely restricts the transport capacity of water. Salinity exerts a nonlinear regulatory effect on hydrogen bonding. High-salinity (246.5 g/L) waterflooding shortens hydrogen bond lengths, enhances local bonding strength, and restricts the expansion of water channels; low-salinity (21.9 g/L) waterflooding mitigates ionic interference, resulting in the highest diffusion capacity of alkanes. The diffusion coefficient increases by 1.4 times compared to that under high-salinity conditions, leading to the highest degree of crude oil mobility. The research findings provide important guidance for enhanced oil recovery in tight oil reservoirs. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

24 pages, 7504 KB  
Article
Historical Trajectories of the Evolved Cropland Features and Their Reshaped Influences on Agricultural Landscapes and Ecosystem Services in China’s Sanjiang Commodity Grain Base
by Tao Pan, Kun Liu, Zherui Yin, Zexian Li and Lin Shi
Land 2026, 15(1), 175; https://doi.org/10.3390/land15010175 - 16 Jan 2026
Viewed by 218
Abstract
Drastic cropland expansion and its internal structural changes have had an obvious impact on agricultural landscapes and ecosystem services. However, a prolonged investigation of this effect is still lacking in China’s grain-producing bases, such as Sanjiang Plain. To address this issue, half a [...] Read more.
Drastic cropland expansion and its internal structural changes have had an obvious impact on agricultural landscapes and ecosystem services. However, a prolonged investigation of this effect is still lacking in China’s grain-producing bases, such as Sanjiang Plain. To address this issue, half a century of study on the ‘land trajectory migration–landscape evolution–ecological effect,’ covering the period 1970–2020, was elucidated using the synergistic methodology of spatial analysis technology, the reclamation rate algorithm, the landscape indicator, and the newly established ecosystem service improvement model. Satellite observation results indicate that the cropland area exhibited a substantial expansion trend from 23,672.69 km2 to 42,856.17 km2 from 1970 to 2020, representing a net change of +19,183.48 km2 and a huge growth rate of 81.04%, which led to an obvious improvement in the level of agricultural cultivation. Concurrently, the internal structure of the cropland underwent dramatic restructuring, with rice fields increasing from 6.46% to 53.54%, while upland fields decreased from 93.54% to 46.46%. In different regions, spatially heterogeneous improvements of 2.64–52.47% in agricultural cultivation levels across all cities were observed. From 1970 to 2020, the tracked cropland center of gravity trajectories exhibited a distinct biphasic pattern, initially shifting westward and then followed by a southward transition, accumulating a displacement of 19.39 km2. As for the evolved agricultural landscapes, their integrity has improved (SHDI = −0.08%), accompanied by increased connectivity (CON = +8.82%) and patch edge integrity (LSI = −15.71%) but also by reduced fragmentation (PD = −48.14%). Another important discovery was that the evaluated ecosystem services continuously decreased from 2337.84 × 108 CNY in 1970 to 1654.01 × 108 CNY in 2020, a net loss of −683.84 × 108 CNY and a huge loss rate of 33.65%, accompanied by a center–periphery gradient pattern whereby degradation propagated from the low-value central croplands to the high-value surrounding natural covers. These discoveries will play a significant role in guiding farmland structure reformation, landscape optimization, and ecosystem service improvement. Full article
(This article belongs to the Special Issue Monitoring Ecosystem Services and Biodiversity Under Land Use Change)
Show Figures

Figure 1

Back to TopTop