Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = exogenous ethylene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 15506 KiB  
Article
Genome-Wide Identification of DREB Gene Family in Kiwifruit and Functional Characterization of Exogenous 5-ALA-Mediated Cold Tolerance via ROS Scavenging and Hormonal Signaling
by Ping Tian, Daming Chen, Jiaqiong Wan, Chaoying Chen, Ke Zhao, Yinqiang Zi, Pu Liu, Chengquan Yang, Hanyao Zhang and Xiaozhen Liu
Plants 2025, 14(16), 2560; https://doi.org/10.3390/plants14162560 - 17 Aug 2025
Viewed by 330
Abstract
Dehydration response element binding proteins (DREBs) have been identified as major regulators of cold acclimatization in many angiosperms. Cold stress is one of the primary abiotic stresses affecting kiwifruit growth and development. However, kiwifruit is currently one of the most widely consumed fruits [...] Read more.
Dehydration response element binding proteins (DREBs) have been identified as major regulators of cold acclimatization in many angiosperms. Cold stress is one of the primary abiotic stresses affecting kiwifruit growth and development. However, kiwifruit is currently one of the most widely consumed fruits worldwide because of its high nutritional value. 5-Aminolevulinic acid (5-ALA) is a nonprotein amino acid known for its distinct promotional effects on plant resistance, growth, and development. However, studies on the function of the kiwifruit DREB gene in alleviating low-temperature stress in its seedlings via exogenous 5-ALA have not been reported. Therefore, in this study, we performed a genome-wide identification of DREB gene family members in kiwifruit and analyzed the regulatory effects of exogenous 5-ALA on kiwifruit DREB genes under low-temperature stress. A total of 193 DREB genes were identified on 29 chromosomes. Phylogenetic analysis classified these genes into six subfamilies. Although there were some differences in cis-elements among subfamilies, all of them contained more biotic or abiotic stresses and hormone-related cis-acting elements. GO and KEGG enrichment analyses revealed that AcDREB plays an essential role in hormone signaling, metabolic processes, and the response to adverse stress. Under low-temperature stress, the application of exogenous 5-ALA inhibited the accumulation of APX and DHAR, promoted an increase in chlorophyll, and increased the accumulation of enzymes and substances such as 5-ALA, MDHAR, GR, ASA, GAH, and GSSH, thereby accelerating ROS scavenging and increasing the cold hardiness of kiwifruits. Functional analysis revealed that 46 differentially expressed DREB genes, especially those encoding AcDREB69, AcDREB92, and AcDREB148, which are involved in ethylene signaling and defense signaling, and, after the transcription of downstream target genes is activated, are involved in the regulation of low-temperature-stressed kiwifruits by exogenous 5-ALA, thus improving the cold tolerance of kiwifruits. Notably, AcDREB69, AcDREB92, and AcDREB148 could serve as key genes for cold tolerance. This study is the first to investigate the function of AcDREB genes involved in the role of exogenous 5-ALA in regulating low-temperature stress, revealing the regulatory mechanism by which DREB is involved in the ability of exogenous 5-ALA to alleviate low-temperature stress. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

15 pages, 2281 KiB  
Article
Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries
by Min Liu, Boyuan Fan, Le Li, Jinmei Hao, Ruteng Wei, Hua Luo, Fei Shi, Zhiyuan Ren and Jun Wang
Foods 2025, 14(14), 2551; https://doi.org/10.3390/foods14142551 - 21 Jul 2025
Viewed by 444
Abstract
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the [...] Read more.
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the development and ripening processes of fruit; however, the specific molecular mechanism and the regulatory network between ethylene signaling and the anthocyanin biosynthesis pathway remain incompletely understood. In this study, 400 mg/L ethephon (ETH) solution was sprayed onto the surface of grape berries at the lag phase (EL-34), and the changes in anthocyanin-related genes and metabolites were explored through transcriptomic and metabolomic analysis. The results showed that ETH treatment increased Brix and pH in mature berries. In total, 35 individual anthocyanins were detected, in which 21 individual anthocyanins were enhanced by ETH treatment. However, the anthocyanin profile was not affected by exogenous ethylene. Transcriptomics analysis showed that there were a total of 825 and 1399 differentially expressed genes (DEGs) 12 h and 24 h after treatment. Moreover, key structural genes in the anthocyanin synthesis pathway were strongly induced, including VvPAL, VvCHS, VvF3H, VvF3′5′H, VvDFR and VvUFGT. At the maturity stage (EL-38), the expression levels of these genes were still higher in EHT-treated berries than in the control. ETH treatment also influenced the expression of genes related to hormone biosynthesis and signal transduction. The ethylene biosynthesis gene (VvACO), ethylene receptor genes (VvETR2, VvERS1 and VvEIN4), ABA biosynthesis gene (VvNCED2), and ABA receptor gene (VvPYL4) were up-regulated by ETH treatment, while the auxin biosynthesis gene (VvTAA3) and seven genes of the auxin-responsive protein were inhibited by exogenous ethylene. Meanwhile, ETH treatment promoted the expression of the sugar transporter gene (VvEDL16) and two sucrose synthase genes (VvSUS2 and VvSUS6). In EHT-treated berries, 19 MYB and 23 ERF genes were expressed differently compared with the control (p < 0.05). This study provides the theoretical foundation and technical support for the regulation of anthocyanin synthesis in non-climacteric fruit. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

19 pages, 4752 KiB  
Article
Genome-Wide Identification and Comprehensive Characterization of Luffa Sucrose Phosphate Synthase Gene Family and Revealing LaSPS3/4’s Role in Drought Resistance
by Xiaocheng Tian, Jianting Liu, Guoliang He, Fei Yan, Hanyi Wang, Liujing Huang, Yeqiu Yin, Shaolong Sun, Chongjian Ma, Guoping Wang, Haisheng Zhu and Hongbo Zhao
Horticulturae 2025, 11(6), 689; https://doi.org/10.3390/horticulturae11060689 - 16 Jun 2025
Viewed by 646
Abstract
Sucrose phosphate synthase (SPS) is a rate-limiting enzyme in plant sucrose biosynthesis. However, the SPS gene family in luffa remains unidentified, and its functional involvement in sugar metabolism is unexplored. Here, we present the first genome-wide identification and functional analysis of the LaSPSs [...] Read more.
Sucrose phosphate synthase (SPS) is a rate-limiting enzyme in plant sucrose biosynthesis. However, the SPS gene family in luffa remains unidentified, and its functional involvement in sugar metabolism is unexplored. Here, we present the first genome-wide identification and functional analysis of the LaSPSs in luffa. We identified nine LaSPS genes, characterized their physicochemical and evolutionary properties, and analyzed their expression patterns in different tissues and response to ethylene and drought treatments. Nine tandem-duplicated LaSPS genes formed four clusters (T1(1/2), T2(3/4), T3(5/6), T4(7–9)) with conserved architectures. RNA-seq analysis indicated a ubiquitous downregulation of LaSPS genes in senescing luffa, wherein sucrose content correlated significantly with all LaSPS members except LaSPS1/2. Exogenous ethylene substantially repressed LaSPSs transcription, while 1-methylcyclopropene (1-MCP) treatment showed induction. Notably, LaSPS3/4 displayed high activation under drought stress. Functional validation via heterologous expression in tobacco confirmed that LaSPS3/4 positively regulates drought resistance. In summary, this study provides a novel perspective for the in-depth investigation of the molecular evolutionary mechanism of the LaSPS gene family and its biological functions in luffa. Full article
(This article belongs to the Special Issue New Advances in Secondary Metabolism of Vegetable Crops)
Show Figures

Figure 1

24 pages, 11957 KiB  
Article
DoDELLA-GAI2 Integrates Gibberellin and Ethylene Signaling to Regulate Chinese Yam (Dioscorea opposita) Tuber Development
by Mingran Ge, Yanfang Zhang, Yanping Xing, Linan Xing, Huiqin Miao and Xiuwen Huo
Biology 2025, 14(6), 635; https://doi.org/10.3390/biology14060635 - 30 May 2025
Viewed by 516
Abstract
Yam (Dioscorea opposita) tuber development is a complex process regulated by various phytohormones, with gibberellin (GA) playing a crucial role. However, the underlying mechanisms and interaction of GA with other phytohormone pathways on yam tuber development remain incompletely understood. This study [...] Read more.
Yam (Dioscorea opposita) tuber development is a complex process regulated by various phytohormones, with gibberellin (GA) playing a crucial role. However, the underlying mechanisms and interaction of GA with other phytohormone pathways on yam tuber development remain incompletely understood. This study investigated the regulatory role of GA and its crosstalk with other phytohormones during yam tuber growth through phenotypic, cytological, physiological, and transcriptomic as well as targeted phytohormone metabolomics analyses. The results reveal that exogenous GA promoted tuber enlargement increases vascular bundle and the number and diameter of sieve tubes, and alters the expression of GA anabolism genes and GA signal transduction pathways. Integrated transcriptome and targeted metabolomics analyses revealed coordinated changes in GA and ethylene (ETH) biosynthesis and signaling pathways during tuber development, particularly DELLA-GAI2 acting as a negative regulator of GA signaling. Overexpression of DoDELLA-GAI2 in transgenic tobacco significantly reduced GA level, starch, cytokinin (CTK), and ETH content, as well as aerenchyma tissue growth and parenchyma cell size. Exogenous GA and ethephon treatments increased GA, starch, CTK, and ETH content, and downregulated DoDELLA-GAI2 gene expression. The yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays confirmed a direct interaction between DoDELLA-GAI2 and DoMTCPB, an upstream gene-encoding key enzyme in ETH biosynthesis. DoDELLA-GAI2 acts as a negative regulator of ETH synthesis by interacting with DoMTCPB. GA-induced degradation of DoDELLA-GAI2 relieves this inhibition, promoting ETH production and contributing to tuber growth. Taken together, our findings reveal a novel mechanism based on DoDELLA-GAI2 integrating the GA and ETH signaling processes to regulate tuber development in D. opposita, offering a potential target for improving yam crop productivity. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

21 pages, 6476 KiB  
Article
Elucidating the Molecular Mechanisms of Physiological Fruit Abscission in Actinidia arguta Through Comparative Transcriptomics and Transient Genetic Transformation
by Pengqiang Yuan, Yanli Wang, Yining Sun, Guoliang Liu, Hongyan Qin, Shutian Fan, Yiping Yan, Bowei Sun and Wenpeng Lu
Plants 2025, 14(11), 1645; https://doi.org/10.3390/plants14111645 - 28 May 2025
Viewed by 501
Abstract
Actinidia arguta (A. arguta) is valued for its nutritional richness, but physiological fruit abscission severely limits production efficiency in elite cultivars. To unravel the molecular basis of this process, we compared two cultivars: abscission-prone ‘KL’ and abscission-resistant ‘JL’. During fruit development, [...] Read more.
Actinidia arguta (A. arguta) is valued for its nutritional richness, but physiological fruit abscission severely limits production efficiency in elite cultivars. To unravel the molecular basis of this process, we compared two cultivars: abscission-prone ‘KL’ and abscission-resistant ‘JL’. During fruit development, ‘KL’ exhibited an earlier decline in auxin (AUX) levels within the fruit abscission zone (FAZ), coupled with persistently higher ethylene (ETH) concentrations and polygalacturonase (PG) activity compared to ‘JL’. Comparative transcriptomics identified abscission-related genes enriched in plant hormone signaling (AUX, ETH, ABA, JA, BR), starch/sucrose metabolism, and photosynthesis pathways. AUX signaling diverged predominantly during early development, while ETH, BR, and JA pathways varied across multiple stages. Exogenous applications of plant growth regulators (ethephon, 2,4-D, methyl jasmonate, and 2,4-epibrassinolide) and transient overexpression of key genes (AaETR1, AaERF035, AaPME68, AaPP2C27, AaMYC1, and AaPMEI10) validated their roles in modulating hormone crosstalk and cell wall remodeling. Overexpression of AaERF035 and AaPME68 likely accelerated abscission by enhancing ETH biosynthesis and pectin degradation, while AaPMEI10 and AaMYC1 potentially delayed abscission via suppression of cell wall-modifying enzymes. This study elucidates the hormonal and transcriptional networks governing fruit abscission in A. arguta, providing insights for targeted breeding and cultivation strategies to mitigate yield loss. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

14 pages, 3629 KiB  
Article
Identification and Functional Exploration of the ALKBH Gene Family in Oriental Melon Fruit Ripening
by Chong Zhang, Xinqi Guo, Ying Zhang, Hongbo Pang and Qiang Chen
Int. J. Mol. Sci. 2025, 26(9), 4254; https://doi.org/10.3390/ijms26094254 - 29 Apr 2025
Viewed by 655
Abstract
N6-methyladenosine (m6A) methylation functions as a vital post-transcriptional and epigenetic modification in higher plants regulated by α-ketoglutarate-dependent dioxygenases (ALKBH). However, the role of ALKBH genes in oriental melon (Cucumis melo L.) fruit ripening has not been explored. Therefore, we treated [...] Read more.
N6-methyladenosine (m6A) methylation functions as a vital post-transcriptional and epigenetic modification in higher plants regulated by α-ketoglutarate-dependent dioxygenases (ALKBH). However, the role of ALKBH genes in oriental melon (Cucumis melo L.) fruit ripening has not been explored. Therefore, we treated oriental melon with an exogenous m6A demethylase inhibitor (mechlorfenamic acid) then analyzed endogenous ethylene production and ripening-related indicators to explore the effects of m6A methylation on ripening. Bioinformatics and real-time quantitative PCR analyses were used to determine the impact of ALKBH genes on key ethylene synthesis gene expression. Treatment effectively inhibited endogenous ethylene production, firmness changes, and soluble solid contents, thereby extending fruit ripening. Eight ALKBH gene family members belonging to five major groups were identified in the melon genome. All members were expressed in ripening fruits, with different expression patterns during ripening. CmALKBH6, CmALKBH7, and CmALKBH8 expression was inhibited by an ethylene inhibitor (1-methylcyclopropene). The transient overexpression (OE) of CmALKBH8 in oriental melon led to the increased expression of the ethylene synthesis genes CmACS1, CmACS2, and CmACO1. In summary, the ethylene-regulated gene CmALKBH8 may participate in oriental melon fruit ripening regulation by modulating the methylation levels of ethylene synthesis-related genes. These findings help us better understand how m6A methylation regulates melon ripening. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

23 pages, 3400 KiB  
Review
Nitric Oxide in Plant Cold Stress: Functions, Mechanisms and Challenges
by Jing Cui, Mengxiao Huang, Jin Qi, Wenjin Yu and Changxia Li
Agronomy 2025, 15(5), 1072; https://doi.org/10.3390/agronomy15051072 - 28 Apr 2025
Viewed by 846
Abstract
Cold stress, as an environmental factor that seriously restricts the growth, production and survival of plants, has received extensive attention in recent years. Nitric oxide (NO), as an important bioactive molecule, has emerged as a research focus in the domain of alleviating plant [...] Read more.
Cold stress, as an environmental factor that seriously restricts the growth, production and survival of plants, has received extensive attention in recent years. Nitric oxide (NO), as an important bioactive molecule, has emerged as a research focus in the domain of alleviating plant cold damage. In this review, the role of NO in enhancing plant cold tolerance and its underlying mechanisms, including interactions with signaling molecules, are discussed more extensively, and novel research directions and prospects are proposed according to existing research gaps. Interestingly, exogenous NO mitigates cold stress by strengthening antioxidant defense mechanisms, raising proline levels, enhancing photosynthetic capacity, and regulating glucose metabolism. More importantly, NO also interacts with cytoplasmic calcium ions (Ca2+), reactive oxygen species (ROS), glutathione (GSH), melatonin (MT), abscisic acid (ABA), ethylene (ETH) and hydrogen sulfide (H2S). At the same time, in the process of NO alleviating cold stress, it regulates the expression of NO synthesis genes, cold response genes and antioxidant related genes, thereby improving the cold tolerance of plants, which may involve epigenetic reprogramming. This paper also points out the problems existing in the current research and the potential of NO in agricultural practice, and provides relevant theoretical references for future research in this field. Full article
Show Figures

Figure 1

18 pages, 10644 KiB  
Article
Investigation of HCPro-Mediated Ethylene Synthesis Pathway Through RNA-Seq Approaches
by Xinpeng Jiang, Lan Dong, Renjing Wan, Changli Zeng and Ting Yang
Viruses 2025, 17(5), 602; https://doi.org/10.3390/v17050602 - 23 Apr 2025
Viewed by 439
Abstract
Chilli veinal mottle virus (ChiVMV) severely compromises the quality and yield of solanaceous crops. The helper component protease (HCPro) of ChiVMV functions as a multifunctional RNA silencing suppressor that subverts host antiviral defenses through diverse strategies, However, the underlying mechanisms remain mechanistically unresolved. [...] Read more.
Chilli veinal mottle virus (ChiVMV) severely compromises the quality and yield of solanaceous crops. The helper component protease (HCPro) of ChiVMV functions as a multifunctional RNA silencing suppressor that subverts host antiviral defenses through diverse strategies, However, the underlying mechanisms remain mechanistically unresolved. In this study, HCPro-overexpressing (HCPro-OX) and wild-type (WT) plants were inoculated with ChiVMV to monitor the physiological and molecular changes. Transcriptome analysis identified 11,815 differentially expressed genes (DEGs) under viral infection, among which 1115 genes were specifically regulated by HCPro. KEGG enrichment analysis revealed that the DEGs were significantly associated with plant hormone signal transduction pathways, indicating their crucial role in host–virus interactions. Furthermore, functional clustering of HCPro-regulated DEGs specifically identified key components in ethylene biosynthesis pathways. GO analysis of DEGs between virus-inoculated WT and HCPro-OX plants annotated ethylene biosynthesis-related genes NtACO and NtACS. qPCR validation confirmed that the expression of ethylene biosynthesis-related genes was suppressed by HCPro. Exogenous treatments with the ethylene precursor ACC demonstrated that ethylene suppressed viral accumulation, enhanced POD activity, and reduced the ROS accumulation induced by viral infection. In conclusion, our results demonstrate that HCPro promotes viral infection by suppressing ethylene biosynthesis, which in turn attenuates peroxidase activity, leading to ROS accumulation. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

22 pages, 13562 KiB  
Article
Brassinosteroids Alleviate Ethylene-Induced Copper Oxide Nanoparticle Toxicity and Ultrastructural and Stomatal Damage in Rice Seedlings
by Wardah Azhar, Abdul Salam, Ali Raza Khan, Irshan Ahmad and Yinbo Gan
Agriculture 2025, 15(8), 907; https://doi.org/10.3390/agriculture15080907 - 21 Apr 2025
Cited by 1 | Viewed by 612
Abstract
Nanoparticle contamination has been associated with adverse impacts on crop productivity. Thus, effective approaches are necessary to ameliorate NP-induced phytotoxicity. The present study aimed to investigate the efficacy of brassinosteroids and ethylene in regulating CuO NPs toxicity in rice seedlings. Therefore, we comprehensively [...] Read more.
Nanoparticle contamination has been associated with adverse impacts on crop productivity. Thus, effective approaches are necessary to ameliorate NP-induced phytotoxicity. The present study aimed to investigate the efficacy of brassinosteroids and ethylene in regulating CuO NPs toxicity in rice seedlings. Therefore, we comprehensively evaluated the crosstalk of 24-Epibrassinolide and ethylene in regulating CuO NP-induced phytotoxicity at the physiological, cellular ultrastructural, and biochemical levels. The results of the study illustrated that exposure to CuO NPs at 450 mg/L displayed a significant decline in growth attributes and induced toxic effects in rice seedlings. Furthermore, the exogenous application of ethylene biosynthesis precursor 1-aminocyclopropane-1-carboxylic acid (ACC) at 20 µM with 450 mg/L of CuO NPs significantly enhanced the reactive oxygen species (ROS) accumulation that led to the stimulation of ultrastructural and stomatal damage and reduced antioxidant enzyme activities (CAT and APX) in rice tissues. On the contrary, it was noticed that 24-Epibrassinolide (BR) at 0.01 µM improved plant biomass and growth, restored cellular ultrastructure, and enhanced antioxidant enzyme activities (CAT and APX) under exposure to 450 mg/L of CuO NPs. In addition, brassinosteroids reduced ROS accumulation and the toxic effects of 450 mg/L of CuO NPs on guard cells and the stomatal aperture of rice seedlings. Interestingly, when 0.01 µM of brassinosteroids, 20 µM of ACC, and 450 mg/L of CuO NPs were applied together, BRs and ethylene showed antagonistic crosstalk under CuO NP stress via partially reducing the ethylene-induced CuO NP toxicity on plant growth, cellular ultrastructure, stomatal aperture, and guard cell and antioxidant enzyme activities (CAT and APX) in rice seedlings. BR supplementation with ACC and CuO NPs notably diminished ACC-induced CuO NPs’ toxic effects on all of the mentioned attributes in rice seedlings. This study uncovered the interesting crosstalk of two main phytohormones under CuO NPs stress, providing basic knowledge to improve crop yield and productivity in CuO NPs-contaminated areas. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

36 pages, 3472 KiB  
Article
Characterization of Background Exposures to Ethylene Oxide in the United States: A Reality Check on Theoretical Health Risks for Potentially Exposed Populations near Industrial Sources
by Christopher R. Kirman, Patrick J. Sheehan, Abby A. Li, James S. Bus, Steave H. Su, Pamela J. Dopart, Heather N. Watson, Emma E. Moynihan and Rick Reiss
Int. J. Environ. Res. Public Health 2025, 22(4), 597; https://doi.org/10.3390/ijerph22040597 - 10 Apr 2025
Viewed by 628
Abstract
Ethylene oxide (EO) is an industrial chemical and sterilant that is released into ambient air from natural and unregulated anthropogenic sources that contribute to background exogenous exposure and from regulated industrial sources that contribute to additional exogenous exposure for near-facility populations. Metabolic processes [...] Read more.
Ethylene oxide (EO) is an industrial chemical and sterilant that is released into ambient air from natural and unregulated anthropogenic sources that contribute to background exogenous exposure and from regulated industrial sources that contribute to additional exogenous exposure for near-facility populations. Metabolic processes contribute to substantial background endogenous exposures to EO, complicating the interpretation of the relation between total background exposure and the health significance of added industrial exogenous exposure. In 2021, Kirman and colleagues characterized the total and endogenous equivalent background concentrations for U.S. populations, which are substantially greater than the USEPA 2016 EO cancer reassessment risk-specific concentrations (0.00011–0.011 ppb), suggesting that the consideration of background exposure could be used as a reality check for the utility of the reassessment in managing EO risk for industrially exposed populations. New exposure biomarker data and background ambient concentration data for EO have become available since the 2021 assessment and are used here to refine the estimates of U.S. population total and endogenous equivalent background EO concentrations. Refined equivalent background concentrations as well as total equivalent exposure estimates for U.S. smokers provide context as to the health significance of near-industry population added exposure and a reality check for the utility of USEPA and TCEQ risk-specific concentrations in managing and communicating EO risk. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

20 pages, 2675 KiB  
Article
GABA and Proline Application Induce Drought Resistance in Oilseed Rape
by Sigita Jurkonienė, Virgilija Gavelienė, Rima Mockevičiūtė, Elžbieta Jankovska-Bortkevič, Vaidevutis Šveikauskas, Jurga Jankauskienė, Tautvydas Žalnierius and Liudmyla Kozeko
Plants 2025, 14(6), 860; https://doi.org/10.3390/plants14060860 - 10 Mar 2025
Cited by 1 | Viewed by 1044
Abstract
This study investigates the effects of γ-aminobutyric acid (GABA) and proline, both individually and in combination, on the growth of oilseed rape under drought stress and following the resumption of irrigation. The goal was to determine whether the exogenous application of these compounds [...] Read more.
This study investigates the effects of γ-aminobutyric acid (GABA) and proline, both individually and in combination, on the growth of oilseed rape under drought stress and following the resumption of irrigation. The goal was to determine whether the exogenous application of these compounds enhances the plants response to prolonged water deficit and, if so, to identify the biochemical processes involved in the plant tissue. The experiment was conducted under controlled laboratory conditions. After 21 days of plant cultivation, at the 3–4 leaf stage, seedlings were sprayed with aqueous solutions of GABA (0.1 mM) and proline (0.1 mM). The plants were then subjected to 8 days of severe drought stress, after which irrigation was resumed, and recovery was assessed over 4 days. The results showed that both amino acids alleviated the drought-induced stress as indicated by higher relative water content (RWC), increased levels of endogenous proline and photosynthetic pigments in leaves, and enhanced survival and growth recovery after drought. GABA-treated plants maintained membrane integrity and preserved plasma membrane (PM) ATPase activity during prolonged drought stress while reducing ethylene, H2O2, and MDA levels. Proline also influenced these biochemical responses, though to a lesser extent. The combination of GABA and proline facilitated better recovery of oilseed rape compared to the drought control group following rewatering. Notably, GABA treatment resulted in a significant increase in gene expression compared to the untreated control. Molecular analysis of drought-responsive genes revealed that the gene expression in plants treated with both proline and GABA was typically intermediate between those treated with proline alone and those treated with GABA alone. Based on these findings, we propose that GABA application could serve as an alternative to proline for improving oilseed rape’s drought tolerance, potentially increasing both crop yield and quality. Full article
(This article belongs to the Special Issue Advances in Molecular Genetics and Breeding of Brassica napus L.)
Show Figures

Figure 1

28 pages, 1169 KiB  
Review
Phytohormonal Regulation of Abiotic Stress Tolerance, Leaf Senescence and Yield Response in Field Crops: A Comprehensive Review
by Anna Panozzo, Pranay Kumar Bolla, Giuseppe Barion, Alessandro Botton and Teofilo Vamerali
BioTech 2025, 14(1), 14; https://doi.org/10.3390/biotech14010014 - 27 Feb 2025
Cited by 4 | Viewed by 1790
Abstract
Field crops are expected to be increasingly threatened by climate change, which will negatively impact plant development, growth and yield. Phytohormones play a crucial role in regulating specific signalling pathways to induce rapid adaptive responses to environmental stresses. Exogenous phytohormone application alters hormonal [...] Read more.
Field crops are expected to be increasingly threatened by climate change, which will negatively impact plant development, growth and yield. Phytohormones play a crucial role in regulating specific signalling pathways to induce rapid adaptive responses to environmental stresses. Exogenous phytohormone application alters hormonal balance, thereby enhancing plant adaptation to adverse conditions. While several studies have advanced our understanding of the use of phytohormones in field crops, yield responses and species-specific application strategies remain inconsistent and rarely assessed under field conditions. The application of cytokinins (CKs), abscisic acid (ABA), and gibberellic acid (GA) has been shown to maintain prolonged photosynthetic activity, stabilize plasma membrane, and reduce lipid peroxidation and ion accumulation under salinity stress in wheat. Additionally, inhibitors of ethylene synthesis and receptors can mitigate stress symptoms under drought and heat stress, which typically accelerates senescence and shortens the grain-filling period in cereal crops. In this way, exogenous application of CKs, GA, and ethylene inhibitors can delay senescence by sustaining leaf photosynthetic activity and postponing nutrient remobilization. However, these benefits may not consistently translate into improvements in grain yield and quality. This review explores the molecular mechanisms of phytohormones in abiotic stress tolerance, delineates their specific functions and evaluates experimental findings from field applications. It also summarizes the potential of phytohormone applications in field crops, emphasizing the need for species-specific investigations on application timing and dosages under open-field conditions to optimize their agronomic potential. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

17 pages, 5427 KiB  
Article
The NbCBP1-NbSAMS1 Module Promotes Ethylene Accumulation to Enhance Nicotiana benthamiana Resistance to Phytophthora parasitica Under High Potassium Status
by Sadia Noorin, Youwei Du, Yi Liu, Shuanghong Wang, Yan Wang, Hongchen Jia, Tom Hsiang, Rong Zhang and Guangyu Sun
Int. J. Mol. Sci. 2025, 26(3), 1384; https://doi.org/10.3390/ijms26031384 - 6 Feb 2025
Viewed by 956
Abstract
Potassium (K) fertilization is crucial for plant resistance to pathogens, but the underlying mechanisms remain unclear. Here, we investigate the molecular mechanism by which the addition of K promotes resistance in Nicotiana benthamiana to Phytophthora parasitica. We found that N. benthamiana with [...] Read more.
Potassium (K) fertilization is crucial for plant resistance to pathogens, but the underlying mechanisms remain unclear. Here, we investigate the molecular mechanism by which the addition of K promotes resistance in Nicotiana benthamiana to Phytophthora parasitica. We found that N. benthamiana with high K content (HK, 52.3 g/kg) produced more ethylene in response to P. parasitica infection, compared to N. benthamiana with low-K content (LK, 22.4 g/kg). An exogenous ethylene application effectively increased resistance in LK N. benthamiana to the level under HK status, demonstrating the involvement of ethylene in the HK-associated resistance in N. benthamiana. Further, transcriptome analysis showed that NbSAMS1, encoding ethylene biosynthesis, was induced to upregulate P. parasitica about five times higher in HK than in LK N. benthamiana. NbSAMS1 overexpression enhanced resistance in LK plants, whereas NbSAMS1 silencing reduced resistance in HK plants, confirming its importance in conferring resistance. Furthermore, we identified a calcium-binding protein, NbCBP1, which interacted with NbSAMS1, promoting its expression in HK N. benthamiana. Silencing NbCBP1 compromised resistance in HK N. benthamiana, whereas its overexpression improved resistance in LK N. benthamiana. Notably, NbCBP1 protected NbSAMS1 from degradation by the 26S proteasome, thereby sustaining ethylene accumulation in HK N. benthamiana in response to P. parasitica infection. Thus, our research elucidated some mechanisms of the NbCBP1-NbSAMS1 module associated with disease resistance in HK N. benthamiana. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 6502 KiB  
Article
Melatonin-Induced Transcriptome Variation of Sweet Potato Under Heat Stress
by Mengzhao Wang, Yang Zhou, Bei Liang, Sunjeet Kumar, Wenjie Zhao, Tianjia Liu, Yongping Li and Guopeng Zhu
Plants 2025, 14(3), 430; https://doi.org/10.3390/plants14030430 - 1 Feb 2025
Cited by 1 | Viewed by 1138
Abstract
Melatonin (MT) has been widely recognized for its ability to mitigate the effects of abiotic stress and regulate plant development. In this study, we investigated the role of exogenous MT in enhancing heat tolerance in sweet potato, with a particular focus on its [...] Read more.
Melatonin (MT) has been widely recognized for its ability to mitigate the effects of abiotic stress and regulate plant development. In this study, we investigated the role of exogenous MT in enhancing heat tolerance in sweet potato, with a particular focus on its capacity to alleviate heat stress-induced damage. MT treatment significantly reduced oxidative stress, as evidenced by decreased levels of hydrogen peroxide, superoxide ions, and malondialdehyde (MDA), all of which were elevated under heat stress. To uncover the underlying mechanisms, RNA sequencing was performed on three experimental groups: control (CK), heat stress alone (HS), and MT pre-treatment followed by heat stress (MH). A total of 3491, 3280, and 1171 differentially expressed genes (DEGs) were identified in the CK vs. HS, CK vs. MH, and HS vs. MH comparisons, respectively. MT treatment notably modulated the expression of genes involved in redox regulation and nicotinate and nicotinamide metabolism. Moreover, MT enhanced the expression of genes associated with key signaling pathways, including mitogen-activated protein kinases (MPK3) and plant hormone signal transduction components, such as ethylene response factor (ERF). These findings offer novel insights into the mechanisms by which exogenous MT enhances heat tolerance in sweet potato, highlighting its role in regulating antioxidant systems, metabolic pathways, and hormone signaling. This study presents valuable strategies for improving crop resilience to heat stress. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

24 pages, 7713 KiB  
Article
Integrating Physiology, Transcriptome, and Metabolomics Reveals the Potential Mechanism of Nitric Oxide Concentration-Dependent Regulation of Embryo Germination in Sorbus pohuashanensis
by Caihong Zhao, Yue Zhang and Ling Yang
Plants 2025, 14(3), 344; https://doi.org/10.3390/plants14030344 - 23 Jan 2025
Viewed by 970
Abstract
Nitric oxide (NO) breaks a seed’s dormancy and stimulates germination by signaling. However, the key physiological metabolic pathways and molecular regulatory mechanisms are still unclear. Therefore, this study used physiological, transcriptomic, and metabolomics methods to analyze the key genes and metabolites involved in [...] Read more.
Nitric oxide (NO) breaks a seed’s dormancy and stimulates germination by signaling. However, the key physiological metabolic pathways and molecular regulatory mechanisms are still unclear. Therefore, this study used physiological, transcriptomic, and metabolomics methods to analyze the key genes and metabolites involved in the NO regulation of plant embryo germination and their potential regulatory mechanisms. The physiological analysis results indicate that the appropriate concentration of NO increased the content of NO and hydrogen peroxide (H2O2) in cells, stimulated the synthesis of ethylene and jasmonic acid (JA), induced a decrease in abscisic acid (ABA) content, antagonistic to the gibberellin (GA3) effect, and promoted embryo germination and subsequent seedling growth. However, the high concentrations of NO caused excessive accumulation of H2O2, destroyed the reactive oxygen species (ROS) balance, and inhibited embryo germination and seedling growth. The combined analysis of transcriptomics and metabolomics showed that the genes related to phenylpropanoid (phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, ferulate-5-hydroxylase, coniferyl-alcohol glucosyltransferase), and flavonoid synthesis (10 genes such as CHS) were significantly up-regulated during embryo germination. The high concentration of exogenous NO inhibited embryo germination by up-regulating the expression of 4-coumaric acid coenzyme A ligase (4CL) and negatively regulating the expression of flavonoid synthesis genes. This suggests that NO concentration-dependently regulates phenylpropanoid and flavonoid biosynthesis, thereby affecting ROS metabolism and hormone levels, and ultimately regulates the dormancy and germination of Sorbus pohuashanensis embryos. Full article
(This article belongs to the Special Issue Sexual and Asexual Reproduction in Forest Plants)
Show Figures

Figure 1

Back to TopTop