Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Field Treatments and Sampling
2.3. Detection of the Ripening Parameters
2.4. Anthocyanin Profile Analysis
2.5. RNA-Seq Analysis
2.6. Quantitative Real-Time PCR Analysis
2.7. Data Statistics and Analysis
3. Results
3.1. The Effect of ETH Treatment on the Ripening Parameters of Grapes
3.2. Quantification of Individual Anthocyanins in Grape
3.3. Transcriptomic Analysis of Grapes After ETH Treatment
3.4. Analysis of Anthocyanin Biosynthetic Genes
3.5. Analysis of Plant Hormone Signal Transduction
3.6. Analysis of Sugar Metabolism
4. Discussion
4.1. Effects of Ethylene on Sugar Content and Genes Related to Sugar Metabolism
4.2. Effects of Ethylene on Anthocyanin Content, Anthocyanin Biosynthetic Genes and MYB Transcription Factors in Grapes
4.3. Effects of Ethylene on Biosynthesis and Signaling of Plant Hormones
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Wang, M.; Zhang, L.; Ren, F.; Li, Y.; Chen, Y.; Liu, Y.; Zhang, Z.; Zeng, Q. Anthocyanin Profiles and Color Parameters of Fourteen Grapes and Wines from the Eastern Foot of Helan Mountain in Ningxia. Food Chem. X 2024, 24, 102034. [Google Scholar] [CrossRef] [PubMed]
- Pržić, Z.; Marković, N.; Tasić, A.; Nikolić, J.; Jovanović, V.S.; Mitić, M. Comparison of Identification and Determination of Phenolic Compounds and Antioxidant Potential of Selected Red Wines. Horticulturae 2025, 11, 231. [Google Scholar] [CrossRef]
- Yin, H.; Wang, L.; Xi, Z. Involvement of Anthocyanin Biosynthesis of Cabernet Sauvignon Grape Skins in Response to Field Screening and In Vitro Culture Irradiating Infrared Radiation. J. Agric. Food Chem. 2022, 70, 12807–12818. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, M.; Tong, C.; Zhang, D.; Zha, Q. Advances in Fruit Coloring Research in Grapevine: An Overview. Plant Growth Regul. 2023, 103, 51–63. [Google Scholar] [CrossRef]
- Walker, A.R.; Lee, E.; Bogs, J.; McDavid, D.A.J.; Thomas, M.R.; Robinson, S.P. White Grapes Arose through the Mutation of Two Similar and Adjacent Regulatory Genes. Plant J. 2007, 49, 772–785. [Google Scholar] [CrossRef]
- Wang, P.; Ge, M.; Yu, A.; Song, W.; Fang, J.; Leng, X. Effects of Ethylene on the Berry Ripening and Anthocyanin Accumulation of ‘Fujiminori’ Grape in Protected Cultivation. J. Sci. Food Agric. 2021, 102, 1124–1136. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, C.; Fan, X.; Jiang, J.; Zhang, Y.; Liu, J.; Liu, C.; Sun, L. VvMYBA1 and VvMYB3 Form an Activator–Repressor System to Regulate Anthocyanin Biosynthesis in Grape. Hortic. Plant J. 2025, 11, 1493–1505. [Google Scholar] [CrossRef]
- Fortes, A.M.; Teixeira, R.T.; Agudelo-Romero, P. Complex Interplay of Hormonal Signals during Grape Berry Ripening. Molecules 2015, 20, 9326–9343. [Google Scholar] [CrossRef]
- Wang, P.; Yu, A.; Ji, X.; Mu, Q.; Salman, H.M.; Wei, R.; Leng, X.; Fang, J. Transcriptome and Metabolite Integrated Analysis Reveals that Exogenous Ethylene Controls Berry Ripening Processes in Grapevine. Food Res. Int. 2022, 155, 111084. [Google Scholar] [CrossRef]
- Becatti, E.; Genova, G.; Ranieri, A.; Tonutti, P. Postharvest Treatments with Ethylene on Vitis vinifera (cv Sangiovese) Grapes affect Berry Metabolism and Wine Composition. Food Chem. 2014, 159, 257–266. [Google Scholar] [CrossRef]
- Liu, M.; Song, C.; Chi, M.; Wang, T.; Zuo, L.; Li, X.; Zhang, Z.; Xi, Z. The Effects of Light and Ethylene and Their Interaction on the Regulation of Proanthocyanidin and Anthocyanin Synthesis in the Skins of Vitis vinifera Berries. Plant Growth Regul. 2016, 79, 377–390. [Google Scholar] [CrossRef]
- OIV. International Code of Oenological Practices. Available online: http://www.oiv.int/oiv/info/enpratiquesoenologiques (accessed on 1 January 2020).
- Diana, S.D.; Andrea, B.; Roberto, F.; Rinaldo, B. Time of Postharvest Ethylene Treatments Affects Phenols, Anthocyanins, and Volatile Compounds of Cesanese Red Wine Grape. Foods 2021, 10, 322. [Google Scholar] [CrossRef]
- Xie, S.; Liu, Y.; Chen, H.; Zhang, Z.; Ge, M. Anthocyanin Degradation and the Underlying Molecular Mechanism in a Red-Fleshed Grape Variety. LWT 2021, 151, 112198. [Google Scholar] [CrossRef]
- Gastón, G.; Wei, Z.; Fernando, T.D.M. Current Viticultural Techniques to Mitigate the Effects of Global Warming on Grape and Wine Quality: A Comprehensive Review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef] [PubMed]
- COOMBE, B. Growth Stages of the Grapevine: Adoption of a System for Identifying Grapevine Growth Stages. Aust. J. Grape Wine Res. 1995, 1, 104–110. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, L.; Zhang, B.; Huang, W.; Zhang, Z.; An, B. Integrated Analysis of the Metabolome and Transcriptome Provides Insights into Anthocyanin Biosynthesis of Cashew Apple. Food Res. Int. 2024, 175, 113711. [Google Scholar] [CrossRef]
- Liu, M.; Ju, L.; Min, Z.; Fang, Y.; Meng, J. Transcriptome Analysis of Grape Leaves Reveals Insights into Response to Heat Acclimation. Sci. Hortic. 2020, 272, 109554. [Google Scholar] [CrossRef]
- Sasaki, N.; Nishizaki, Y.; Ozeki, Y.; Miyahara, T. The Role of Acyl-Glucose in Anthocyanin Modifications. Molecules 2014, 19, 18747–18766. [Google Scholar] [CrossRef]
- Wu, Z.D.; Messaoud, M.; Christel, R.; Isabelle, M.; Ghislaine, H.; Serge, D.; Eric, G. Long-Term in Vitro Culture of Grape Berries and Its Application to Assess the Effects of Sugar Supply on Anthocyanin Accumulation. J. Exp. Bot. 2014, 65, 4665–4677. [Google Scholar]
- Liu, M.; Zhu, Q.; Yang, Y.; Jiang, Q.; Cao, H.; Zhang, Z. Light Influences the Effect of Exogenous Ethylene on the Phenolic Composition of Cabernet Sauvignon Grapes. Front. Plant Sci. 2024, 15, 1356257. [Google Scholar] [CrossRef]
- Kobayashi, S.; Goto-Yamamoto, N.; Hirochika, H. Retrotransposon-Induced Mutations in Grape Skin Color. Science 2004, 304, 982. [Google Scholar] [CrossRef]
- Tira-Umphon, A.; Roustan, J.P.; Chervin, C. The Stimulation by Ethylene of the UDP Glucose-Flavonoid 3-O-Glucosyltransferase (UFGT) In Grape Tissues Is Independent from the MybA Transcription Factors. Vitis 2007, 46, 210–211. [Google Scholar]
- Chervin, C.; Tira-Umphon, A.; Chatelet, P.; Jauneau, A.; Boss, P.K.; Tesniere, C. Ethylene and Other Stimuli Affect Expression of the UDP Glucose-Flavonoid 3-O-Glucosyltransferase in a Non-Climacteric Fruit. Vitis 2009, 48, 11–16. [Google Scholar]
- Zhang, Z.; Chen, C.; Lin, H.; Jiang, C.; Zhao, Y.; Guo, Y. The VvHY5-VvMYB24-VvMYBA1 Transcription Factor Cascade Regulates the Biosynthesis of Anthocyanin in Grape. Hortic. Plant J. 2025, 11, 1066–1077. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Zhang, W.; Zheng, H.; Xu, X.; Li, H.; Sun, C.; Hu, H.; Zhao, W.; Ma, R.; et al. Promoter Replication of Grape MYB Transcription Factor Is Associated with a New Red Flesh Phenotype. Plant Cell Rep. 2024, 43, 136. [Google Scholar] [CrossRef]
- El-Kereamy, A.; Chervin, C.; Roustan, J.; Cheynier, V.; Souquet, J.; Moutounet, M.; Raynal, J.; Ford, C.; Latché, A.; Pech, J.; et al. Exogenous Ethylene Stimulates the Long-Term Expression of Genes Related to Anthocyanin Biosynthesis in Grape Berries. Physiol. Plant. 2003, 119, 175–182. [Google Scholar] [CrossRef]
- Chen, R.; Wu, Y.; Wei, X.; Huang, Z.; Mao, L. Ethylene Promotes ABA Biosynthesis by Repressing the Expression of miR161 in Postharvest Strawberry Fruit. Postharvest Biol. Technol. 2023, 199, 112302. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, X.; Kumar, S.M.R.; Huang, C.; Xie, Y.; Li, M.; Li, J. Transcriptomic and Metabolomic Analyses Reveals the Importance of Ethylene Networks in Mulberry Fruit Ripening. Plant Sci. 2024, 344, 112084. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, L.; Wang, L. The Transcription Factor MdERF78 Is Involved in ALA-Induced Anthocyanin Accumulation in Apples. Front. Plant Sci. 2022, 13, 915197. [Google Scholar] [CrossRef]
- Lou, L.; Hu, X.; Cheng, J.; Cheng, Y.; Yin, M.; Huan, C.; Zheng, X.; Shen, S. Transcriptomics Analysis Reveals the Regulatory Role of PsERF3 in Anthocyanin Biosynthesis of ‘Taoxingli’ Plum Fruit in Response to MeSA Treatment. Postharvest Biol. Technol. 2025, 220, 113298. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Shi, Y.; Lv, S.; Zhu, C.; Xu, C.; Zhang, B.; Allan, A.C.; Grierson, D.; Chen, K. The R2R3 MYB Ruby1 Is Activated by Two Cold Responsive Ethylene Response Factors, via the Retrotransposon in Its Promoter, to Positively Regulate Anthocyanin Biosynthesis in Citrus. Plant J. 2024, 119, 1433–1448. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; An, H.; Yang, Y.; Yi, C.; Duan, Y.; Wang, Q.; Guo, Y.; Yao, L.; Chen, M.; Meng, J.; et al. The MpNAC72/MpERF105-MpMYB10b Module Regulates Anthocyanin Biosynthesis in Malus ‘Profusion’ Leaves Infected with Gymnosporangium yamadae. Plant J. 2024, 118, 1569–1588. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Zuo, Q.; Sadeghnezhad, E.; Zheng, T.; Chen, X.; Dong, T.; Fang, J. HDAC19 Recruits ERF4 to the MYB5a Promoter and Diminishes Anthocyanin Accumulation during Grape Ripening. Plant J. 2022, 113, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Ban, T.; Ishimaru, M.; Kobayashi, S.; Goto-Yamamoto, N.; Horiuchi, S. Abscisic Acid and 2, 4-Dichlorophenoxyacetic Acid Affect the Expression of Anthocyanin Biosynthetic Pathway Genes in ‘Kyoho’ Grape Berries. J. Hortic. Sci. Biotechnol. 2003, 78, 586–589. [Google Scholar] [CrossRef]
- Wang, Y.W.; Nambeesan, S.U. Ethylene Promotes Fruit Ripening Initiation by Downregulating Photosynthesis, Enhancing Abscisic Acid and Suppressing Jasmonic Acid in Blueberry (Vaccinium ashei). BMC Plant Biol. 2024, 24, 418. [Google Scholar] [CrossRef]
- Mou, W.; Li, D.; Bu, J.; Jiang, Y.; Ullah, K.Z.; Luo, Z.; Ying, T. Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening. PLoS ONE 2016, 11, e0154072. [Google Scholar] [CrossRef]
- Stepanova, A.N.; Robertson-Hoyt, J.; Yun, J.; Benavente, L.M.; Xie, D.; Doležal, K.; Schlereth, A.; Jürgens, G.; Alonso, J.M. TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development. Cell 2008, 133, 177–191. [Google Scholar] [CrossRef]
- Tao, Y.; Ferrer, J.; Ljung, K.; Pojer, F.; Hong, F.; Long, J.A.; Li, L.; Moreno, J.E.; Bowman, M.E.; Ivans, L.J.; et al. Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants. Cell 2008, 133, 164–176. [Google Scholar] [CrossRef]
- Zhao, Y.; Christensen, S.K.; Fankhauser, C.; Cashman, J.R.; Cohen, J.D.; Weigel, D.; Chory, J. A Role for Flavin Monooxygenase-Like Enzymes in Auxin Biosynthesis. Science 2001, 291, 306–309. [Google Scholar] [CrossRef]
- Moro, L.; Hassimotto, A.M.N.; Purgatto, E. Postharvest Auxin and Methyl Jasmonate Effect on Anthocyanin Biosynthesis in Red Raspberry (Rubus idaeus L.). J. Plant Growth Regul. 2017, 36, 773–782. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Fan, B.; Li, L.; Hao, J.; Wei, R.; Luo, H.; Shi, F.; Ren, Z.; Wang, J. Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries. Foods 2025, 14, 2551. https://doi.org/10.3390/foods14142551
Liu M, Fan B, Li L, Hao J, Wei R, Luo H, Shi F, Ren Z, Wang J. Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries. Foods. 2025; 14(14):2551. https://doi.org/10.3390/foods14142551
Chicago/Turabian StyleLiu, Min, Boyuan Fan, Le Li, Jinmei Hao, Ruteng Wei, Hua Luo, Fei Shi, Zhiyuan Ren, and Jun Wang. 2025. "Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries" Foods 14, no. 14: 2551. https://doi.org/10.3390/foods14142551
APA StyleLiu, M., Fan, B., Li, L., Hao, J., Wei, R., Luo, H., Shi, F., Ren, Z., & Wang, J. (2025). Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries. Foods, 14(14), 2551. https://doi.org/10.3390/foods14142551