Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (825)

Search Parameters:
Keywords = eutrophication assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1166 KiB  
Article
Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions
by Hamad Ahmed Al-Ali and Koji Tokimatsu
Energies 2025, 18(15), 4085; https://doi.org/10.3390/en18154085 - 1 Aug 2025
Viewed by 113
Abstract
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment [...] Read more.
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment (LCA) approach to evaluate three water supply strategies for hydrogen production: (1) seawater desalination without brine treatment (BT), (2) desalination with partial BT, and (3) freshwater purification. Scenarios are modeled for the United Arab Emirates (UAE), Australia, and Spain, representing diverse electricity mixes and water stress conditions. Both electrolysis and steam methane reforming (SMR) are evaluated as hydrogen production methods. Results show that desalination scenarios contribute substantially to human health and ecosystem impacts due to high energy use and brine discharge. Although partial BT aims to reduce direct marine discharge impacts, its substantial energy demand can offset these benefits by increasing other environmental burdens, such as marine eutrophication, especially in regions reliant on carbon-intensive electricity grids. Freshwater scenarios offer lower environmental impact overall but raise water availability concerns. Across all regions, feedwater for SMR shows nearly 50% lower impacts than for electrolysis. This study focuses solely on the environmental impacts associated with water sourcing and treatment for hydrogen production, excluding the downstream impacts of the hydrogen generation process itself. This study highlights the trade-offs between water sourcing, brine treatment, and freshwater purification for hydrogen production, offering insights for optimizing sustainable hydrogen systems in water-stressed regions. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production in Renewable Energy Systems)
Show Figures

Figure 1

22 pages, 7156 KiB  
Communication
Water Management, Environmental Challenges, and Rehabilitation Strategies in the Khyargas Lake–Zavkhan River Basin, Western Mongolia: A Case Study of Ereen Lake
by Tseren Ochir Soyol-Erdene, Ganbat Munguntsetseg, Zambuu Burmaa, Ulziibat Bilguun, Shagijav Oyungerel, Soninkhishig Nergui, Nyam-Osor Nandintsetseg, Michael Walther and Ulrich Kamp
Geographies 2025, 5(3), 38; https://doi.org/10.3390/geographies5030038 - 1 Aug 2025
Viewed by 431
Abstract
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized [...] Read more.
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized by the international organization Birdlife. However, the construction of the Taishir Hydroelectric Power Station, aimed at supplying electricity to the western provinces of Mongolia, had a detrimental effect on the flow of the Zavkhan River, resulting in a drying-up and pollution of Lake Ereen, which relies on the river as its water source. This study assesses the pollution levels in Ereen Lake and determines the feasibility of its rehabilitation by redirecting the flow of the Zavkhan River. Field studies included the analysis of water quality, sediment contamination, and the composition of flora. The results show that the concentrations of ammonium, chlorine, fluorine, and sulfate in the lake water exceed the permissible levels set by the Mongolian standard. Analyses of elements from sediments revealed elevated levels of arsenic, chromium, and copper, exceeding international sediment quality guidelines and posing risks to biological organisms. Furthermore, several species of diatoms indicative of polluted water were discovered. Lake Ereen is currently in a eutrophic state and, based on a water quality index (WQI) of 49.4, also in a “polluted” state. Mass balance calculations and box model analysis determined the period of pollutant replacement for two restoration options: drying-up and complete removal of contaminated sediments and plants vs. dilution-flushing without direct interventions in the lake. We recommend the latter being the most efficient, eco-friendly, and cost-effective approach to rehabilitate Lake Ereen. Full article
Show Figures

Figure 1

24 pages, 7231 KiB  
Article
Monitoring of Algae Communities on the Littoral of the Barents Sea Using UAV Imagery
by Svetlana V. Kolbeeva, Pavel S. Vashchenko and Veronika V. Vodopyanova
Diversity 2025, 17(8), 518; https://doi.org/10.3390/d17080518 - 26 Jul 2025
Viewed by 265
Abstract
The paper presents the results of a study on littoral algae communities along the Murmansk coast from 2021–2024. The emphasis is on fucus algae and green algae communities as the most abundant ones. For the first time, an annual monitoring of littoral algae [...] Read more.
The paper presents the results of a study on littoral algae communities along the Murmansk coast from 2021–2024. The emphasis is on fucus algae and green algae communities as the most abundant ones. For the first time, an annual monitoring of littoral algae distribution in the bays of the Barents Sea was performed using a set of methods, allowing a better understanding of the dynamics of their biomass. Unlike most classical studies, which only focus on biomass and population structure, this work shows the results of using UAV-based remote sensing in combination with traditional coastal sampling techniques. The features and limitations of this approach in Arctic latitudes are discussed. According to the monitoring results, an increase in fucus algae biomass is observed in the study area, which may be associated with an increase in summer temperatures and water salinity. Fucus serratus and Pelvetia canaliculata populations remain stable. Ulvophycean algae show seasonal peaks of development with abnormally high biomass in areas of anthropogenic impact, which may indicate local eutrophication. The map of algae spatial distribution is presented. The results are important for understanding the structure and functioning of the Arctic ecosystem and for assessing the environmental impact in the region. Full article
Show Figures

Figure 1

20 pages, 2497 KiB  
Article
Sustainable Solar Desalination: Experimental Predictive Control with Integrated LCA and Techno-Economic Evaluation
by Mishal Alsehli
Processes 2025, 13(8), 2364; https://doi.org/10.3390/pr13082364 - 25 Jul 2025
Viewed by 299
Abstract
This study experimentally validates a solar-thermal desalination system equipped with predictive feedwater control guided by real-time solar forecasting. Unlike conventional systems that react to temperature changes, the proposed approach proactively adjusts feedwater flow in anticipation of solar variability. To assess environmental and financial [...] Read more.
This study experimentally validates a solar-thermal desalination system equipped with predictive feedwater control guided by real-time solar forecasting. Unlike conventional systems that react to temperature changes, the proposed approach proactively adjusts feedwater flow in anticipation of solar variability. To assess environmental and financial sustainability, the study integrates this control logic with a full Life Cycle Assessment (LCA) and Techno-Economic Analysis (TEA). Field testing in a high-temperature, arid region demonstrated strong performance, achieving a Global Warming Potential (GWP) of 1.80 kg CO2-eq/m3 and a Levelized Cost of Water (LCOW) of $0.88/m3. Environmental impacts were quantified using OpenLCA and ecoinvent datasets, covering climate change, acidification, and eutrophication categories. The TEA confirmed economic feasibility, reporting a positive Net Present Value (NPV) and an Internal Rate of Return (IRR) exceeding 11.5% over a 20-year lifespan. Sensitivity analysis showed that forecast precision and TES design strongly influence both environmental and economic outcomes. The integration of intelligent control with simplified thermal storage offers a scalable, cost-effective solution for off-grid freshwater production in solar-rich regions. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Graphical abstract

24 pages, 3226 KiB  
Article
The Environmental Impacts of Façade Renovation: A Case Study of an Office Building
by Patrik Štompf, Rozália Vaňová and Stanislav Jochim
Sustainability 2025, 17(15), 6766; https://doi.org/10.3390/su17156766 - 25 Jul 2025
Viewed by 433
Abstract
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University [...] Read more.
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University in Zvolen (Slovakia) using a life cycle assessment (LCA) approach. The aim is to quantify and compare these impacts based on material selection and its influence on sustainable construction. The analysis focuses on key environmental indicators, including global warming potential (GWP), abiotic depletion (ADE, ADF), ozone depletion (ODP), toxicity, acidification (AP), eutrophication potential (EP), and primary energy use (PERT, PENRT). The scenarios vary in the use of insulation materials (glass wool, wood fibre, mineral wool), façade finishes (cladding vs. render), and window types (aluminium vs. wood–aluminium). Uncertainty analysis identified GWP, AP, and ODP as robust decision-making categories, while toxicity-related results showed lower reliability. To support integrated and transparent comparison, a composite environmental index (CEI) was developed, aggregating characterisation, normalisation, and mass-based results into a single score. Scenario C–2, featuring an ETICS system with mineral wool insulation and wood–aluminium windows, achieved the lowest environmental impact across all categories. In contrast, scenarios with traditional cladding and aluminium windows showed significantly higher impacts, particularly in fossil fuel use and ecotoxicity. The findings underscore the decisive role of material selection in sustainable renovation and the need for a multi-criteria, context-sensitive approach aligned with architectural, functional, and regional priorities. Full article
Show Figures

Figure 1

17 pages, 2126 KiB  
Article
Stable Carbon and Nitrogen Isotope Signatures in Three Pondweed Species—A Case Study of Rivers and Lakes in Northern Poland
by Zofia Wrosz, Krzysztof Banaś, Marek Merdalski and Eugeniusz Pronin
Plants 2025, 14(15), 2261; https://doi.org/10.3390/plants14152261 - 22 Jul 2025
Viewed by 200
Abstract
Aquatic plants, as sedentary lifestyle organisms that accumulate chemical substances from their surroundings, can serve as valuable indicators of long-term anthropogenic pressure. In Poland, water monitoring is limited both spatially and temporally, which hampers a comprehensive assessment of water quality. Since the implementation [...] Read more.
Aquatic plants, as sedentary lifestyle organisms that accumulate chemical substances from their surroundings, can serve as valuable indicators of long-term anthropogenic pressure. In Poland, water monitoring is limited both spatially and temporally, which hampers a comprehensive assessment of water quality. Since the implementation of the Water Framework Directive (WFD), biotic elements, including macrophytes, have played an increasingly important role in water monitoring. Moreover, running waters, due to their dynamic nature, are susceptible to episodic pollution inputs that may be difficult to detect during isolated, point-in-time sampling campaigns. The analysis of stable carbon (δ13C) and nitrogen (δ15N) isotope signatures in macrophytes enables the identification of elemental sources, including potential pollutants. Research conducted between 2008 and 2011 encompassed 38 sites along 15 rivers and 108 sites across 21 lakes in northern Poland. This study focused on the isotope signatures of three pondweed species: Stuckenia pectinata, Potamogeton perfoliatus, and Potamogeton crispus. The results revealed statistically significant differences in the δ13C and δ15N values of plant organic matter between river and lake environments. Higher δ15N values were observed in rivers, whereas higher δ13C values were recorded in lakes. Spearman correlation analysis showed a negative relationship between δ13C and δ15N, as well as correlations between δ15N and the concentrations of Ca2+ and HCO3. A positive correlation was also found between δ13C and dissolved oxygen levels. These findings confirm the utility of δ13C and, in particular, δ15N as indicators of anthropogenic eutrophication, including potentially domestic sewage input and its impact on aquatic ecosystems. Full article
Show Figures

Figure 1

18 pages, 2344 KiB  
Article
Life Cycle Assessment of Key Mediterranean Agricultural Products at the Farm Level Using GHG Measurements
by Georgios Bartzas, Maria Doula and Konstantinos Komnitsas
Agriculture 2025, 15(14), 1494; https://doi.org/10.3390/agriculture15141494 - 11 Jul 2025
Viewed by 266
Abstract
Agricultural greenhouse gas (GHG) emissions contribute significantly to climate change and underline the importance of reliable measurements and mitigation strategies. This life cycle assessment (LCA)-based study evaluates the environmental impacts of four key Mediterranean agricultural products, namely olives, sweet potatoes, corn, and grapes [...] Read more.
Agricultural greenhouse gas (GHG) emissions contribute significantly to climate change and underline the importance of reliable measurements and mitigation strategies. This life cycle assessment (LCA)-based study evaluates the environmental impacts of four key Mediterranean agricultural products, namely olives, sweet potatoes, corn, and grapes using GHG measurements at four pilot fields located in different regions of Greece. With the use of a cradle-to-gate approach six environmental impact categories, more specifically acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ozone depletion potential (ODP), photochemical ozone creation potential (POCP), and cumulative energy demand (CED) as energy-based indicator are assessed. The functional unit used is 1 ha of cultivated land. Any potential carbon offsets from mitigation practices are assessed through an integrated low-carbon certification framework and the use of innovative, site-specific technologies. In this context, the present study evaluates three life cycle inventory (LCI)-based scenarios: Baseline (BS), which represents a 3-year crop production period; Field-based (FS), which includes on-site CO2 and CH4 measurements to assess the effects of mitigation practices; and Inventoried (IS), which relies on comprehensive datasets. The adoption of carbon mitigation practices under the FS scenario resulted in considerable reductions in environmental impacts for all pilot fields assessed, with average improvements of 8% for olive, 5.7% for sweet potato, 4.5% for corn, and 6.5% for grape production compared to the BS scenario. The uncertainty analysis indicates that among the LCI-based scenarios evaluated, the IS scenario exhibits the lowest variability, with coefficient of variation (CV) values ranging from 0.5% to 7.3%. In contrast, the FS scenario shows slightly higher uncertainty, with CVs reaching up to 15.7% for AP and 14.7% for EP impact categories in corn production. The incorporation of on-site GHG measurements improves the precision of environmental performance and supports the development of site-specific LCI data. This benchmark study has a noticeable transferability potential and contributes to the adoption of sustainable practices in other regions with similar characteristics. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Graphical abstract

28 pages, 4718 KiB  
Article
Analysis and Prospective Use of Local Mineral Raw Materials to Increase the Aesthetic and Recreational Value of the Vyzhyvka River (Western Ukraine)
by Yuliia Trach, Tetiana Tkachenko, Maryna Kravchenko, Viktor Mileikovskyi, Oksana Tsos, Mariia Boiaryn, Olha Biedunkova, Roman Trach and Ihor Statnyk
Environments 2025, 12(7), 235; https://doi.org/10.3390/environments12070235 - 10 Jul 2025
Viewed by 625
Abstract
Macrophytes are important components of aquatic ecosystems performing essential ecological functions. Their species composition and density reflect the ecological status of water bodies. The optimal ratio of morphological types of macrophytes is an important condition for preventing eutrophication. The aim of the study [...] Read more.
Macrophytes are important components of aquatic ecosystems performing essential ecological functions. Their species composition and density reflect the ecological status of water bodies. The optimal ratio of morphological types of macrophytes is an important condition for preventing eutrophication. The aim of the study is to analyse the species composition, distribution, and density of macrophytes in the Vyzhyvka River (Ukraine) in a seasonal aspect (2023–2024) under constant physical and chemical characteristics of water. To assess the seasonal dynamics of water quality, changes in indicators in three representative areas were analysed. The MIR method of environmental indexation of watercourses was used to assess the ecological state of the river. The water quality in the Vyzhyvka River at all test sites corresponds to the second class of the “good” category with the trophic status of “mesotrophic”. This is confirmed by the identified species diversity, which includes 64 species of higher aquatic and riparian plants. Among the various morphological types of macrophytes, submerged rooted forms account for only 10.56% of the total species composition. To ensure a functional balance between submerged and other forms of macrophytes, a scientifically based approach is proposed, which involves the use of mineral raw materials of local origin, in particular, mining and quarrying wastes rich in silicon, calcium and other mineral components. The results obtained are of practical value for water management, environmental protection, and ecological reclamation and can be used to develop effective measures to restore river ecosystems. Full article
Show Figures

Figure 1

25 pages, 867 KiB  
Article
Remote Sensing Reveals Multi-Dimensional Functional Changes in Fish Assemblages Under Eutrophication and Hydrological Stress
by Anastasiia Zymaroieva, Dmytro Bondarev, Olga Kunakh, Jens-Christian Svenning and Oleksander Zhukov
Fishes 2025, 10(7), 338; https://doi.org/10.3390/fishes10070338 - 9 Jul 2025
Viewed by 400
Abstract
Understanding how fish communities respond to long-term environmental changes in regulated floodplain ecosystems is essential for managing biodiversity amid increasing anthropogenic and climatic pressures. This study evaluates the spatiotemporal dynamics of functional diversity in juvenile fish assemblages within the Dnipro-Orilskiy Nature Reserve (Ukraine) [...] Read more.
Understanding how fish communities respond to long-term environmental changes in regulated floodplain ecosystems is essential for managing biodiversity amid increasing anthropogenic and climatic pressures. This study evaluates the spatiotemporal dynamics of functional diversity in juvenile fish assemblages within the Dnipro-Orilskiy Nature Reserve (Ukraine) from 1997 to 2015. By employing a combination of extensive ichthyological field surveys and satellite-derived environmental indices (including NDVI, chlorophyll-a, turbidity, and spectral proxies for algal blooms), we assessed the impacts of eutrophication, hydrological alterations, and climate warming on functional structure. Our results reveal three key responses in fish functional diversity: (1) a decline in functional specialization and imbalance, indicating the loss of unique ecological roles and increased redundancy; (2) a rise in functional divergence, reflecting a shift toward species with outlying trait combinations; and (3) a complex pattern in functional richness, with trends varying by site and trait structure. These shifts are linked to increasing eutrophication and warming, particularly in floodplain areas. Remote sensing effectively captured spatial variation in eutrophication-related water quality and proved to be a powerful tool for linking environmental change to fish community dynamics, not least in inaccessible areas. Full article
Show Figures

Figure 1

20 pages, 2942 KiB  
Article
Zooplankton Community Responses to Eutrophication and TOC: Network Clustering in Regionally Similar Reservoirs
by Yerim Choi, Hye-Ji Oh, Geun-Hyeok Hong, Dae-Hee Lee, Jeong-Hui Kim, Sang-Hyeon Park, Jung-Ho Yun and Kwang-Hyeon Chang
Water 2025, 17(14), 2051; https://doi.org/10.3390/w17142051 - 9 Jul 2025
Viewed by 273
Abstract
This study analyzed the relationship between zooplankton communities and water quality characteristics, with a focus on total organic carbon (TOC), in 22 reservoirs within the Geum River basin that share similar climatic conditions but exhibit varying levels of pollution. Across all reservoirs, zooplankton [...] Read more.
This study analyzed the relationship between zooplankton communities and water quality characteristics, with a focus on total organic carbon (TOC), in 22 reservoirs within the Geum River basin that share similar climatic conditions but exhibit varying levels of pollution. Across all reservoirs, zooplankton community structures showed the highest correlations with TOC, suspended solids (SS), chlorophyll-a (Chl-a), and Secchi depth (SD), with stronger associations observed for rotifers and cladocerans compared to copepods. The classification of zooplankton community composition patterns, followed by an analysis of their associations with TOC concentrations, revealed relatively distinct differences between high-TOC and low-TOC reservoirs, indicating that TOC functions as a key determinant of community composition. Meanwhile, network analysis based on overall water quality characteristics indicated that patterns of water quality similarity among zooplankton-based communities differed somewhat from those based solely on TOC concentrations, suggesting that TOC may exert an independent influence on zooplankton community structure. In high-TOC reservoirs, typical eutrophic characteristics—such as elevated chlorophyll-a, total phosphorus, and suspended solids, along with reduced water transparency—were observed, accompanied by higher zooplankton abundance and a greater proportion of rotifers within the community. In contrast, low-TOC reservoirs, despite exhibiting no marked differences in other water quality variables, showed higher diversity of cladocerans alongside rotifers, further supporting the independent role of TOC in shaping zooplankton community structures. These findings highlight TOC not only as a general indicator of pollution but also as an ecologically significant factor influencing zooplankton community composition and carbon dynamics in reservoir ecosystems. They suggest that TOC should be considered a key variable in future assessments and management of lentic ecosystems. Full article
Show Figures

Figure 1

17 pages, 4387 KiB  
Article
Algal Community Dynamics in Three Water Intakes of Poyang Lake: Implications for Drinking Water Safety and Management Strategies
by Bo Li, Jing Li, Yuehang Hu, Shaozhe Cheng, Shouchun Li and Xuezhi Zhang
Water 2025, 17(13), 2034; https://doi.org/10.3390/w17132034 - 7 Jul 2025
Viewed by 405
Abstract
This study aimed to investigate phytoplankton dynamics and water quality at three drinking water intakes (Duchang, Hukou, and Xingzi) in Poyang Lake through monthly monitoring from May 2023 to April 2024. The results showed that a total of 168 species of phytoplankton were [...] Read more.
This study aimed to investigate phytoplankton dynamics and water quality at three drinking water intakes (Duchang, Hukou, and Xingzi) in Poyang Lake through monthly monitoring from May 2023 to April 2024. The results showed that a total of 168 species of phytoplankton were identified in nine phyla, and there were significant spatial and temporal differences in the abundance of phytoplankton at the three waterworks intakes, with a spatial trend of annual mean values of Duchang > Xingzi > Hukou and a seasonal trend of summer and autumn > spring and winter. The dominant species of phytoplankton in the waterworks intakes of the three waterworks also showed obvious spatial and temporal differences. Cyanobacteria (particularly Pseudanabaena sp. and Microcystis sp.) dominated the phytoplankton communities during summer and autumn, demonstrating significant water degradation potential. In contrast, Cyclotella sp. prevailed in winter and spring assemblages. Based on water quality assessments at the three intake sites, the Duchang County intake exhibited year-round mild eutrophication with persistent mild cyanobacterial blooms (June–October), while the other two sites maintained no obvious bloom conditions. Further analyzing the toxic/odor-producing algal strains, the numbers of dominant species of Pseudanabaena sp. and Microcystis sp. in June–October in Duchang County both exceeded 1.0 × 107 cells·L−1. It is necessary to focus on their release of ATX-a (ichthyotoxin-a), 2MIB (2-Methylisoborneol), MCs (microcystins), etc., to ensure the safety of the water supply at the intake. Building upon these findings, we propose a generalized algal monitoring framework, encompassing three operational pillars: (1) key monitoring area identification, (2) high-risk period determination, and (3) harmful algal warnings. Each of these is substantiated by our empirical observations in Poyang Lake. Full article
(This article belongs to the Special Issue Freshwater Species: Status, Monitoring and Assessment)
Show Figures

Graphical abstract

35 pages, 3025 KiB  
Review
Technologies for the Remediation of Nitrogen Pollution and Advances in the Application of Metal–Phenolic Networks
by Shengjiao Xu, Jialin Lin, Huihao Luo, Si Li, Yanda Qian, Yizhou Long, Zhengchuan Wu and Guocheng Zhu
Processes 2025, 13(7), 2131; https://doi.org/10.3390/pr13072131 - 4 Jul 2025
Viewed by 355
Abstract
Nitrogen is a vital nutrient and plays a pivotal role in maintaining ecosystem equilibrium. Owing to human activities, particularly industrial production, vehicle emissions, fossil fuel combustion, and the improper use of chemical fertilizers, nitrogen pollution has emerged as a pressing global environmental issue. [...] Read more.
Nitrogen is a vital nutrient and plays a pivotal role in maintaining ecosystem equilibrium. Owing to human activities, particularly industrial production, vehicle emissions, fossil fuel combustion, and the improper use of chemical fertilizers, nitrogen pollution has emerged as a pressing global environmental issue. It exacerbates air pollution, water eutrophication, and soil acidification, all of which pose profound risks to both ecosystems and human health. This review conducts a holistic analysis of nitrogen sources and the current status of nitrogen pollution, with a particular focus on the treatment of nitrogen-laden wastewater. It assesses various nitrogen pollution remediation technologies, including biological and physicochemical methods. In recent years, the application of novel metal–phenolic networks (MPNs) has garnered considerable scholarly attention. As innovative materials, it has been demonstrated that MPNs have great potential in nitrogen removal. For example, studies have demonstrated that iron–tanninate has the capacity to remove over 95% of ammonium nitrogen. Despite the progress made with current remediation methods, each approach has inherent limitations, such as long treatment durations, high energy demands, and poor selectivity for diverse nitrogen pollutants. Therefore, sustained research endeavors and technological innovation are indispensable for advancing nitrogen pollution control technologies. It is against this backdrop that we conducted this review. This study summarizes and analyzes the current status of nitrogen pollution and nitrogen removal technologies, and provides an overview of novel nitrogen removal MPNs. MPNs are promising and innovative materials with great potential, although current research is still at the laboratory stage and is ongoing. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

23 pages, 1237 KiB  
Review
Resource Recovery from Green Tide Biomass: Sustainable Cascading Biorefinery Strategies for Ulva spp.
by Gianluca Ottolina, Federica Zaccheria and Jacopo Paini
Biomass 2025, 5(3), 41; https://doi.org/10.3390/biomass5030041 - 2 Jul 2025
Viewed by 523
Abstract
This review examines sustainable cascading biorefinery strategies for the green alga Ulva, which is globally prevalent in eutrophic marine waters and often forms extensive “green tides.” These blooms cause substantial environmental and economic damage to coastal communities. The primary target products within [...] Read more.
This review examines sustainable cascading biorefinery strategies for the green alga Ulva, which is globally prevalent in eutrophic marine waters and often forms extensive “green tides.” These blooms cause substantial environmental and economic damage to coastal communities. The primary target products within an Ulva biorefinery typically encompass salts, lipids, proteins, cellulose, and ulvan. Each of these components possesses unique properties and diverse applications, contributing to the economic robustness of the biorefinery. Salts can be repurposed for agricultural or even human consumption. Lipids offer high-value applications in nutraceuticals and animal feed. Proteins present significant potential as plant-based nutritional supplements. Cellulose can be transformed into various advanced materials. Finally, ulvan, a polyanionic oligosaccharide unique to Ulva, holds promise due to its distinct properties, particularly in the biomedical field. Furthermore, state-of-the-art chemical modifications of ulvan are presented with the aim of tailoring its properties and broadening its potential applications. Future research should prioritize optimizing these integrated extraction and fractionation processes. Furthermore, a multi-product biorefining approach, integrated with robust Life Cycle Assessment studies, is vital for transforming this environmental challenge into a significant opportunity for sustainable resource valorization and economic growth. Full article
Show Figures

Figure 1

22 pages, 2576 KiB  
Article
Multi-Indicator Environmental Impact Assessment of Recycled Aggregate Concrete Based on Life Cycle Analysis
by Heng Zhang, Xiaochu Wang, Peng Ren and Linlin Yang
Buildings 2025, 15(13), 2301; https://doi.org/10.3390/buildings15132301 - 30 Jun 2025
Viewed by 367
Abstract
With the ongoing acceleration in urban development, the volume of construction and demolition waste continues to rise, while the availability of natural aggregates is steadily declining. Utilizing recycled aggregates in concrete has become a vital approach to fostering sustainability within the construction sector. [...] Read more.
With the ongoing acceleration in urban development, the volume of construction and demolition waste continues to rise, while the availability of natural aggregates is steadily declining. Utilizing recycled aggregates in concrete has become a vital approach to fostering sustainability within the construction sector. This research develops a life cycle-based environmental impact evaluation model for recycled aggregate concrete, applying the Life Cycle Assessment (LCA) framework. Through the eFootprint platform, a quantitative evaluation is carried out for C30-grade concrete containing varying levels of recycled aggregate replacement. Four replacement ratios of recycled coarse aggregate (30%, 50%, 70%, and 100%) were evaluated. The assessment includes six key environmental indicators: Global Warming Potential (GWP), Primary Energy Demand (PED), Abiotic Depletion Potential (ADP), Acidification Potential (AP), Eutrophication Potential (EP), and Respiratory Inorganics (RI). The findings reveal that higher substitution rates of recycled aggregate lead to noticeable reductions in RI, EP, and AP, indicating improved environmental performance. Conversely, slight increases are observed in GWP and PED, especially under long transport distances. Analysis of contributing factors and sensitivity indicates that cement manufacturing is the principal driver of these increases, contributing over 80% of the total GWP, PED, and ADP impacts, with aggregate transport as the next major contributor. This study offers methodological insights into the environmental evaluation of recycled aggregate concrete and supports the green design and development of low-carbon strategies in construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 1618 KiB  
Article
A Phosphorus Microfractionation (P-MF) Method for Measuring Phosphorus Fractions in Small Quantities of Suspended Solids and Sediments: Detailed Method and Example Application
by Jacob B. Taggart, Rebecca L. Ryan, A. Woodruff Miller, Theron G. Miller and Gustavious P. Williams
Environments 2025, 12(7), 218; https://doi.org/10.3390/environments12070218 - 26 Jun 2025
Viewed by 368
Abstract
The standard methods for sediment phosphorus (P) fractionation are impractical for use with suspended solids due to the inherent difficulties associated with collecting sufficient sample quantities for analysis. To allow the fractionation analysis of small quantities of suspended solids or sediment, we developed [...] Read more.
The standard methods for sediment phosphorus (P) fractionation are impractical for use with suspended solids due to the inherent difficulties associated with collecting sufficient sample quantities for analysis. To allow the fractionation analysis of small quantities of suspended solids or sediment, we developed a P-microfractionation (P-MF) method and evaluated the minimum sample size threshold. The dry mass threshold is likely <1.0 g for Utah Lake suspended solids and between 0.35 and 0.99 g for Utah Lake sediments, though we recommend experimentation to refine these thresholds for other locations, as Utah Lake sediment P concentrations are high (~1000 mg kg−1). We estimated dry mass using duplicate samples, as drying a sample changes the P fractions. We show that Utah Lake suspended solids have a significantly higher P content across most P fractions compared to those in sediments, emphasizing the importance of considering suspended solids when managing water nutrient levels in eutrophic water bodies. P-MF has the potential to enable researchers to use reasonably sized water samples to assess the P sorption behavior of suspended solids, a measurement not typically performed. Full article
Show Figures

Figure 1

Back to TopTop