A Phosphorus Microfractionation (P-MF) Method for Measuring Phosphorus Fractions in Small Quantities of Suspended Solids and Sediments: Detailed Method and Example Application
Abstract
1. Introduction
1.1. Background
1.2. P Fractionation of Suspended Solids
1.3. Utah Lake Target Study
1.4. Research Overview
2. Methods
2.1. Fraction Descriptions
2.2. Study Materials
2.3. Method Development
2.4. Method Description
3. Results and Discussion
3.1. Baseline Results
3.1.1. Detection Limits
3.1.2. Dry Mass of Samples
3.1.3. Sample Controls
3.1.4. Total Phosphorus Results
3.1.5. Results for P Fractions
3.2. One-Way ANOVAs
3.3. Post-Hoc Tests
4. Conclusions
Study Limitations and Suggestions for Future Research
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lü, C.; Wang, B.; He, J.; Vogt, R.D.; Zhou, B.; Guan, R.; Zuo, L.; Wang, W.; Xie, Z.; Wang, J.; et al. Responses of Organic Phosphorus Fractionation to Environmental Conditions and Lake Evolution. Environ. Sci. Technol. 2016, 50, 4893–5422. [Google Scholar] [CrossRef] [PubMed]
- Kovar, J.L.; Pierzynski, G.M. Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters, 2nd ed.; North Carolina State University Raleigh: Raleigh, NC, USA, 2009. [Google Scholar]
- Kleinman, P.J.A.; Sharpley, A.N.; Gartley, K.; Jarrell, W.M.; Kuo, S.; Menon, R.G.; Myers, R.; Reddy, K.R.; Skogley, E.O. Interlaboratory comparison of soil phosphorus extracted by various soil test methods. Commun. Soil Sci. Plant Anal. 2001, 32, 2325–2345. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Yang, J.; Abdi, D.; Cade-Menun, B.J. Investigation of soil legacy phosphorus transformation in long-term agricultural fields using sequential fractionation, P K-edge XANES and solution P NMR spectroscopy. Environ. Sci. Technol. 2015, 49, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L.; Leytem, A.B. Phosphorus compounds in sequential extracts of animal manures: Chemical speciation and a novel fractionation procedure. Environ. Sci. Technol. 2004, 38, 6101–6108. [Google Scholar] [CrossRef]
- Abu-Hmeidan, H.Y.; Williams, G.P.; Miller, A.W. Characterizing total phosphorus in current and geologic utah lake sediments: Implications for water quality management issues. Hydrology 2018, 5, 8. [Google Scholar] [CrossRef]
- Dorich, R.A.; Nelson, D.W.; Sommers, L.E. Algal availability of sediment phosphorus in drainage water of the Black Creek Watershed. J. Environ. Qual. 1980, 9, 557–563. [Google Scholar] [CrossRef]
- Dorich, R.A.; Nelson, D.W.; Sommers, L.E. Estimating algal available phosphorus in suspended sediments by chemical extraction. J. Environ. Qual. 1985, 14, 400–405. [Google Scholar] [CrossRef]
- Randall, M.C.; Carling, G.T.; Dastrup, D.B.; Miller, T.; Nelson, S.T.; Rey, K.A.; Hansen, N.C.; Bickmore, B.R.; Aanderud, Z.T. Sediment potentially controls in-lake phosphorus cycling and harmful cyanobacteria in shallow, eutrophic Utah Lake. PLoS ONE 2019, 14, e0212238. [Google Scholar] [CrossRef]
- Hupfer, M.; Zak, D.; Roßberg, R.; Herzog, C.; Pöthig, R. Evaluation of a well-established sequential phosphorus fractionation technique for use in calcite-rich lake sediments: Identification and prevention of artifacts due to apatite formation. Limnol. Oceanogr. Methods 2009, 7, 399–410. [Google Scholar] [CrossRef]
- Casbeer, W.; Williams, G.P.; Borup, M.B. Phosphorus distribution in delta sediments: A unique data set from deer creek reservoir. Hydrology 2018, 5, 58. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, F.; He, Z.; Guo, J.; Qu, X.; Xie, F.; Giesy, J.P.; Liao, H.; Guo, F. Characterization of organic phosphorus in lake sediments by sequential fractionation and enzymatic hydrolysis. Environ. Sci. Technol. 2013, 47, 7679–7687. [Google Scholar] [CrossRef] [PubMed]
- Acioly, T.M.d.S.; da Silva, M.F.; Barbosa, L.A.; Iannacone, J.; Viana, D.C. Levels of potentially toxic and essential elements in water and estimation of human health risks in a river located at the interface of brazilian savanna and amazon biomes (Tocantins River). Toxics 2024, 12, 444. [Google Scholar] [CrossRef]
- Petersen, G.W.; Corey, R.B. A modified Chang and Jackson procedure for routine fractionation of inorganic soil phosphates. Soil Sci. Soc. Am. J. 1966, 30, 563–565. [Google Scholar] [CrossRef]
- Tiessen, H.; Stewart, J.W.B.; Cole, C.V. Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Sci. Soc. Am. J. 1984, 48, 853–858. [Google Scholar] [CrossRef]
- Pan, G.; Krom, M.D.; Zhang, M.; Zhang, X.; Wang, L.; Dai, L.; Sheng, Y.; Mortimer, R.J.G. Impact of Suspended Inorganic Particles on Phosphorus Cycling in the Yellow River (China). Environ. Sci. Technol. 2013, 47, 9559–10094. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Xie, Q.; Yang, R.; Guan, T.; Wu, D. Immobilization and Release Behavior of Phosphorus on Phoslock-Inactivated Sediment under Conditions Simulating the Photic Zone in Eutrophic Shallow Lakes. Environ. Sci. Technol. 2019, 53, 12151–12960. [Google Scholar] [CrossRef]
- Wilkinson, K.J.; Lead, J.R. Environmental Colloids and Particles Behaviour, Separation and Characterisation; John Wiley & Sons Ltd.: Chichester, UK, 2007; Volume 10. [Google Scholar]
- Kauppila, P.M. Sequential Extraction Procedure. Available online: https://mineclosure.gtk.fi/sequential-extraction-procedure/ (accessed on 26 April 2022).
- Chakrapani, G.J.; Subramanian, V. Fractionation of Heavy Metals and Phosphorus in Suspended Sediments of the Yamuna River, India. Environ. Monit. Assess. 1996, 43, 117–124. [Google Scholar] [CrossRef]
- Ellison, C.A.; Savage, B.E.; Johnson, G.D. Suspended-Sediment Concentrations, Loads, Total Suspended Solids, Turbidity, and Particle-Size Fractions for Selected Rivers in Minnesota, 2007 Through 2011; 2013–5205; US Geological Survey: Reston, VA, USA, 2014. [Google Scholar]
- Shen, F.; Verhoef, W.; Zhou, Y.; Salama, M.S.; Liu, X. Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data. Estuaries Coasts 2010, 33, 1420–1429. [Google Scholar] [CrossRef]
- Meybeck, M.; Laroche, L.; Dürr, H.; Syvitski, J. Global variability of daily total suspended solids and their fluxes in rivers. Glob. Planet. Change 2003, 39, 65–93. [Google Scholar] [CrossRef]
- Casbeer, W.C. Phosphorus Fractionation and Distribution Across Delta of Deer Creek Reservoir. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2009. [Google Scholar]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Taggart, J.B.; Ryan, R.L.; Williams, G.P.; Miller, A.W.; Valek, R.A.; Tanner, K.B.; Cardall, A.C. Historical Phosphorus Mass and Concentrations in Utah Lake: A Case Study with Implications for Nutrient Load Management in a Sorption-Dominated Shallow Lake. Water 2024, 16, 933. [Google Scholar] [CrossRef]
- Millero, F.J.; Yao, W.; Aicher, J. The speciation of Fe(II) and Fe(III) in natural waters. Mar. Chem. 1995, 50, 21–39. [Google Scholar] [CrossRef]
- Kopáček, J.; Borovec, J.; Hejzlar, J.; Ulrich, K.-U.; Norton, S.A.; Amirbahman, A. Aluminum Control of Phosphorus Sorption by Lake Sediments. Environ. Sci. Technol. 2005, 39, 8784–8789. [Google Scholar] [CrossRef] [PubMed]
- Randall, M.C. Characterizing the Fate and Mobility of Phosphorus in Utah Lake Sediments. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2017. [Google Scholar]
- Valek, R.A.; Tanner, K.B.; Taggart, J.B.; Ryan, R.L.; Cardall, A.C.; Woodland, L.M.; Oxborrow, M.J.; Williams, G.P.; Miller, A.W.; Sowby, R.B. Regulated Inductively Coupled Plasma–Optical Emission Spectrometry Detectible Elements in Utah Lake: Characterization and Discussion. Water 2024, 16, 2170. [Google Scholar] [CrossRef]
- Tanner, K.B.; Cardall, A.C.; Williams, G.P. A spatial long-term trend analysis of estimated chlorophyll-a concentrations in Utah Lake using Earth observation data. Remote Sens. 2022, 14, 3664. [Google Scholar] [CrossRef]
Lake Sediments | Suspended Solids | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.99 g | 0.35 g | 0.28 g | 0.21 g | 0.14 g | Raw | 0.44 g | 0.16 g | 0.13 g | 0.09 g | 0.06 g | Raw | |
Ptot | 194 | 391 | 358 | 392 | 363 | 316 | 1283 | 1228 | 1420 | 963 | 832 | 548 |
181 | 421 | 294 | 350 | 294 | 310 | 1447 | 1300 | 1340 | 994 | 620 | 588 | |
204 | 308 | 325 | 332 | 295 | 320 | 1290 | 1170 | 1230 | 1066 | 590 | 600 | |
avg | 193 | 373 | 326 | 358 | 317 | 316 | 1340 | 1233 | 1330 | 1008 | 681 | 579 |
Lake Sediments | Suspended Solids | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.99 g | 0.35 g | 0.28 g | 0.21 g | 0.14 g | 0.44 g | 0.16 g | 0.13 g | 0.09 g | 0.06 g | |
Pwat | 1.01 | 1.79 | 1.73 | 0.61 | 1.66 | 2.80 | 1.10 | 2.11 | 1.45 | 0.00 |
0.93 | 1.13 | 1.67 | 1.57 | 1.50 | 2.79 | 1.94 | 1.75 | 1.90 | 0.00 | |
0.71 | 0.91 | 1.26 | 1.67 | 2.00 | 3.62 | 1.70 | 2.76 | 1.91 | 0.00 | |
average | 0.88 | 1.28 | 1.55 | 1.28 | 1.72 | 3.07 | 1.58 | 2.21 | 1.75 | 0.00 |
0.99 g | 0.35 g | 0.28 g | 0.21 g | 0.14 g | 0.44 g | 0.16 g | 0.13 g | 0.09 g | 0.06 g | |
Pion | 0.41 | 1.30 | 2.71 | 1.60 | 1.69 | 34.7 | 31.3 | 32.6 | 30.5 | 32.6 |
0.20 | 0.84 | 2.79 | 3.28 | 1.64 | 31.6 | 27.5 | 29.9 | 31.5 | 28.1 | |
0.44 | 0.62 | 1.77 | 2.79 | 1.05 | 32.0 | 28.0 | 30.2 | 29.0 | 27.9 | |
average | 0.35 | 0.92 | 2.42 | 2.56 | 1.46 | 32.8 | 28.9 | 30.9 | 30.3 | 29.5 |
0.99 g | 0.35 g | 0.28 g | 0.21 g | 0.14 g | 0.44 g | 0.16 g | 0.13 g | 0.09 g | 0.06 g | |
PFe | 7.9 | 12.3 | 12.4 | 18.2 | 17.7 | 333 | 385 | 372 | 258 | 194 |
8.0 | 11.4 | 11.0 | 17.5 | 18.3 | 372 | 335 | 353 | 261 | 165 | |
10.1 | 11.0 | 14.4 | 17.4 | 17.0 | 349 | 308 | 313 | 282 | 131 | |
average | 8.7 | 11.6 | 12.6 | 17.7 | 17.7 | 351 | 343 | 346 | 267 | 163 |
0.99 g | 0.35 g | 0.28 g | 0.21 g | 0.14 g | 0.44 g | 0.16 g | 0.13 g | 0.09 g | 0.06 g | |
PCa | 156 | 307 | 313 | 343 | 315 | 679 | 597 | 771 | 484 | 393 |
154 | 364 | 245 | 305 | 240 | 786 | 712 | 749 | 527 | 238 | |
161 | 273 | 268 | 286 | 251 | 647 | 637 | 662 | 611 | 265 | |
average | 157 | 315 | 275 | 311 | 269 | 704 | 649 | 727 | 541 | 299 |
0.99 g | 0.35 g | 0.28 g | 0.21 g | 0.14 g | 0.44 g | 0.16 g | 0.13 g | 0.09 g | 0.06 g | |
Pres | 28.6 | 69.1 | 28.0 | 28.2 | 27.4 | 233 | 214 | 242 | 189 | 212 |
17.9 | 43.6 | 33.6 | 22.2 | 32.4 | 255 | 224 | 206 | 173 | 189 | |
31.5 | 22.4 | 40.0 | 24.3 | 23.9 | 258 | 195 | 222 | 142 | 166 | |
average | 26.0 | 45.0 | 33.9 | 24.9 | 27.9 | 249 | 211 | 223 | 168 | 189 |
Lake Sediments | Suspended Solids | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.99 g | 0.35 g | 0.28 g | 0.21 g | 0.14 g | 0.44 g | 0.16 g | 0.13 g | 0.09 g | 0.06 g | ||
Pwat | Student’s t | A | A | A | A | A | |||||
B | B | B | B | B | B | B | |||||
C | |||||||||||
Tukey Kramer HSD | A | A | A | A | A | A | A | ||||
B | B | B | |||||||||
C | |||||||||||
Pion | Student’s t | A | A | A | A | A | A | ||||
B | B | B | B | B | B | ||||||
C | C | ||||||||||
Tukey Kramer HSD | A | A | A | A | A | A | A | A | |||
B | B | B | |||||||||
PFe | Student’s t | A | A | A | A | ||||||
B | B | B | |||||||||
C | C | C | |||||||||
Tukey Kramer HSD | A | A | A | A | |||||||
B | B | B | |||||||||
C | C | C | |||||||||
PCa | Student’s t | A | A | A | A | ||||||
B | B | B | B | B | B | ||||||
C | |||||||||||
Tukey Kramer HSD | A | A | A | A | |||||||
B | B | B | B | B | B | B | |||||
C | |||||||||||
Pres | Student’s t | A | A | A | A | A | A | A | |||
B | B | ||||||||||
C | C | ||||||||||
D | D | ||||||||||
Tukey Kramer HSD | A | A | A | A | A | A | A | A | |||
B | B | B | |||||||||
C | C | C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taggart, J.B.; Ryan, R.L.; Miller, A.W.; Miller, T.G.; Williams, G.P. A Phosphorus Microfractionation (P-MF) Method for Measuring Phosphorus Fractions in Small Quantities of Suspended Solids and Sediments: Detailed Method and Example Application. Environments 2025, 12, 218. https://doi.org/10.3390/environments12070218
Taggart JB, Ryan RL, Miller AW, Miller TG, Williams GP. A Phosphorus Microfractionation (P-MF) Method for Measuring Phosphorus Fractions in Small Quantities of Suspended Solids and Sediments: Detailed Method and Example Application. Environments. 2025; 12(7):218. https://doi.org/10.3390/environments12070218
Chicago/Turabian StyleTaggart, Jacob B., Rebecca L. Ryan, A. Woodruff Miller, Theron G. Miller, and Gustavious P. Williams. 2025. "A Phosphorus Microfractionation (P-MF) Method for Measuring Phosphorus Fractions in Small Quantities of Suspended Solids and Sediments: Detailed Method and Example Application" Environments 12, no. 7: 218. https://doi.org/10.3390/environments12070218
APA StyleTaggart, J. B., Ryan, R. L., Miller, A. W., Miller, T. G., & Williams, G. P. (2025). A Phosphorus Microfractionation (P-MF) Method for Measuring Phosphorus Fractions in Small Quantities of Suspended Solids and Sediments: Detailed Method and Example Application. Environments, 12(7), 218. https://doi.org/10.3390/environments12070218