Technologies for the Remediation of Nitrogen Pollution and Advances in the Application of Metal–Phenolic Networks
Abstract
1. Introduction of Nitrogen
2. Nitrogen Pollution Issue
3. Research Statistic and Analysis
4. Technologies for Remediation of Nitrogen Pollution
4.1. Biological Methods
4.2. Physical–Chemical Method
4.3. Emerging Technologies
4.4. Application in Treatment of Typical Wastewater
5. Principles of Metal–Phenolic Networks and Adsorption of Nitrogen
5.1. Principle of Metal–Phenolics Network
5.2. Metal–Phenolic Network Effects on Adsorption of Ammonia Nitrogen
5.3. Synergistic Effect on Complete Removal of Nitrogen
5.4. Challenges and Potential
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Du, X.; Fang, M.; Ye, X. Research progress on the sources of inorganic nitrogen pollution in groundwater and identification methods. Huan Jing Ke Xue = Huanjing Kexue 2018, 39, 5266–5275. [Google Scholar] [PubMed]
- Follett, R.F.; Hatfield, J.L. Nitrogen in the Environment: Sources, Problems, and Management. Sci. World J. 2001, 1, 920–926. [Google Scholar] [CrossRef]
- Masood, S.; Zhao, X.Q.; Shen, R.F. Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilization. Sci. Hortic. 2020, 272, 109581. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z.; Li, S.; Yu, S. Effect of nitrogen nutrition on protein and nucleic acid metabolism during senescence of flag leaf. Plant Nutr. Fertil. Sci. 2003, 9, 178–183. [Google Scholar]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130164. [Google Scholar]
- Kanter, D.R.; Chodos, O.; Nordland, O.; Rutigliano, M.; Winiwarter, W. Gaps and opportunities in nitrogen pollution policies around the world. Nat. Sustain. 2020, 3, 956–963. [Google Scholar] [CrossRef]
- Nikolenko, O.; Jurado, A.; Borges, A.V.; Knöller, K.; Brouyère, S. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review. Sci. Total Environ. 2018, 621, 1415–1432. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment. 2016–2019 China Ecological Environment Statistics Annual Report; Ministry of Ecology and Environment: Beijing, China, 2020. Available online: https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202012/P020201214580320276493.pdf (accessed on 22 June 2025).
- Ministry of Ecology and Environment. 2020 China Ecological Environment Statistics Annual Report; Ministry of Ecology and Environment: Beijing, China, 2022. Available online: https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202202/t20220218_969391.shtml (accessed on 22 June 2025).
- Ministry of Agriculture. National Sustainable Agricultural Development Plan (2015–2030). China Agric. Inf. 2016, 5–15. [Google Scholar]
- Wang, Y.; Yu, W.; Pan, L.; Zhang, Y. China Consumes Nearly a Third of the World’s Fertilizers, Underscoring the Challenges of Overreliance on Chemical Inputs. XINHUANET. 2015. Available online: https://news.hebccw.cn/system/2015/03/18/015130673.shtml (accessed on 22 June 2025).
- GB 3838-2002; Environmental Quality Standards for Surface Water. China Environmental Press: Beijing, China, 2002.
- GB 18918-2002; Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. China Environmental Press: Beijing, China, 2002.
- U.S. Environmental Protection Agency. Nutrient Control Design Manual: State of Technology Review [R/OL]. 2019. Available online: https://www.epa.gov/sites/default/files/2019-02/documents/nutrient-control-design-manual-state-tech.pdf (accessed on 22 June 2025).
- European Union. Council Directive 91/271/EEC Concerning Urban Wastewater Treatment; European Union: Brussels, Belgium, 1991. [Google Scholar]
- European Union. Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Policy; EUR-Lex: Brussels, Belgium, 2000. [Google Scholar]
- Yu, G.; Jia, Y.; He, N.; Zhu, J.; Chen, Z.; Wang, Q.; Piao, S.; Liu, X.; He, H.; Guo, X.; et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 2019, 12, 424–429. [Google Scholar] [CrossRef]
- Galloway, J.N.; Aber, J.A.; Erisman, J.W.; Seitzinger, S.P.; Howarth, R.W.; Cowling, E.B.; Cosby, B.J. The nitrogen cascade. Bioscience 2003, 53, 341–356. [Google Scholar] [CrossRef]
- UN Environment Assembly. Sustainable Nitrogen Management Resolution; UN Environment Assembly: Nairobi, Kenya, 2019. [Google Scholar]
- UNEP. Colombo Declaration on Sustainable Nitrogen Management; UNEP: Nairobi, Kenya, 2019. [Google Scholar]
- Galloway, J.N.; Winiwarter, W.; Leip, A.; Leach, A.M.; Bleeker, A.; Erisman, J.W. Nitrogen footprints: Past, present and future. Environ. Res. Lett. 2014, 9, 115003. [Google Scholar] [CrossRef]
- Xing, G.; Cao, Y.; Shi, S.; Sun, G.; Du, L.; Zhu, J. Sources of Nitrogen Pollution and Denitrification in the Taihu Lake Region. Sci. China (Ser. B) 2001, 31, 130–137. [Google Scholar]
- Huang, Y.; Huang, Y.; Jiang, T.; Ding, J.; Xuan, Y.; Chen, J.; Li, R. Composition and Source Identification of Nitrogen in Groundwater in an Urbanized Basin. Trop. Geogr. 2023, 43, 1400–1410. [Google Scholar]
- Boyd, C.E. Nitrogen. Water Quality: An Introduction; Springer: Cham, Switzerland, 2020; pp. 269–290. [Google Scholar]
- Camargo, J.A.; Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Tian, J.; Li, G. Factors influencing ammonia removal of biological activated filter in drinking water treatment. J. Chem. Ind. Eng. 2008, 59, 2316–2321. [Google Scholar]
- Li, M.; Liu, Z.; Zhang, T.; Xu, B. Impact Factors of Monochloramine Formation Efficiency during Chloramination Disinfection. China Water Wastewater 2021, 37, 38–44. [Google Scholar]
- Piccardo, M.T.; Geretto, M.; Pulliero, A.; Izzotti, A. Odor emissions: A public health concern for health risk perception. Environ. Res. 2022, 204, 112121. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, Q.; Zhang, H.; Meng, L.; Pang, M. Ammonia Production, Hazards and Mitigation Measures in a Pig House. Chin. J. Anim. Nutr. 2015, 27, 2328–2334. [Google Scholar]
- Yan, L. Current Status, Hazards, and Removal Technologies of Nitrate Pollution in Water. City Town Water Supply 2013, 27, 70–72. [Google Scholar]
- Guo, J. Study on Effective Reduction of Nitrate to Nitrogen by Electrochemical Corrosion Cooperated with Photo Catalytic of Iron. Master’s Thesis, Sichuan Normal University, Chengdu, China, 2022. [Google Scholar]
- Paerl, H.W. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol. Oceanogr. 1997, 42 Pt 2, 1154–1165. [Google Scholar] [CrossRef]
- Saari, G.N.; Wang, Z.; Brooks, B.W. Revisiting inland hypoxia: Diverse exceedances of dissolved oxygen thresholds for freshwater aquatic life. Environ. Sci. Pollut. Res. 2018, 25, 3139–3150. [Google Scholar] [CrossRef]
- Feng, J.; Zhu, J.; Chen, L. Nitrate Contamination of Groundwater and its Control and Evaluation Forecast Methods. Ground Water 2006, 28, 58–62. [Google Scholar]
- Cao, H. The Harm of Nitrite to Human Health and Its Prevention. Stud. T Race Elem. Health 2003, 20, 57–58. [Google Scholar]
- Lu, N.; Hu, J.; Tang, Z. Research Progress on Methemoglobin. J. SNAKE (Sci. Nat.) 2016, 28, 65–66. [Google Scholar]
- Ahn, Y. Sustainable nitrogen elimination biotechnologies: A review. Process Biochem. 2006, 41, 1709–1721. [Google Scholar] [CrossRef]
- Du, L.; Ai, S.; Liu, S.; Wang, F.; Qu, H.; Bian, D. Research progress on novel biological denitrification and dephosphorization technology for urban wastewater treatment. Water Purif. Technol. 2021, 40, 28–34. [Google Scholar]
- Wang, J. Novel Biological Nitrogen Removal Processes and Their Technical Principles. China Water Wastewater 2000, 16, 25–28. [Google Scholar]
- Gilbert, E.M.; Müller, E.; Horn, H.; Lackner, S. Microbial activity of suspended biomass from a nitritation–anammox SBR in dependence of operational condition and size fraction. Appl. Microbiol. Biotechnol. 2013, 97, 8795–8804. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J. Water Quality Engineering Volume II; China Architecture & Building Press: Beijing, China, 2013. [Google Scholar]
- Chen, H.; Liu, K.; Yang, E.; Chen, J.; Gu, Y.; Wu, S.; Yang, M.; Wang, H.; Wang, D.; Li, H. A critical review on microbial ecology in the novel biological nitrogen removal process: Dynamic balance of complex functional microbes for nitrogen removal. Sci. Total Environ. 2023, 857, 159462. [Google Scholar] [CrossRef]
- Gong, W. Water Quality Engineering; China Water & Power Press: Beijing, China, 2016. [Google Scholar]
- Bai, Y.; Qin, S.; Zhao, L. Process Study of Enhancement of Activated Sludge Progress by Powdered Activated Carbon for The Treatment of Petrochemical Wastewater. Water Supply Technol. 2023, 17, 6–10. [Google Scholar]
- Wang, F.; Lu, S.; Wei, Y.; Ji, M. Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR. J. Hazard. Mater. 2009, 164, 1223–1227. [Google Scholar] [CrossRef]
- Duan, C.; Huang, X.; Gao, J.; Zhou, Y.; Chen, N.; Zhu, J. Iron-carbon (Fe-C) micro-electrolysis coupling with anaerobic-anoxic-oxic (A2/O) process: Nitrogen and phosphorus removal performance and microbial characteristics. J. Environ. Chem. Eng. 2022, 10, 107235. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment. Emission Standard of Pollutants for Electroplating; Ministry of Ecology and Environment: Beijing, China, 2008.
- Zhou, Q.; Sun, H.; Jia, L.; Wu, W.; Wang, J. Simultaneous biological removal of nitrogen and phosphorus from secondary effluent of wastewater treatment plants by advanced treatment: A review. Chemosphere 2022, 296, 134054. [Google Scholar] [CrossRef] [PubMed]
- Lago, A.; Rocha, V.; Barros, B.; Sliva, B.; Tavares, T. Bacterial biofilm attachment to sustainable carriers as a clean-up strategy for wastewater treatment: A review. J. Water Process Eng. 2024, 63, 105368. [Google Scholar] [CrossRef]
- Hao, X.; Heijnen, J.J.; Van Loosdrecht, M.C.M. Model-based evaluation of temperature and inflow variations on a partial nitrification–ANAMMOX biofilm process. Water Res. 2002, 36, 4839–4849. [Google Scholar] [CrossRef]
- Mao, F.; Zhang, C.; Liu, S.; He, X.; Huang, W.; Zhou, J. Effect of Temperature on Performance of Single-stage Autotrophic Nitrogen Removal System for Treating High Ammonia Nitrogen Wastewater. China Water Wastewater 2019, 35, 19–24. [Google Scholar]
- Li, S.; Hao, R.; Meng, C. Start-up of Three-dimensional Electrode Biofilm Reactor at Low Temperature. China Water Wastewater 2013, 29, 101–105. [Google Scholar]
- Feng, W.; Li, J.; Duan, C.; Peng, Y. Recent Progress of Anammox Bacteria Enrichment Strategies in Wastewater Treatment. J. Beijing Univ. Technol. 2024, 50, 207–215. [Google Scholar]
- Ren, Y.; Ngo, H.H.; Guo, W.; Wang, D.; Peng, L.; Ni, B.-J.; Wei, W.; Liu, Y. New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems. Bioresour. Technol. 2020, 297, 122491. [Google Scholar] [CrossRef]
- Sui, Q.; Di, F.; Zhang, J.; Gong, H.; Jiang, L.; Wei, Y.; Liu, J.; Lin, J. Advanced nitrogen removal in a fixed-bed anaerobic ammonia oxidation reactor following an anoxic/oxic reactor: Nitrogen removal contributions and mechanisms. Bioresour. Technol. 2021, 320, 124297. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Huang, W.; Wu, J.; Li, B.; Zhang, J. Effect of organic matter on the anammox performance of constructed rapid infiltration systems. Environ. Technol. 2022, 43, 1770–1782. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Peng, Y.; Gao, R.; Yang, L.; Deng, L.; Zhao, Q.; Liu, Q.; Li, X.; Zhang, Q.; Zhang, L. Highly enriched anammox within anoxic biofilms by reducing suspended sludge biomass in a real-sewage process. Water Res. 2021, 194, 116906. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, G.; Li, Y. A review on upgrading of the anammox-based nitrogen removal processes: Performance, stability, and control strategies. Bioresour. Technol. 2022, 364, 127992. [Google Scholar] [CrossRef]
- Lv, Y.; Chen, Z.; Wu, H.; Sun, T.; Wang, Z. Effect of Organic substrate on nitrogen removal of Anammox. Chin. J. Environ. Eng. 2009, 3, 1189–1192. [Google Scholar]
- Li, C.; Lv, X.; Inose, Y. Study on Nitrogen Removal by Simultaneous Nitrification and Denitrificatio. Water Wastewater Eng. 2001, 27, 22–24+1. [Google Scholar]
- Xi, W. Treatment of High Ammonia Wastewater by Partial Nitrification and Anaerobic Ammonia Oxidation. Master’s Thesis, Anhui Jianzhu University, Hefei, China, 2022. [Google Scholar]
- Chen, C.; Ouyang, W.; Huang, S.; Peng, X. Microbial community composition in a simultaneous nitrification and denitrification bioreactor for domestic wastewater treatment. IOP Conference Series: Earth and Environmental Science. IOP Publ. 2018, 112, 012007. [Google Scholar]
- Cao, Y.; Liu, C.; Chen, Z.; He, Q. Study on the efficiency and mechanism of solid phase autotrophic-heterotrophic denitrification and removalof trace pollutants. China Environ. Sci. 2023, 1–18. [Google Scholar] [CrossRef]
- Lin, T.; Cao, J.; Qian, Y. New denitrification process: SHARON process. Environ. Pollut. Control 2003, 25, 164–166. [Google Scholar]
- Ma, Y.; Peng, Y.; Wang, S.; Yuan, Z.; Wang, X. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant. Water Res. 2009, 43, 563–572. [Google Scholar] [CrossRef]
- Chen, J. Study on Nitrogen Removal in Partial Nitrification Denitrification Biological Filters. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2017. [Google Scholar]
- McCarty, L. What is the Best Biological Process for Nitrogen Removal: When and Why? Environ. Sci. Technol. 2018, 52, 3835–3841. [Google Scholar] [CrossRef]
- Ban, W.; Tian, L.; Li, Z.; Wang, J.; Qi, L.; Yu, M. Treatment of toilet sewage by coupled denitrification system of short-cut nitrification and anammox. Chin. J. Environ. Eng. 2023, 17, 1128–1137. [Google Scholar]
- Capodaglio, A.G.; Hlavínek, P.; Raboni, M. Physico-chemical technologies for nitrogen removal from wastewaters: A review. Rev. Ambiente Agua 2015, 10, 481–498. [Google Scholar]
- Omar, A.; Almomani, F.; Qiblawey, H.; Rasool, K. Advances in nitrogen-rich wastewater treatment: A comprehensive review of modern technologies. Sustainability 2024, 16, 2112. [Google Scholar] [CrossRef]
- Gao, T.; Hu, Z. Experimental Study on Combined Stripping Treatment Process for Wastewater with High Ammonia Nitrogen Content. Technol. Water Treat. 2022, 48, 44–48. [Google Scholar]
- O’Farrell, T.P.; Frauson, F.P.; Cassel, A.F.; Bishop, D.F. Nitrogen removal by ammonia stripping. Water Pollut. Control Fed. 1972, 44, 1527–1535. [Google Scholar]
- Stefan, D.; Erdelyi, N.; Izsak, B.; Zaray, G.; Vargha, M. Formation of chlorination by-products in drinking water treatment plants using breakpoint chlorination. Microchem. J. 2019, 149, 104008. [Google Scholar] [CrossRef]
- Driss, K.; Bouhelassa, M. Modeling drinking water chlorination at the breakpoint: I. Derivation of breakpoint reactions. Desalination Water Treat. 2014, 52, 5757–5768. [Google Scholar] [CrossRef]
- Song, B.; Wang, R.; Li, W.; Zhan, Z.; Luo, J.; Lei, Y. Fate of micropollutants in struvite production from swine wastewater with sacrificial magnesium anode. J. Hazard. Mater. 2024, 478, 135505. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, L.; Ren, H.; Xiong, X. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology. Water Res. 2009, 43, 5209–5215. [Google Scholar] [CrossRef]
- Myllymäki, P.; Pesonen, J.; Romar, H.; Hu, T.; Tynjälä, P.; Lassi, U. The use of Ca-and Mg-rich fly ash as a chemical precipitant in the simultaneous removal of nitrogen and phosphorus—Recycling and reuse. Recycling 2019, 4, 14. [Google Scholar] [CrossRef]
- Liu, Y.; Kumar, S.; Kwag, J.H.; Ra, C. Magnesium ammonium phosphate formation, recovery and its application as valuable resources: A review. J. Chem. Technol. Biotechnol. 2013, 88, 181–189. [Google Scholar] [CrossRef]
- Li, X.Z.; Zhao, Q.L.; Hao, X.D. Ammonium removal from landfill leachate by chemical precipitation. Waste Manag. 1999, 19, 409–415. [Google Scholar] [CrossRef]
- Tünay, O.; Kabdasli, I.; Orhon, D.; Kolçak, S. Ammonia removal by magnesium ammonium phosphate precipitation in industrial wastewaters. Water Sci. Technol. 1997, 36, 225–228. [Google Scholar] [CrossRef]
- Li, J.; Chen, C.; Luo, Z.; Qiu, J.; Zhao, L.; Zhang, J.; Xiao, X.; Lin, X.; Wang, X.; Cai, Q.; et al. Nitrogen and phosphorus recovery from livestock wastewater via magnesium ammonium phosphate precipitation: A critical review of methods, progress, and insights. J. Water Process Eng. 2024, 67, 106139. [Google Scholar] [CrossRef]
- Li, P.; Jin, L. Efficient Removal Technology of Ammonia Nitrogen by Membrane Separation. Chem. Eng. Technol. 2022, 45, 1347–1353. [Google Scholar] [CrossRef]
- Pan, X. Experimental Study on Adsorption of Ammonia Nitrogen in Water by Natural and Modified Zeolite. Master’s Thesis, East China Jiaotong University, Nanchang, China, 2020. [Google Scholar]
- Liu, Y.; Zhang, X.; Wang, J. A critical review of various adsorbents for selective removal of nitrate from water: Structure, performance and mechanism. Chemosphere 2022, 291 Pt 1, 132728. [Google Scholar] [CrossRef]
- Feng, L.; Qiu, T.; Yan, H.; Liu, C.; Chen, Y.; Zhou, X.; Qiu, S. Removal of ammonia nitrogen from aqueous media with low-cost adsorbents: A review. Water Air Soil Pollut. 2023, 234, 280. [Google Scholar] [CrossRef]
- Ozokwelu, D.; Zhang, S.; Okafor, O.; Cheng, W.; Litombe, N. Chapter 5—Separation Science and Technology. In Novel Catalytic and Separation Processes Based on Ionic Liquids; Elsevier: Amsterdam, The Netherlands, 2017; pp. 193–202. [Google Scholar]
- Mizuta, K.; Matsumoto, T.; Hatate, Y.; Nishihara, K.; Nakanishi, T. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour. Technol. 2004, 95, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Rajeswari, A.; Amalraj, A.; Pius, A. Adsorption studies for the removal of nitrate using chitosan/PEG and chitosan/PVA polymer composites. J. Water Process Eng. 2016, 9, 123–134. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, H.; Liu, J.; Wang, X.; Li, J.; Shi, E.; Wang, C.; Yang, J.; Zhang, Z. A study on and adsorption mechanism of ammonium nitrogen by modified corn straw biochar. R. Soc. Open Sci. 2023, 10, 221535. [Google Scholar] [CrossRef]
- Huo, L.; Yang, P.; Yin, H.; Zhang, E. Enhanced nutrient control efficiency in sediments using modified clay inactivation coupled with aquatic vegetation in the confluence area of a eutrophic lake. Sci. Total Environ. 2024, 907, 168149. [Google Scholar] [CrossRef]
- Kumar, M.; Chakraborty, S. Chemical denitrification of water by zero-valent magnesium powder. J. Hazard. Mater. 2006, 135, 112–121. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, Z.; Sun, X. Effect of common ions on nitrate removal by zero-valent iron from alkaline soil. J. Hazard. Mater. 2012, 231–232, 114–119. [Google Scholar] [CrossRef]
- Curcio, G.M.; Limonti, C.; Siciliano, A.; Kabdaşlı, I. Nitrate Removal by Zero-Valent Metals: A Comprehensive Review. Sustainability 2022, 14, 4500. [Google Scholar] [CrossRef]
- Guo, X.; Yang, Z.; Liu, H.; Lv, X.; Tu, Q.; Ren, Q.; Xia, X.; Jing, C. Common oxidants activate the reactivity of zero-valent iron (ZVI) and hence remarkably enhance nitrate reduction from water. Sep. Purif. Technol. 2015, 146, 227–234. [Google Scholar] [CrossRef]
- Yang, G.C.C.; Lee, H. Chemical reduction of nitrate by nanosized iron: Kinetics and pathways. Water Res. 2005, 39, 884–894. [Google Scholar] [CrossRef]
- Yang, Z.; Pei, H.; Hou, Q.; Jiang, L.; Zhang, L.; Nie, C. Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: Nutrient, organics removal and bioenergy production. Chem. Eng. J. 2018, 332, 277–285. [Google Scholar] [CrossRef]
- Deng, Y. Advanced oxidation processes (AOPs) for reduction of organic pollutants in landfill leachate: A review. Int. J. Environ. Waste Manag. 2009, 4, 366–384. [Google Scholar] [CrossRef]
- Ortiz-Marin, A.D.; Roé-Sosa, A.; Solis-Marcial, O.J.; Chavarría, J.; Mendivil-Garcia, K.; Amabilis-Sosa, L.E. Nutrient-efficient recovery process from real livestock wastewater using UV/H2O2 and UV/PMS: Kinetic study and statistical optimization. J. Water Process Eng. 2025, 74, 107811. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Hemavathy, R.V.; Jeevanantham, S.; Jawahar, M.J.; Neshaanthini, J.P.; Saravanan, R. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. Chemosphere 2022, 307, 135713. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. J. Hazard. Mater. 2021, 401, 123401. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhang, X.; Zhang, G.; Li, J.; Song, W.; Xu, Z. Improved photocatalytic conversion of high−concentration ammonia in water by low−cost Cu/TiO2 and its mechanism study. Chemosphere 2021, 274, 129689. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, M.; Moradi, N.; Faryadi, M.; Safari, S. Removal of ammonia by high-frequency ultrasound wave (1.7 MHz) combined with TiO2 photocatalyst under UV radiation. Desalination Water Treat. 2016, 57, 15999–16007. [Google Scholar] [CrossRef]
- Li, S.; Zhu, G.; Yan, S.; Hursthouse, A.S. Magnetic seed technology for the efficient removal of nitrogen from wastewater. Environ. Chem. Lett. 2024, 22, 2619–2625. [Google Scholar] [CrossRef]
- Cheng, Y.; Fan, Y.; Pei, Y.; Qiao, M. Graphene-supported metal/metal oxide nanohybrids: Synthesis and applications in heterogeneous catalysis. Catal. Sci. Technol. 2015, 5, 3903–3916. [Google Scholar] [CrossRef]
- Kabuba, J.; Lephallo, J.; Rutto, H. Comparison of various technologies used to eliminate nitrogen from wastewater: A review. J. Water Process Eng. 2022, 48, 102885. [Google Scholar] [CrossRef]
- Lin., P. Interpretation of the “Guidelines for the Remediation of Urban Black and Odorous Water Bodies”. Constr. Sci. Technol. 2015, 14–15+21. (In Chinese) [Google Scholar]
- Wang, B. Purification Performance of Odorous-Black Water and It’s Microbial Mechanisms in Integrated Constructed Wetland. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2017. [Google Scholar]
- Muezzinoglu, A. A study of volatile organic sulfur emissions causing urban odors. Chemosphere 2003, 51, 245–252. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, G.; Zhu, X. Analysis of Control and Remediation Technology for Black and Odorous Rivers in Shanghai. Water Purif. Technol. 2010, 29, 1–3+45. [Google Scholar]
- Hishida, Y.; Ashitani, K.; Fujiwara, K. Occurrence of Musty Odor in the Yodo River. Water Sci. Technol. 1988, 20, 193–196. [Google Scholar] [CrossRef]
- Gao, J.H.; Jia, J.; Kettner, A.J.; Xing, F.; Wang, Y.P.; Xu, X.N.; Yang, Y.; Zou, X.Q.; Gao, S.; Qi, S.; et al. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China. Sci. Total Environ. 2014, 481, 542–553. [Google Scholar] [CrossRef]
- Shen, Q.; Fan, C. Identification of black suspended particles in the algae-induced black bloom water column. J. Lake Sci. 2015, 27, 591–598. [Google Scholar]
- Wu, B. Study on Remediation of Contaminatied River by Sediment Stabilization and Biofiltration. Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, 2019. [Google Scholar]
- Liu, C. Study on the Effect of Humic Acid on Nitrogen and Phosphor Conversion Process in Black-Odor Water. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2021. [Google Scholar]
- Huang, M.; Cao, C. Pollution Control, Water Quality Improvement, and Ecological Restoration of Urban Rivers. Constr. Sci. Technol. 2011, 43–45. (In Chinese) [Google Scholar] [CrossRef]
- Cao, J.; Cao, J.; Sun, Q.; Zhao, D.; Xu, M.; Shen, Q.; Wang, D.; Wang, J.; Ding, S. A critical review of the appearance of black-odorous waterbodies in China and treatment methods. J. Hazard. Mater. 2020, 385, 121511. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Feng, Z.; Shang, J.; Fan, C.; Deng, J. Black Water Bloom Induced by Different Types of Organic Matters and Forming Mechanisms of Major Odorous Compounds. Environ. Sci. 2012, 33, 3152–3159. [Google Scholar]
- Yin, H.; Wu, Y. Factors Affecting the Production of Volatile Organic Sulfur Compounds (VOSCs) from Algal-Induced Black Water Blooms in Eutrophic Freshwater Lakes. Water Air Soil Pollut. 2016, 227, 1–11. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Fang, Y.; Huang, R. Analysis on the formation condition of the algae-induced odorous black water agglomerate. Saudi J. Biol. Sci. 2014, 21, 597–604. [Google Scholar] [CrossRef]
- Li, Z.; Huang, M.; He, Y.; Zhang, Y. The relationship between the form transformation of iron and sulfur and the black-odor water body. Environ. Sci. Technol. 2010, 33, 1–3+7. [Google Scholar]
- Na, B. Microbiological Process Involved in Formation Black Malodorous Water in Typical Areas. Master’s Thesis, Capital University of Economics and Business, Beijing, China, 2018. [Google Scholar]
- Liu, H. Detection Method of Hydrogen Sulfide Gas and Safety Precautions. Metrol. Meas. Tech. 2021, 48, 79–81. [Google Scholar]
- Zhang, S. Study on the Effect of Gravity Compression Fiber Ball on Nitrogen/Phosphorus Treatment in Black and Odorous Water. Master’s Thesis, Hunan University of Science and Technology, Xiangtan, China, 2021. [Google Scholar]
- Ministry of Ecology and Environment. The Ministry of Ecology and Environment (MEE) Held a Press Conference to Answer Questions on the Protection of Water Ecosystems; Ministry of Ecology and Environment: Beijing, China, 2022.
- Lin, C.; Wu, X.; Qu, F.; Chen, Q. Outlook on the Governance of Black and Smelly Water in China. Chem. Ind. 2017, 35, 65–68. [Google Scholar]
- Xu, L.; Deng, S.; Chen, J.; Xia, Z. River sediment pollution and its control and restoration. Ecol. Environ. Sci. 2014, 23, 1708–1715. [Google Scholar]
- Tang, R.; Wu, D.; Chen, W.; Feng, C.; Wei, C. Biocathode denitrification of coke wastewater effluent from an industrial aeration tank: Effect of long-term adaptation. Biochem. Eng. J. 2017, 125, 151–160. [Google Scholar] [CrossRef]
- Sun, J.; Liang, P.; Yan, X.; Zuo, K.; Xiao, K.; Xia, J.; Qiu, Y.; Wu, Q.; Wu, S.; Huang, X.; et al. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application. Water Res. 2016, 93, 205–213. [Google Scholar] [CrossRef]
- Wang, M. Study on Effect of Aeration on Water Body Remediation of Black-Odor River. Master’s Thesis, Hebei University of Science and Technology, Shijiazhuang, China, 2015. [Google Scholar]
- Wang, Y.; Duan, X.; Yang, L.; Zhang, X. Water Environment Improvement of Zhongdong River by Water Diversion and Distribution in Hangzhou. Meteorol. Environ. Res. 2017, 8, 61–66+71. [Google Scholar]
- Liu, Y.; Dong, Z.; Li, C.; Qin, H. Water diversion project for the improvement of water quality in Shenzhen River-Bay system. Water Resour. Prot. 2008, 24, 31–34. [Google Scholar]
- Zhou, Y.; Pan, G.; Chen, H. Effect of in-situ capping on contaminated sediment remediation using local soil. Chin. J. Environ. Eng. 2011, 5, 2459–2463. [Google Scholar]
- Liu, S.J.; Jiang, B.; Huang, G.Q.; Li, X.G. Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier. Water Res. 2006, 40, 3401–3408. [Google Scholar] [CrossRef]
- Lin, Z. Calcium Peroxide Complex Agent in-Situ Remediation for River Sediment Pollution. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2018. [Google Scholar]
- Zhang, Q.; Yang, X.; Sun, S.; Gu, X.; Chen, K. Preliminary study about application of calcium peroxide in the heavily contaminated sediments remediation. J. Lake Sci. 2015, 27, 1087–1092. [Google Scholar]
- Chu, G.; Tong, Y.; Luo, Y.; Yin, H.; Xia, S.; Su, S. Ammonia-Nitrogen Removal from Black and Odorous Water by Chemical Precipitation. Hunan Nonferrous Met. 2017, 33, 54–57+70. [Google Scholar]
- Zhao, M.; Lv, H.; Han, X.; Zhao, P.; Zhang, J. Deodorant, Bactericidal, and Algaecide Agent for Emergency Treatment of Urban Black and Odorous Water Bodies, Its Preparation Method, and Application. China Patent CN201910309005.5, 17 April 2019. (In Chinese). [Google Scholar]
- Li, W.; Zhou, Q.; Hua, T. Research advances in environmental effect and ecological toxicity of commonly used chemical flocculants. Chin. J. Ecol. 2007, 26, 943–947. [Google Scholar]
- Ren, Z.; Deng, C. A New Green Phytoremediation Technology of Aquatic Plants. Water Sav. Irrig. 2007, 17–19. [Google Scholar]
- Juwarkar, A.A.; Singh, S.K.; Mudhoo, A. A comprehensive overview of elements in bioremediation. Rev. Environ. Sci. Bio/Technol. 2010, 9, 215–288. [Google Scholar] [CrossRef]
- Kadlec, R.H. Chemical, Physical and Biological Cycles in Treatment Wetlands. Water Sci. Technol. 1999, 40, 37–44. [Google Scholar] [CrossRef]
- Wu, X. The migration of pollutants in artificial wetlands. China Water Wastewater 1994, 10, 40–43. (In Chinese) [Google Scholar]
- Wang, M. Role and Mechanism Study on Microbe in Treatment of Science Water by Biological Grid. Master’s Thesis, Tianjin University, Tianjin, China, 2014. [Google Scholar]
- Gao, S.; Huang, M.; Wu, L.; Dai, X.; Ruan, Y. The control test-study of biological purification tank on malodorous river water purification. China Environ. Sci. 2008, 28, 433–437. [Google Scholar]
- Yu, J.; Wu, C.; Chen, Z.; Sha, H. Improvement and Ecological Remediation of Malodorous River, Zhongtang River Tributary in Ningbo City. China Water Wastewater 2013, 29, 64–67+70. [Google Scholar]
- Fan, J.; Zou, G.; Song, X.; Fu, Z.; Wu, S.; Liu, F.; Pan, Q. Effect of ryegress floating-bed on the nitrogen cycling bacteria and nitrogen removal in the synthetic unicipal wastewater. Acta Ecol. Sin. 2010, 30, 265–271. [Google Scholar]
- Sun, J. Nitrogen-Containing Wastewater Treatment Technology and Its Application; Chemical Industry Press: Beijing, China, 2003. [Google Scholar]
- Wang, Q.; Wang, L.; Wang, J.; Wang, J.; Peng, J.; Liu, S. Ultrasonically Modified Zeolite for Removing Ammonia Nitrogen from Micro-polluted Raw Water. China Water Wastewater 2014, 30, 66–69. [Google Scholar]
- Xia, X.; Zhang, S.; Li, S.; Zhang, L.; Wang, G.; Zhang, L.; Wang, J.; Li, Z. The cycle of nitrogen in river systems: Sources, transformation, and flux. Environ. Sci. Process. Impacts 2018, 20, 863–891. [Google Scholar] [CrossRef]
- Dong, Y.; Yuan, H.; Zhang, R.; Zhu, N. Removal of Ammonia Nitrogen from Wastewater: A Review. Trans. ASABE 2019, 62, 1767–1778. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, S.; Zhou, L.; Wang, Y.; Zhao, S.; Xia, C.; Wang, W.; Zhou, R.; Wang, C.; Jetteen, M.S.M.; et al. Ubiquitous anaerobic ammonium oxidation in inland waters of China: An overlooked nitrous oxide mitigation process. Sci. Rep. 2015, 5, 17306. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhu, G. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl. Microbiol. Biotechnol. 2006, 73, 15–26. [Google Scholar] [CrossRef]
- Kinidi, L.; Tan, I.A.W.; Abdul Wahab, N.B.; Tamrin, K.F.B.; Hipolito, C.N.; Salleh, S.F. Recent development in ammonia stripping process for industrial wastewater treatment. Int. J. Chem. Eng. 2018, 2018, 3181087. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z. Ammonia-nitrogen removal from low concentration wastewater by ion exchange. Chin. J. Environ. Eng. 2012, 6, 2715–2719. [Google Scholar]
- Wang, Q.; Gao, H. Current situation, problems and future direction for governance of black and odorous water bodies in Chinese cities. Chin. J. Environ. Eng. 2019, 13, 507–510. [Google Scholar]
- Xu, Z.; Zhang, C.; Li, H. Classification and systematic treatment practices of black and odorous water bodies in urban rivers in China. Water Wastewater Eng. 2018, 54, 1–5+39. (In Chinese) [Google Scholar]
- Department of Ecological Environment. China Ecological Environment Status Bulletin 2021 (Excerpt). Environ. Prot. 2022, 50, 61–74. [Google Scholar]
- Ministry of Ecology and Environment. National Notice on the Inspection of Black and Odorous Water Bodies in County-Level Cities; Ministry of Ecology and Environment: Beijing, China, 2022.
- Wen, Y.; Yang, X.; Li, Y.; Yan, L.; Zhao, Y.; Shao, L. Progress reports of metal-phenolic network engineered membranes for water treatment. Sep. Purif. Technol. 2023, 320, 124225. [Google Scholar] [CrossRef]
- Geng, H.; Zhong, Q.Z.; Li, J.; Lin, Z.; Cui, J.; Caruso, F.; Hao, J. Metal Ion-Directed Functional Metal-Phenolic Materials. Chem. Rev. 2022, 122, 11432–11473. [Google Scholar] [CrossRef]
- Li, Y.; Miao, Y.; Yang, L.; Zhao, Y.; Wu, K.; Lu, Z.; Hu, Z.; Guo, J. Recent advances in the development and antimicrobial applications of metal–phenolic networks. Adv. Sci. 2022, 9, 2202684. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, Q.; Wu, F.G.; Dai, Y.; Chen, X. Polyphenol-containing nanoparticles: Synthesis, properties, and therapeutic delivery. Adv. Mater. 2021, 33, 2007356. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Chen, X.Y.; Cai, M.H.; Tao, X.H.; Fan, Y.B.; Mou, X.Z. Surface Engineered Metal-Organic Frameworks (MOFs) Based Novel Hybrid Systems for Effective Wound Healing: A Review of Recent Developments. Front. Bioeng. Biotechnol. 2020, 8, 576348. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, J.; Wei, Y.; Zhang, J.; Tao, C. Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection. Nano Res. 2022, 15, 6220–6242. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, L.; Zhang, J.; Hu, J.; Duan, G.; Liu, X.; Li, Y.; Gu, Z. Polydopamine antibacterial materials. Mater. Horiz. 2021, 8, 1618–1633. [Google Scholar] [CrossRef] [PubMed]
- Kitao, T.; Zhang, Y.; Kitagawa, S.; Wang, B.; Uemura, T. Hybridization of MOFs and polymers. Chem. Soc. Rev. 2017, 46, 3108–3133. [Google Scholar] [CrossRef]
- Ejima, H.; Richardson, J.J.; Liang, K.; Best, J.P.; van Koeverden, M.P.; Such, G.K.; Cui, J.; Caruso, F. One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering. Science 2013, 341, 154–157. [Google Scholar] [CrossRef]
- Ma, W.; Guo, A.; Zhang, Y.; Wang, H.; Liu, Y.; Li, H. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci. Technol. 2014, 40, 6–19. [Google Scholar] [CrossRef]
- Gülçin, İ.; Huyut, Z.; Elmastaş, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef]
- Mishra, S.; Verma, N. Surface ion imprinting-mediated carbon nanofiber-grafted highly porous polymeric beads: Synthesis and application towards selective removal of aqueous Pb(II). Chem. Eng. J. 2017, 313, 1142–1151. [Google Scholar] [CrossRef]
- Sharma, M.; Dhiware, P.; Sharma, P.; Janu, V.C.; Gupta, R. Simultaneous Adsorption of Th(IV) and U(VI) Ions from Aqueous Solutions by a Tannic-Acid-Modified Nanomagnetite Adsorbent. ACS Appl. Eng. Mater. 2023, 1, 2649–2662. [Google Scholar] [CrossRef]
- Guo, J.; Sun, W.; Kim, J.P.; Lu, X.; Li, Q.; Lin, M.; Mrowcrzynski, O.; Rizk, E.B.; Cheng, J.; Qian, G.; et al. Development of tannin-inspired antimicrobial bioadhesives. Acta Biomater. 2018, 72, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Jiang, Y.; Li, M.; Xiao, Q.; Zhao, T.; Yang, S.; Qi, C.; Qiu, P.; Yang, J.; et al. A Universal Single-Atom Coating Strategy Based on Tannic Acid Chemistry for Multifunctional Heterogeneous Catalysis. Angew. Chem. 2022, 61, e202200465. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.; Huang, C. A versatile approach to antimicrobial coatings via metal-phenolic networks. Colloids Surf. B Biointerfaces 2020, 187, 110771. [Google Scholar] [CrossRef] [PubMed]
- Ping, Y.; Guo, J.; Ejima, H.; Chen, X.; Richardson, J.J.; Sun, H.; Caruso, F. pH-responsive capsules engineered from metal-phenolic networks for anticancer drug delivery. Small 2015, 11, 2032–2036. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, Y.; Shi, Q.; Shao, G.; Hu, D. Research progress on preparation of tannic acid functional adsorption materials and its application. Appl. Chem. Ind. 2023, 52, 2468–2472. [Google Scholar]
- Kim, H.J.; Choi, Y.S.; Lim, M.Y.; Jung, K.H.; Kim, D.G.; Kim, J.J.; Kang, H.; Lee, J.C. Reverse osmosis nanocomposite membranes containing graphene oxides coated by tannic acid with chlorine-tolerant and antimicrobial properties. J. Membr. Sci. 2016, 514, 25–34. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, X.; Wang, Y.; Yu, X.; Chen, J. determination of niobium in titanium-aluminum-niobium alloy by tannic acid precipitation separation-ceric sulfate titration method. Metall. Anal. 2024, 44, 60–65. [Google Scholar]
- Lu, Y.; Su, L.; Zhao, Y. Study on leaching of manganese from manganese dioxide ore with tannic acid-sulfuric acid system. Inorg. Chem. Ind. 2022, 54, 84–89. [Google Scholar]
- Wang, S.; Cui, Y.; Wang, W.; Bai, Y.; Han, Y.; Gao, Z. Ammonia and greenhouse gas emissions from soil applied with liquid fractions by enhanced solid-liquid separation technology with tannic acid. Environ. Chem. 2024, 43, 3194–3203. [Google Scholar]
- Chang, Q.; Gao, B.; Liu, B.; Long, C.; Yang, H. Preparation of tannic acid—Titanium composite adsorbent and its adsorption performance and mechanisms in removal of fluoroquinolone antibiotics. Environ. Chem. 2022, 41, 2180–2192. [Google Scholar]
- Qiu, H.; Ni, W.; Yang, L.; Zhang, Q. Remarkable ability of Pb(II) capture from water by self-assembled metal-phenolic networks prepared with tannic acid and ferric ions. Chem. Eng. J. 2022, 450, 138161. [Google Scholar] [CrossRef]
- Feng, Q.; Xing, X.; Bi, X.; Liang, P. Preparation Method and Application of Iron-Tannic Acid Adsorbent for High-Efficiency Phosphorus Removal. China Patent CN200810117949.4, 18 August 2008. (In Chinese). [Google Scholar]
- Sun, X.; Gao, T.; You, Y. Adsorption Characteristics of Ferric Tannate and Ferrous Tannate to Phosphorus. Leather Sci. Eng. 2020, 30, 9–15+32. [Google Scholar]
- Zhi, J.; Zhang, W.; Zhang, L.; Sun, Y.; Zhang, J. Study on Treatment of the Combination of Tannic Acid and Zinc Chloride on Methylene Blue Solution. Environ. Sci. Surv. 2018, 37, 72–74. [Google Scholar]
- Wu, H.; Xie, J.; Mao, L. One-pot assembly tannic acid-titanium dual network coating for low-pressure nanofiltration membranes. Sep. Purif. Technol. 2020, 233, 116051. [Google Scholar] [CrossRef]
- Hu, N.; Qin, H.; Chen, X.; Huang, Y.; Xu, J.; He, H. Tannic acid assisted metal-chelate interphase toward highly stable Zn metal anodes in rechargeable aqueous zinc-ion batteries. Front. Chem. 2022, 10, 981623. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Feng, X.; Zhang, K.; Shen, J.; Liu, H. Study on preparation and properties of tannic acid-copper modified polyacrylate materials for preservation of cultural heritage. J. Shaanxi Univ. Sci. Technol. 2024, 42, 103–108. [Google Scholar]
- Zmozinski, A.V.; Peres, R.S.; Freiberger, K.; Ferreira, C.A.; Tamborim, S.M.M.; Azambuja, D.S. Zinc tannate and magnesium tannate as anticorrosion pigments in epoxy paint formulations. Prog. Org. Coat. 2018, 121, 23–29. [Google Scholar] [CrossRef]
- Zhong, Q.Z.; Pan, S.; Rahim, M.A.; Yun, G.; Li, J.; Ju, Y.; Lin, Z.; Han, Y.; Ma, Y.; Richardson, J.J.; et al. Spray Assembly of Metal-Phenolic Networks: Formation, Growth, and Applications. ACS Appl. Mater. Interfaces 2018, 10, 33721–33729. [Google Scholar] [CrossRef]
- Zhao, X.; Jia, N.; Cheng, L.; Liu, L.; Gao, C. Metal-polyphenol coordination networks: Towards engineering of antifouling hybrid membranes via in situ assembly. J. Membr. Sci. 2018, 563, 435–446. [Google Scholar] [CrossRef]
- Xu, K.; Wang, L.; Shan, W.; Gao, K.; Wang, J.; Zhong, Q.; Zhou, W. Highly Stretchable and Self-Adhesive Wearable Biosensor Based on Nanozyme-Catalyzed Conductive Hydrogels. ACS Appl. Polym. Mater. 2024, 6, 2188–2200. [Google Scholar] [CrossRef]
- Zhang, X.; Su, W.; Liu, X.; Hu, G.; Zhou, J.; Fan, L. Effect of Chitosan-tannic Acid Coating on the Microbial Diversity of Jiaohuaji Chicken. Food Sci. 2024, 45, 128–135. [Google Scholar]
- Ting, J.; Wang, W.; Cheng, Y.; Zhang, H.; Zhang, W.; Zhang, H. Construction and Functional Characterization of Metal-Polyphenol Network and Its Application in Food Field: A Review of Recent Literature. Food Sci. Nutr. 2022, 43, 232–239. [Google Scholar]
- Han, Z.; Xu, Y.; Wang, H.; Tian, H.; Qiu, B.; Sun, D. Synthesis of ammonia molecularly imprinted adsorbents and ammonia adsorption separation during sludge aerobic composting. Bioresour. Technol. 2020, 300, 122670. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, J.; Zhang, S.; Zhao, Z.; Luo, H.; Hursthouse, A.S.; Wan, P.; Fan, G. High removal of nitrogen and phosphorus from black-odorous water using a novel aeration-adsorption system. Environ. Chem. Lett. 2022, 20, 2243–2251. [Google Scholar] [CrossRef]
- Li, X.; Gao, P.; Tan, J.; Xiong, K.; Maitz, M.F.; Pan, C.; Wu, H.; Chen, Y.; Yang, Z.; Huang, N. Assembly of metal–phenolic/catecholamine networks for synergistically anti-inflammatory, antimicrobial, and anticoagulant coatings. ACS Appl. Mater. Interfaces 2018, 10, 40844–40853. [Google Scholar] [CrossRef]
- Ejima, H.; Richardson, J.J.; Caruso, F. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces. Nano Today 2017, 12, 136–148. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, L.; Zhong, Q.Z.; Li, J. Metal-phenolic network coatings for engineering bioactive interfaces. Colloids Surf. B Biointerfaces 2021, 205, 111851. [Google Scholar] [CrossRef]
- Jaén, J.A.; De Obaldía, J.; Rodríguez, M.V. Application of Mössbauer spectroscopy to the study of tannins inhibition of iron and steel corrosion. Hyperfine Interact. 2011, 202, 25–38. [Google Scholar] [CrossRef]
- Gust, J.; Suwalski, J. Use of Mssbauer Spectroscopy to Study Reaction Products of Polyphenols and Iron Compounds. Corrosion 2012, 50, 355–365. [Google Scholar] [CrossRef]
- Zhang, R.; Li, L.; Liu, J. Performance and Mechanism of Ferric Tannate in the Removal of Inorganic Nitrogen from Wastewater. Environ. Sci. 2015, 36, 4141–4147. [Google Scholar]
- Liu, Y. Study on the Synthesis, Performance and Mechanism of Embedded Ferric Tannate in the Removal of Nitrogen from Wastewater. Master’s Thesis, Hebei University of Science and Technology, Shijiazhuang, China, 2019. [Google Scholar]
- Lin, J.; Luo, B.; Wan, P.; Wang, J.; Hursthouse, A.S.; Li, S.; Zhu, G. A metallic phenolic network-enhanced bentonite for ammonical nitrogen removal from black-odorous water. Process Saf. Environ. Prot. 2024, 182, 32–44. [Google Scholar] [CrossRef]
- Lv, L.; Luo, H.; Zhu, G. Characterization and application of titanium tannate (Ti-TA) metallic phenolic network for removal of ammonia nitrogen. J. Water Process Eng. 2025, 73, 107703. [Google Scholar] [CrossRef]
- Qian, Y.; Wan, P.; Hursthouse, A.S.; Zhu, G. A novel zero-valent iron/titanium tannate composite for deep removal of nitrogen from water. Chem. Eng. J. 2025, 508, 160937. [Google Scholar] [CrossRef]
- Luo, H. Mechanism of Inorganic Nitrogen Removal by Titanium Tannate Coupled with Iron Powder. Master’s Thesis, Hunan University of Science and Technology, Xiangtan, China, 2024. [Google Scholar]
- Li, S. Preparation and Study on Ammonia Nitrogen Removal of Magnetic Zirconium Tannate. Master’s Thesis, Hunan University of Science and Technology, Xiangtan, China, 2024. [Google Scholar]
- Zhang, R.; Li, L.; Liu, J. Synthesis and characterization of ferric tannate as a novel porous adsorptive-catalyst for nitrogen removal from wastewater. RSC Adv. 2015, 5, 40785–40791. [Google Scholar] [CrossRef]
- Lv, X.; Peng, H.; Wang, X.; Hu, L.; Peng, M.; Liu, Z.; Jiang, G. Nitrate reduction by nanoscale zero valent iron (nFe0)-based Systems: Mechanism, reaction pathway and strategy for enhanced N2 formation. Chem. Eng. J. 2022, 430, 133133. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J. Reduction of nitrate by zero valent iron (ZVI)-based materials: A review. Sci. Total Environ. 2019, 671, 388–403. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, C.; Yu, Y.; Lu, S.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269. [Google Scholar] [CrossRef]
- Lin, J. Research on Removal of Ammonia Nitrogen from Black Smelly Water by Bentonite Supported Ferric Tannate. Master’s Thesis, Hunan University of Science and Technology, Xiangtan, China, 2023. [Google Scholar]
- Raji, M.; Mirbagheri, S.A.; Ye, F.; Dutta, J. Nano zero-valent iron on activated carbon cloth support as Fenton-like catalyst for efficient color and COD removal from melanoidin wastewater. Chemosphere 2021, 263, 127945. [Google Scholar] [CrossRef]
- Adam, M.R.; Othman, M.H.D.; Hubadillah, S.K.; Abd Aziz, M.H.; Jamalludin, M.R. Application of natural zeolite clinoptilolite for the removal of ammonia in wastewater. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Mazloomi, F.; Jalali, M. Ammonium removal from aqueous solutions by natural Iranian zeolite in the presence of organic acids, cations and anions. J. Environ. Chem. Eng. 2016, 4, 240–249. [Google Scholar] [CrossRef]
- Sun, Z.; Qu, X.; Wang, G.; Zheng, S.; Frost, R.L. Removal characteristics of ammonium nitrogen from wastewater by modified Ca-bentonites. Appl. Clay Sci. 2015, 107, 46–51. [Google Scholar] [CrossRef]
- Chatterjee, S.; Woo, S.H. The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater. 2009, 164, 1012–1018. [Google Scholar] [CrossRef]
- Gaouar Yadi, M.; Benguella, B.; Gaouar-Benyelles, N.; Tizaoui, K. Adsorption of ammonia from wastewater using low-cost bentonite/chitosan beads. Desalination Water Treat. 2016, 57, 21444–21454. [Google Scholar] [CrossRef]
- Ryu, H.; Kim, D.; Lee, S. Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater. J. Hazard. Mater. 2008, 156, 163–169. [Google Scholar] [CrossRef]
- Desireddy, S.; Pothanamkandathil Chacko, S. A review on metal oxide (FeOx/MnOx) mediated nitrogen removal processes and its application in wastewater treatment. Rev. Environ. Sci. Bio/Technol. 2021, 20, 697–728. [Google Scholar] [CrossRef]
Characteristic Indicators (Units) | Mild Black Odor | Severe Black Odor |
---|---|---|
transparency (cm) | 25~10 | <10 |
DO (mg/L) | 0.2~2.0 | <0.2 |
redox potential (mL) | −200~50 | <−200 |
ammonia nitrogen (mg/L) | 8.0~15 | >15 |
Material Type | Adsorption Capacity (mg/g) | Dosage (g/L) | Contact Time | Nitrogen Removal (%) | Initial Nitrogen Concentration (mg/L) | Nitrogen Species | Ref. |
---|---|---|---|---|---|---|---|
Modified granular activated carbon | 21.51 | 4 | 120 min | 83% | 40 | NO3−-N | |
Natural zeolite clinoptilolite | - | 5 | 90 min | 82.97 | 50 | NH4+-N | [215] |
Natural Iranian zeolite | 8.51–10.93 | 40 | 30 min | 85% | 40 | NH4+-N | [216] |
Modified corn straw biochar | 22.61 | 2 | 100 min | 19 | 100 | NH4+-N | [89] |
Modified Ca-bentonites | 46.90 | 5 | 1 min | 27 | 5 | NH4+-N | [217] |
Chitosan hydrogel beads | 92.1 | - | - | - | - | NO3−-N | [218] |
Chitosan | 7.6 | - | 180 min | - | - | NH4+-N | [219] |
Struvite precipitation | - | - | - | 89 | 155 | NH4+-N | [220] |
FeOx/MnOx | - | - | - | - | - | NH4+-N, NO3−-N, NO2−-N | [221] |
Be-Fe-TA | - | 35 | 12 h | 79.46 | 36.5 | TN | [213] |
Magnetic zirconium tannate | - | 9 | 22 min | 85 | 18.05 | NH4+-N | [208] |
Fe0/Ti-TA | - | 15/10 | 24 h | 92.7 | 36.325 | NH4+-N, NO3−-N, NO2−-N | [207] |
nZVI/Ti-TA | - | 30 | 24 h | 95 | 19.88 | NH4+-N, NO3−-N | [206] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Lin, J.; Luo, H.; Li, S.; Qian, Y.; Long, Y.; Wu, Z.; Zhu, G. Technologies for the Remediation of Nitrogen Pollution and Advances in the Application of Metal–Phenolic Networks. Processes 2025, 13, 2131. https://doi.org/10.3390/pr13072131
Xu S, Lin J, Luo H, Li S, Qian Y, Long Y, Wu Z, Zhu G. Technologies for the Remediation of Nitrogen Pollution and Advances in the Application of Metal–Phenolic Networks. Processes. 2025; 13(7):2131. https://doi.org/10.3390/pr13072131
Chicago/Turabian StyleXu, Shengjiao, Jialin Lin, Huihao Luo, Si Li, Yanda Qian, Yizhou Long, Zhengchuan Wu, and Guocheng Zhu. 2025. "Technologies for the Remediation of Nitrogen Pollution and Advances in the Application of Metal–Phenolic Networks" Processes 13, no. 7: 2131. https://doi.org/10.3390/pr13072131
APA StyleXu, S., Lin, J., Luo, H., Li, S., Qian, Y., Long, Y., Wu, Z., & Zhu, G. (2025). Technologies for the Remediation of Nitrogen Pollution and Advances in the Application of Metal–Phenolic Networks. Processes, 13(7), 2131. https://doi.org/10.3390/pr13072131