Zooplankton Community Responses to Eutrophication and TOC: Network Clustering in Regionally Similar Reservoirs
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Data Collection
2.2. Statistical Analysis
3. Results
3.1. Physicochemical Characteristics and Zooplankton Community Composition of the Reservoirs
3.2. Influence of Total Organic Carbon (TOC) on Water Quality Index and Zooplankton Community Composition
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter | Measurement Method |
---|---|
Water temperature | WT was measured in situ using a portable multi-parameter water quality meter. |
Secchi depth (SD) | SD was measured using a Secchi disk with a diameter of 30 cm. |
Total organic carbon (TOC) | TOC was determined by the high-temperature catalytic oxidation (HTCO) method. An appropriate volume of sample was introduced into a high-temperature combustion tube filled with an oxidizing catalyst. The sample was combusted at elevated temperature, converting the organic carbon in water to carbon dioxide (CO2) for quantification. Inorganic carbon was removed prior to analysis by acidification and purging with inert gas. |
Chlorophyll-a (Chl-a) | Chl-a was extracted from water samples filtered through glass fiber filters (Whatman GF/F, 47 mm diameter), using acetone solution. The chlorophyll pigments were extracted from the filters, and the absorbance of the extract was measured at 630 nm, 645 nm, 663 nm, and 750 nm, using a spectrophotometer. Chl-a concentration was calculated based on the measured absorbances according to standard equations. |
Suspended solids (SS) | SS concentration was determined by filtering a known volume of water sample through a pre-weighed glass fiber filter (Whatman GF/C, 47 mm diameter), using a filtration apparatus. The filter was dried to constant weight and reweighed. The difference in weight before and after filtration was used to calculate the SS concentration. |
Total nitrogen (TN) | Total nitrogen (TN) was measured using ultraviolet/visible (UV/VIS) spectrophotometry (alkaline persulfate oxidation method). All nitrogen compounds were decomposed and oxidized to nitrate (NO3−) by heating with alkaline potassium persulfate (K2S2O8) at approximately 120 °C. After oxidation, the sample was acidified, and the absorbance was measured at 220 nm to quantify total nitrogen. |
Total phosphorus (TP) | Total phosphorus (TP) was determined by oxidizing all phosphorus compounds to phosphate (PO43−), using persulfate digestion at high temperature. The resulting phosphate (PO43−) was reacted with ammonium molybdate ((NH4)2MoO4) to form ammonium phosphomolybdate, which was reduced by ascorbic acid (C6H8O6). The absorbance of the resultant phosphomolybdenum blue complex was measured at 880 nm to quantify total phosphorus. |
References
- Tundisi, J.G. Reservoirs: New challenges for ecosystem studies and environmental management. Water Secur. 2018, 4–5, 1–7. [Google Scholar]
- Oertli, B. Editorial: Freshwater biodiversity conservation: The role of artificial ponds in the 21st century. Aquat. Conserv. Mar. Freshw. Ecosyst. 2018, 28, 264–269. [Google Scholar]
- Eekhout, J.P.; Boix-Fayos, C.; Pérez-Cutillas, P.; de Vente, J. The impact of reservoir construction and changes in land use and climate on ecosystem services in a large Mediterranean catchment. J. Hydrol. 2020, 590, 125208. [Google Scholar]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörömsmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar]
- Li, B.; Chen, N.; Wang, W.; Wang, C.; Schmitt, R.J.P.; Lin, A.; Daily, G.C. Eco-environmental impacts of dams in the Yangtze River Basin, China. Sci. Total Environ. 2021, 774, 145743. [Google Scholar] [PubMed]
- Kondolf, G.M.; Rubin, Z.K.; Minear, J.T. Dams on the Mekong: Cumulative sediment starvation. Water Resour. Res. 2014, 50, 5158–5169. [Google Scholar]
- Brainwood, M.; Burgin, S. Hotspots of biodiversity or homogeneous landscapes? Farm dams as biodiversity reserves in Australia. Biodivers. Conserv. 2009, 18, 3043–3052. [Google Scholar]
- Suen, J.P.; Eheart, J.W. Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime. Water Resour. Res. 2006, 42, W03417. [Google Scholar]
- Daus, M.; Koberger, K.; Koca, K.; Beckers, F.; Fernandez, J.E.; Weisbrod, B.; Dietrich, D.; Gerbersdorf, S.U.; Glaser, R.; Haun, S.; et al. Interdisciplinary reservoir management—A tool for sustainable water resources management. Sustainability 2021, 13, 4498. [Google Scholar] [CrossRef]
- Jiang, Y.; Ha, K.; Li, Y.; Qin, M.; Cui, Z.; Zhang, Y.; Yao, Y.; Chen, X.; Deng, M.; Gray, A.; et al. Driving factors of total organic carbon in Danjiangkou Reservoir using generalized additive model. Water 2022, 14, 891. [Google Scholar] [CrossRef]
- Sepp, M.; Koiv, T.; Noges, P.; Noges, T. Do organic matter metrics included in lake surveillance monitoring in Europe provide a broad picture of brownification and enrichment with oxygen consuming substances? Sci. Total Environ. 2018, 610–611, 1288–1297. [Google Scholar]
- Kim, B.; Kong, D. Examination of the applicability of TOC to Korean trophic state index (TSIko). J. Korean Soc. Water Environ. 2019, 35, 271–277, (In Korean with English abstract). [Google Scholar]
- Lee, Y.; Kim, J.K.; Jung, S.; Eum, J.; Kim, C.; Kim, B. Development of a water quality index model for lakes and reservoirs. Paddy Water Environ. 2014, 12, 19–28. [Google Scholar]
- Park, J.W.; Kim, S.Y.; Noh, J.H.; Bae, Y.H.; Lee, J.W.; Maeng, S.K. A shift from chemical oxygen demand to total organic carbon for stringent industrial wastewater regulations: Utilization of organic matter characteristics. J. Environ. Manag. 2022, 305, 114412. [Google Scholar]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Balltore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar]
- Silva, L.H.S.; Huszar, V.L.M.; Marinho, M.M.; Rangel, L.M.; Brasil, J.; Domingues, C.D.; Branco, C.C.; Roland, F. Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs. Limnologica 2014, 48, 1–10. [Google Scholar]
- Lee, Y.J. Contribution of phytoplankton and zooplankton to total organic carbon (TOC) in the Reservoir-river-Seonakdong River, Busan. J. Environ. Sci. Int. 2022, 29, 691–702, (In Korean with English abstract). [Google Scholar]
- Brett, M.T.; Kainz, M.J.; Taipale, S.J.; Seshan, H. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc. Natl. Acad. Sci. USA 2009, 106, 21197–21201. [Google Scholar]
- Schram, M.D.; Schmitz, E.H. Correlation of total organic carbon and dry weight data as indices of fresh-water zooplankton biomass. Hydrobiologia 1983, 106, 283–284. [Google Scholar]
- Bowszys, M.; Dunalska, J.A.; Jaworska, B. Zooplankton response to organic carbon level in lakes of differing trophic states. Knowl. Manag. Aquat. Ecosyst. 2014, 412, 10. [Google Scholar]
- Grey, J.; Jones, R.; Sleep, D. Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. Oecologia 2000, 123, 232–240. [Google Scholar]
- Attayde, J.L.; Menezes, R.F. Effects of fish biomass and planktivore type on plankton communities. J. Plankton Res. 2008, 30, 885–892. [Google Scholar]
- Kelly, P.T.; Craig, N.; Solomon, C.T.; Weidel, B.C.; Zwart, J.A.; Jones, S.E. Experimental whole-lake increase of dissolved organic carbon concentration produces unexpected increase in crustacean zooplankton density. Glob. Change Biol. 2016, 22, 2766–2775. [Google Scholar]
- Meyjes, S.A.; Petrik, C.M.; Rohr, T.; Cael, B.B.; Mashayek, A. Impact of spatial variability in zooplankton grazing rates on carbon export flux. Glob. Biogeochem. Cycles 2024, 38, e2023GB008085. [Google Scholar]
- Schenone, L.; Modenutti, B.; Martyniuk, N.; Navarro, M.B. Modelling key variables for understanding the effects of grazing and nutrient recycling by zooplankton on the freshwater microbial loop. Freshw. Biol. 2021, 66, 2322–2337. [Google Scholar]
- Hrbácek, J.; Brandl, Z.; Straškraba, M. Do the long-term changes in zooplankton biomass indicate changes in fish stock? Hydrobiologia 2003, 504, 203–213. [Google Scholar]
- Prater, C.; Wagner, N.D.; Frost, P.C. Seasonal effects of food quality and temperature on body stoichiometry, biochemistry, and biomass production in Daphnia populations. Limnol. Oceanogr. 2018, 63, 1727–1740. [Google Scholar]
- Hyman, M.; Wang, Q.; Wilson, A.E.; Adhikari, S.; Higgins, B.T. Production of Daphnia zooplankton on wastewater-grown algae for sustainable conversion of waste nutrients to fish feed. J. Clean. Prod. 2021, 310, 127501. [Google Scholar]
- Matveev, V.; Robson, B.J. Aquatic food webs structure and the flow of carbon. Freshw. Rev. 2014, 7, 1–24. [Google Scholar]
- Steinberg, D.K.; Landry, M.R. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 2017, 9, 413–444. [Google Scholar]
- Munoz-Colmenares, M.E.; Sendra, M.D.; Soria-Perpinya, X.; Soria, J.M.; Vicente, E. The use of zooplankton metrics to determine the trophic status and ecological potential: An approach in a large Mediterranean watershed. Water 2021, 13, 2382. [Google Scholar] [CrossRef]
- Stamou, G.; Mazaris, A.D.; Moustaka-Gouni, M.; Spoljar, M.; Ternjej, I.; Dranzina, T.; Dorak, Z.; Michaloudi, E. Introducing a zooplanktonic index for assessing water quality of natural lakes in the Mediterranean region. Ecol. Inform. 2022, 69, 101616. [Google Scholar]
- Choi, Y.; Oh, H.J.; Lee, D.H.; Jang, M.H.; Lee, K.L.; Chang, K.H.; Kim, H.Y. Current utilization and further application of zooplankton indices for ecosystem health assessment of lake ecosystems. Sustainability 2023, 15, 10950. [Google Scholar] [CrossRef]
- Jeppesen, E.; Peder Jensen, J.; Søndergaard, M.; Lauridsen, T.; Landkildehus, F. Trophic structure, species richness and biodiversity in Danish lakes: Changes along a phosphorus gradient. Freshw. Biol. 2000, 45, 201–218. [Google Scholar]
- Choi, Y.; Hong, G.H.; La, G.H.; Kim, H.W.; Kim, M.S.; Jang, M.H.; Chang, K.H.; Oh, H.J. Spatial distribution of Calanoida in freshwater ecosystems and their application as a food web assessment index. Water 2024, 16, 3414. [Google Scholar] [CrossRef]
- Oh, H.J.; Oda, Y.; Ha, J.Y.; Nagata, T.; Hanazato, T.; Miyabara, Y.; Sakamoto, M.; Chang, K.H. Responses of daphnids and other zooplankton populations to massive fish kill in Lake Suwa. Ecol. Res. 2019, 34, 856–863. [Google Scholar]
- Ochocka, A. ZIPLAs: Zooplankton index for Polish laeks’ assessment: A new method to assess the ecological status of stratified lakes. Environ. Monit. Assess. 2021, 193, 664. [Google Scholar]
- Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Pol. J. Ecol. 2012, 60, 339–350. [Google Scholar]
- Hong, G.H.; Chang, K.H.; Oh, H.J.; Choi, Y.; Han, S.; Jeong, H.G. Multivariate analysis of rotifer community and environmental factors using the decomposed components extracted from a time series. Water 2022, 14, 4113. [Google Scholar] [CrossRef]
- Proulx, S.R.; Promislow, D.E.L.; Phillips, P.C. Network thinking in ecology and evolution. Trends Ecol. Evol. 2005, 20, 345–353. [Google Scholar]
- Csárdi, G.; Nepusz, T. The igraph software package for complex network research. Complex Syst. 2006, 1695. Available online: https://igraph.org (accessed on 30 May 2025).
- Cho, K.S. Illustration of the Fresh Water Zooplankton of Korea; Academy books: Seoul, Republic of Korea, 1993. [Google Scholar]
- Jeong, H.G. A Practical Guide to Common Freshwater Zooplankton: Cladocera; Han River Environment Research Center, National Institute of Environmental Research: Yangpyeong, Republic of Korea, 2016. [Google Scholar]
- Mizuno, T.; Takahashi, E. An Illustrated Guide to Freshwater Zooplankton in Japan; Tokai University Press: Tokyo, Japan, 1991. [Google Scholar]
- NIER. Guidelines for Survey and Health Assessment Methods of Aquatic Ecosystems; National Institute of Environmental Research: Incheon, Republic of Korea, 2017. [Google Scholar]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar]
- Layeghifard, M.; Hwang, D.M.; Guttman, D.S. Constructing and analysing microbiome networks in R. In Microbiome Analysis. Methods in Molecular Biology; Beiko, R., Hsiao, W., Parkinson, J., Eds.; Humana Press: New York, NY, USA, 2018; Volume 1849. [Google Scholar]
- Liu, C.; Cui, Y.; Li, X.; Yao, M. microeco: An R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 2021, 97, fiaa255. [Google Scholar]
- Virro, T.; Haberman, J.; Haldna, M.; Blank, K. Diversity and structure of the winter rotifer assemblage in a shallow eutrophic northern temperate Lake Võrtsjärv. Aquat. Ecol. 2009, 43, 755–764. [Google Scholar]
- Min, C.; Johansson, L.S.; Søndergaard, M.; Lauridsen, T.L.; Chen, F.; Sh, T.; Jeppesen, E. Copepods as environmental indicators in lakes: Special focus on changes in the proportion of calanoids along nutrient and pH gradients. Aquat. Ecol. 2021, 55, 1241–1252. [Google Scholar]
- Haberman, J.; Haldna, M. Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: Long term study of Lake Võrtsjärv. J. Limnol. 2014, 73, 2. [Google Scholar]
- Pennak, R.W. Regional lake typology in northern Colorado, U.S.A. Verh. Der Int. Ver. Theor. Und Angew. Limnol. 1958, 13, 264–283. [Google Scholar]
- Fryer, G. Crustacean diversity in relation to the size of water bodies: Some facts and problems. Freshw. Biol. 1985, 15, 347–361. [Google Scholar]
- Goździejewska, A.M.; Koszałka, J.; Tandyrak, R.; Grochowska, J.; Parszuto, K. Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes. Hydrobiologia 2021, 848, 2699–2719. [Google Scholar]
- Chang, K.H.; Doi, H.; Nishibe, Y.; Nakano, S. Feeding habitats of omnivorous Asplanchna: Comparison of diet composition among Asplanchna herricki, A. priodonata and A. girodi in pond ecosystems. J. Limnol. 2010, 69, 209–216. [Google Scholar]
- Yufeng, Y.; Xiangfei, H.; Jiankang, L. Long-term changes in crustacean zooplankton and water quality in a shallow, eutrophic Chinese lake densely stocked with fish. Hydrobiologia 1999, 391, 195–203. [Google Scholar]
- Stemberger, R.S.; Lazorchak, J.M. Zooplankton assemblage responses to disturbance gradients. Can. J. Fish. Aquat. Sci. 1994, 51, 2435–2447. [Google Scholar]
- Kobari, T.; Ban, S. Life cycles of two limnetic cyclopoid copepods, Cyclops vicinus and Thermocyclops crassus, in two different habitats. J. Plankton Res. 1998, 20, 1073–1086. [Google Scholar]
- Makino, W.; Ban, S. Response of life history traits to food conditions in a cyclopoid copepod from an oligotrophic environment. Limnol. Oceanogr. 2000, 45, 396–407. [Google Scholar]
- Adamczuk, M.; Mieczan, T.; Tarkowska-Kukuryk, M.; Demetraki-Paleolog, A. Rotatoria-Cladocera-Copepoda relations in the long-term monitoring of water quality in lakes with trophic variation (E. Poland). Environ. Earth Sci. 2015, 73, 8189–8196. [Google Scholar]
- Parszuto, K.; Teodorowicz, M.; Grochowska, J. Relationship between organic carbon and other measures of organic matter in the waters of Lake Isag. Limnol. Rev. 2006, 6, 233–238. [Google Scholar]
No. | Reservoir Name | Catchment Area (ha) | Full Water Surface Area (ha) | Effective Storage Capacity (103 m3) | Maximum Depth (m) | WT (°C) | SD (m) | TOC (mg/L) | SSs (mg/L) | Chl-a (mg/m3) | TN (mg/L) | TP (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L.1 | Geumseong | 285 | 19.2 | 522 | 4 | 19.9 ± 6.6 | 0.5 ± 0.2 | 7.7 ± 1.6 | 14.6 ± 5.0 | 50.9 ± 24.4 | 1.2 ± 0.5 | 0.104 ± 0.06 |
L.2 | Geumjeong | 561 | 15.5 | 435.6 | 2 | 18.7 ± 5.8 | 0.4 ± 0.2 | 5.5 ± 0.9 | 11.9 ± 3.9 | 39.6 ± 12.8 | 1.5 ± 0.6 | 0.121 ± 0.09 |
L.3 | Yeonje | 630 | 23 | 519.3 | 4 | 20.6 ± 8.3 | 0.6 ± 0.1 | 5.7 ± 0.8 | 7.8 ± 2.0 | 43.9 ± 19.8 | 1.0 ± 0.5 | 0.054 ± 0.02 |
L.4 | Gaesim | 1390 | 36 | 1861 | 10 | 15.0 ± 5.1 | 0.9 ± 0.4 | 4.6 ± 1.2 | 15.7 ± 14.6 | 17.6 ± 9.3 | 1.8 ± 0.5 | 0.043 ± 0.01 |
L.5 | Ongnyeo | 85 | 85 | 2578 | 2.5 | 20.5 ± 6.4 | 1.0 ± 0.3 | 6.4 ± 2.0 | 6.4 ± 2.7 | 13.1 ± 17.0 | 0.7 ± 0.1 | 0.035 ± 0.01 |
L.6 | Naejang | 2300 | 79.1 | 4828.2 | 10 | 19.8 ± 7.9 | 1.4 ± 0.6 | 2.7 ± 0.8 | 4.6 ± 1.3 | 11.9 ± 6.9 | 1.1 ± 0.6 | 0.016 ± 0.01 |
L.7 | Neungje | 178 | 192 | 7315.6 | - | 22.4 ± 7.5 | 0.3 ± 0.2 | 4.7 ± 0.3 | 5.7 ± 3.3 | 17.2 ± 9.8 | 0.5 ± 0.1 | 0.027 ± 0.01 |
L.8 | Daehwa | 1840 | 55.6 | 2403.8 | 8 | 18.6 ± 5.7 | 1.1 ± 0.8 | 4.0 ± 0.5 | 8.1 ± 5.9 | 11.8 ± 8.7 | 1.6 ± 0.6 | 0.054 ± 0.04 |
L.9 | Baeksan | 160 | 68.7 | 3381.3 | 8 | 22.8 ± 6.3 | 0.6 ± 0.2 | 3.5 ± 0.3 | 2.8 ± 1.8 | 6.9 ± 6.0 | 1.2 ± 0.7 | 0.016 ± 0.01 |
L.10 | Guui | 6210 | 178.8 | 10,878 | 18 | 20.4 ± 6.7 | 1.3 ± 0.7 | 2.8 ± 0.8 | 5.2 ± 2.2 | 9.3 ± 6.5 | 1.5 ± 0.7 | 0.025 ± 0.01 |
L.11 | Bongso | 510 | 13.7 | 753 | 9 | 17.4 ± 4.1 | 3.0 ± 2.4 | 5.1 ± 0.4 | 3.5 ± 2.6 | 9.4 ± 8.9 | 1.6 ± 0.4 | 0.035 ± 0.04 |
L.12 | Bangdong | 1375 | 50.4 | 2820.5 | 12 | 18.6 ± 4.8 | 1.5 ± 0.7 | 4.8 ± 1.8 | 8.7 ± 7.4 | 23.8 ± 25.4 | 1.1 ± 0.2 | 0.043 ± 0.04 |
L.13 | Baekgok | 8479 | 243.4 | 26,372 | 18 | 18.3 ± 6.2 | 1.8 ± 0.3 | 3.0 ± 0.4 | 3.0 ± 0.9 | 13.1 ± 6.7 | 1.3 ± 0.3 | 0.021 ± 0.01 |
L.14 | Gobok | 1620 | 79.3 | 4867.9 | 12 | 20.2 ± 5.8 | 0.7 ± 0.3 | 3.5 ± 0.3 | 7.4 ± 6.8 | 13.4 ± 11.6 | 1.6 ± 0.4 | 0.042 ± 0.03 |
L.15 | Ochang | 3310 | 101 | 6390 | 18 | 17.4 ± 5.8 | 1.9 ± 1.3 | 4.2 ± 0.5 | 6.1 ± 4.4 | 10.1 ± 7.3 | 2.7 ± 0.9 | 0.059 ± 0.07 |
L.16 | Maengdong | 706 | 113.4 | 13,907 | 25 | 16.4 ± 6.8 | 1.9 ± 1.0 | 3.6 ± 0.2 | 2.8 ± 0.7 | 11.6 ± 4.0 | 1.1 ± 0.3 | 0.024 ± 0.01 |
L.17 | Seoji | 144 | 9 | 241.1 | 2.4 | 21.6 ± 4.8 | 0.5 ± 0.2 | 6.5 ± 1.8 | 14.3 ± 10.4 | 24.8 ± 16.5 | 1.5 ± 0.8 | 0.101 ± 0.07 |
L.18 | Wonnam | 3655 | 114.4 | 8690.2 | 20 | 15.9 ± 6.0 | 2.6 ± 0.9 | 3.0 ± 0.3 | 3.8 ± 3.7 | 7.6 ± 4.4 | 1.3 ± 0.3 | 0.024 ± 0.02 |
L.19 | Sangpan | 2200 | 72 | 5679.2 | 18 | 15.6 ± 4.9 | 2.8 ± 0.6 | 3.4 ± 0.3 | 2.5 ± 0.8 | 9.1 ± 7.0 | 0.9 ± 0.1 | 0.017 ± 0.01 |
L.20 | Chupungnyeong | 1000 | 45.8 | 2205 | 12 | 16.2 ± 6.5 | 2.1 ± 1.1 | 3.9 ± 1.3 | 5.8 ± 6.2 | 15.0 ± 18.6 | 1.2 ± 0.3 | 0.03 ± 0.02 |
L.21 | Aenggeum | 104 | 10.2 | 342.4 | ≤1 | 21.4 ± 4.1 | 0.5 ± 0.3 | 8.1 ± 1.5 | 9.9 ± 4.8 | 56.3 ± 39.8 | 2.0 ± 1.3 | 0.268 ± 0.2 |
L.22 | Biryong | 4226 | 83.9 | 8163 | 30 | 18.9 ± 7.4 | 3.5 ± 1.1 | 2.1 ± 0.3 | 1.4 ± 1.0 | 4.1 ± 2.0 | 1.0 ± 0.6 | 0.012 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Oh, H.-J.; Hong, G.-H.; Lee, D.-H.; Kim, J.-H.; Park, S.-H.; Yun, J.-H.; Chang, K.-H. Zooplankton Community Responses to Eutrophication and TOC: Network Clustering in Regionally Similar Reservoirs. Water 2025, 17, 2051. https://doi.org/10.3390/w17142051
Choi Y, Oh H-J, Hong G-H, Lee D-H, Kim J-H, Park S-H, Yun J-H, Chang K-H. Zooplankton Community Responses to Eutrophication and TOC: Network Clustering in Regionally Similar Reservoirs. Water. 2025; 17(14):2051. https://doi.org/10.3390/w17142051
Chicago/Turabian StyleChoi, Yerim, Hye-Ji Oh, Geun-Hyeok Hong, Dae-Hee Lee, Jeong-Hui Kim, Sang-Hyeon Park, Jung-Ho Yun, and Kwang-Hyeon Chang. 2025. "Zooplankton Community Responses to Eutrophication and TOC: Network Clustering in Regionally Similar Reservoirs" Water 17, no. 14: 2051. https://doi.org/10.3390/w17142051
APA StyleChoi, Y., Oh, H.-J., Hong, G.-H., Lee, D.-H., Kim, J.-H., Park, S.-H., Yun, J.-H., & Chang, K.-H. (2025). Zooplankton Community Responses to Eutrophication and TOC: Network Clustering in Regionally Similar Reservoirs. Water, 17(14), 2051. https://doi.org/10.3390/w17142051