Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,990)

Search Parameters:
Keywords = estimates for solutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2317 KiB  
Article
An Ensemble-Based AI Approach for Continuous Blood Pressure Estimation in Health Monitoring Applications
by Rafita Haque, Chunlei Wang and Nezih Pala
Sensors 2025, 25(15), 4574; https://doi.org/10.3390/s25154574 (registering DOI) - 24 Jul 2025
Abstract
Continuous blood pressure (BP) monitoring provides valuable insight into the body’s dynamic cardiovascular regulation across various physiological states such as physical activity, emotional stress, postural changes, and sleep. Continuous BP monitoring captures different variations in systolic and diastolic pressures, reflecting autonomic nervous system [...] Read more.
Continuous blood pressure (BP) monitoring provides valuable insight into the body’s dynamic cardiovascular regulation across various physiological states such as physical activity, emotional stress, postural changes, and sleep. Continuous BP monitoring captures different variations in systolic and diastolic pressures, reflecting autonomic nervous system activity, vascular compliance, and circadian rhythms. This enables early identification of abnormal BP trends and allows for timely diagnosis and interventions to reduce the risk of cardiovascular diseases (CVDs) such as hypertension, stroke, heart failure, and chronic kidney disease as well as chronic stress or anxiety disorders. To facilitate continuous BP monitoring, we propose an AI-powered estimation framework. The proposed framework first uses an expert-driven feature engineering approach that systematically extracts physiological features from photoplethysmogram (PPG)-based arterial pulse waveforms (APWs). Extracted features include pulse rate, ascending/descending times, pulse width, slopes, intensity variations, and waveform areas. These features are fused with demographic data (age, gender, height, weight, BMI) to enhance model robustness and accuracy across diverse populations. The framework utilizes a Tab-Transformer to learn rich feature embeddings, which are then processed through an ensemble machine learning framework consisting of CatBoost, XGBoost, and LightGBM. Evaluated on a dataset of 1000 subjects, the model achieves Mean Absolute Errors (MAE) of 3.87 mmHg (SBP) and 2.50 mmHg (DBP), meeting British Hypertension Society (BHS) Grade A and Association for the Advancement of Medical Instrumentation (AAMI) standards. The proposed architecture advances non-invasive, AI-driven solutions for dynamic cardiovascular health monitoring. Full article
Show Figures

Figure 1

35 pages, 1231 KiB  
Review
Toward Intelligent Underwater Acoustic Systems: Systematic Insights into Channel Estimation and Modulation Methods
by Imran A. Tasadduq and Muhammad Rashid
Electronics 2025, 14(15), 2953; https://doi.org/10.3390/electronics14152953 (registering DOI) - 24 Jul 2025
Abstract
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight [...] Read more.
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight the need for a systematic evaluation to compare various ML/DL models and assess their performance across diverse underwater conditions. However, most existing reviews on ML/DL-based UWA communication focus on isolated approaches rather than integrated system-level perspectives, which limits cross-domain insights and reduces their relevance to practical underwater deployments. Consequently, this systematic literature review (SLR) synthesizes 43 studies (2020–2025) on ML and DL approaches for UWA communication, covering channel estimation, adaptive modulation, and modulation recognition across both single- and multi-carrier systems. The findings reveal that models such as convolutional neural networks (CNNs), long short-term memory networks (LSTMs), and generative adversarial networks (GANs) enhance channel estimation performance, achieving error reductions and bit error rate (BER) gains ranging from 103 to 106. Adaptive modulation techniques incorporating support vector machines (SVMs), CNNs, and reinforcement learning (RL) attain classification accuracies exceeding 98% and throughput improvements of up to 25%. For modulation recognition, architectures like sequence CNNs, residual networks, and hybrid convolutional–recurrent models achieve up to 99.38% accuracy with latency below 10 ms. These performance metrics underscore the viability of ML/DL-based solutions in optimizing physical-layer tasks for real-world UWA deployments. Finally, the SLR identifies key challenges in UWA communication, including high complexity, limited data, fragmented performance metrics, deployment realities, energy constraints and poor scalability. It also outlines future directions like lightweight models, physics-informed learning, advanced RL strategies, intelligent resource allocation, and robust feature fusion to build reliable and intelligent underwater systems. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

18 pages, 12540 KiB  
Article
SS-LIO: Robust Tightly Coupled Solid-State LiDAR–Inertial Odometry for Indoor Degraded Environments
by Yongle Zou, Peipei Meng, Jianqiang Xiong and Xinglin Wan
Electronics 2025, 14(15), 2951; https://doi.org/10.3390/electronics14152951 (registering DOI) - 24 Jul 2025
Abstract
Solid-state LiDAR systems are widely recognized for their high reliability, low cost, and lightweight design, but they encounter significant challenges in SLAM tasks due to their limited field of view and uneven horizontal scanning patterns, especially in indoor environments with geometric constraints. To [...] Read more.
Solid-state LiDAR systems are widely recognized for their high reliability, low cost, and lightweight design, but they encounter significant challenges in SLAM tasks due to their limited field of view and uneven horizontal scanning patterns, especially in indoor environments with geometric constraints. To address these challenges, this paper proposes SS-LIO, a precise, robust, and real-time LiDAR–Inertial odometry solution designed for solid-state LiDAR systems. SS-LIO uses uncertainty propagation in LiDAR point-cloud modeling and a tightly coupled iterative extended Kalman filter to fuse LiDAR feature points with IMU data for reliable localization. It also employs voxels to encapsulate planar features for accurate map construction. Experimental results from open-source datasets and self-collected data demonstrate that SS-LIO achieves superior accuracy and robustness compared to state-of-the-art methods, with an end-to-end drift of only 0.2 m in indoor degraded scenarios. The detailed and accurate point-cloud maps generated by SS-LIO reflect the smoothness and precision of trajectory estimation, with significantly reduced drift and deviation. These outcomes highlight the effectiveness of SS-LIO in addressing the SLAM challenges posed by solid-state LiDAR systems and its capability to produce reliable maps in complex indoor settings. Full article
(This article belongs to the Special Issue Advancements in Robotics: Perception, Manipulation, and Interaction)
Show Figures

Figure 1

18 pages, 5315 KiB  
Article
Quantifying Improvements in Derived Storm Events from Version 07 of GPM IMERG Early, Late, and Final Data Products over North Carolina
by Elizabeth Bartuska, R. Edward Beighley, Kelsey J. Pieper and C. Nathan Jones
Remote Sens. 2025, 17(15), 2567; https://doi.org/10.3390/rs17152567 - 24 Jul 2025
Abstract
In North Carolina (NC), roughly 1 in 4 residents rely on private wells for drinking water. Given the potential for flooding to impact well water quality, which poses serious health hazards to well users, accurate near real-time precipitation estimates are vital for guiding [...] Read more.
In North Carolina (NC), roughly 1 in 4 residents rely on private wells for drinking water. Given the potential for flooding to impact well water quality, which poses serious health hazards to well users, accurate near real-time precipitation estimates are vital for guiding outreach and mitigation efforts. GPM IMERG precipitation data provides a solution for this need. Previous studies have shown that IMERG version 06 performs well throughout NC for capturing event totals. This study investigates changes in precipitation performance from IMERG version 06 to version 07 in NC and surrounding regions. There was significant improvement pertaining to errors quantifying the magnitude of precipitation events; the mean error in event precipitation decreased 75–85%, bias decreased 65–80%, and the root mean square error decreased 15–30% for Early, Late, and Final products as compared to event totals from in situ precipitation gauges. V07 shows improved performance during events in colder conditions, in mountainous regions, and with higher, prolonged intensities. During Hurricane Florence (September 2018), v07 improved precipitation estimates in regions with higher rainfall totals. These findings demonstrate the potential of the IMERG v07 Early and Late data products for the creation of accurate and timely flood models in emergency response applications. Full article
Show Figures

Figure 1

29 pages, 8089 KiB  
Article
KDFE: Robust KNN-Driven Fusion Estimator for LEO-SoOP Under Multi-Beam Phased-Array Dynamics
by Jiaqi Yin, Ruidan Luo, Xiao Chen, Linhui Zhao, Hong Yuan and Guang Yang
Remote Sens. 2025, 17(15), 2565; https://doi.org/10.3390/rs17152565 - 23 Jul 2025
Abstract
Accurate Doppler frequency estimation for Low Earth Orbit (LEO)-based Signals of Opportunity (SoOP) positioning faces significant challenges from extreme dynamics (±40 kHz Doppler shift, 0.4 Hz/ms fluctuation) and severe SNR fluctuations induced by multi-beam switching. Empirical analysis reveals that phased-array beamforming generates three-tiered [...] Read more.
Accurate Doppler frequency estimation for Low Earth Orbit (LEO)-based Signals of Opportunity (SoOP) positioning faces significant challenges from extreme dynamics (±40 kHz Doppler shift, 0.4 Hz/ms fluctuation) and severe SNR fluctuations induced by multi-beam switching. Empirical analysis reveals that phased-array beamforming generates three-tiered SNR fluctuation patterns during unpredictable beam handovers, rendering conventional single-algorithm solutions fundamentally inadequate. To address this limitation, we propose KDFE (KNN-Driven Fusion Estimator)—an adaptive framework integrating the Rife–Vincent algorithm and MLE via intelligent switching. Global FFT processing extracts real-time Doppler-SNR parameter pairs, while a KNN-based arbiter dynamically selects the optimal estimator by: (1) Projecting parameter pairs into historical performance space, (2) Identifying the accuracy-optimal algorithm for current beam conditions, and (3) Executing real-time switching to balance accuracy and robustness. This decision model overcomes the accuracy-robustness trade-off by matching algorithmic strengths to beam-specific dynamics, ensuring optimal performance during abrupt SNR transitions and high Doppler rates. Both simulations and field tests demonstrate KDFE’s dual superiority: Doppler estimation errors were reduced by 26.3% (vs. Rife–Vincent) and 67.9% (vs. MLE), and 3D positioning accuracy improved by 13.6% (vs. Rife–Vincent) and 49.7% (vs. MLE). The study establishes a pioneering framework for adaptive LEO-SoOP positioning, delivering a methodological breakthrough for LEO navigation. Full article
(This article belongs to the Special Issue LEO-Augmented PNT Service)
Show Figures

Figure 1

20 pages, 864 KiB  
Article
A Mixed Finite Volume Element Method for Nonlinear Time Fractional Fourth-Order Reaction–Diffusion Models
by Jie Zhao, Min Cao and Zhichao Fang
Fractal Fract. 2025, 9(8), 481; https://doi.org/10.3390/fractalfract9080481 - 23 Jul 2025
Abstract
In this paper, a linearized mixed finite volume element (MFVE) scheme is proposed to solve the nonlinear time fractional fourth-order reaction–diffusion models with the Riemann–Liouville time fractional derivative. By introducing an auxiliary variable σ=Δu, the original fourth-order model is [...] Read more.
In this paper, a linearized mixed finite volume element (MFVE) scheme is proposed to solve the nonlinear time fractional fourth-order reaction–diffusion models with the Riemann–Liouville time fractional derivative. By introducing an auxiliary variable σ=Δu, the original fourth-order model is reformulated into a lower-order coupled system. The first-order time derivative and the time fractional derivative are discretized by using the BDF2 formula and the weighted and shifted Grünwald difference (WSGD) formula, respectively. Then, a fully discrete MFVE scheme is constructed by using the primal and dual grids. The existence and uniqueness of a solution for the MFVE scheme are proven based on the matrix theories. The scheme’s unconditional stability is rigorously derived by using the Gronwall inequality in detail. Moreover, the optimal error estimates for u in the discrete L(L2(Ω)) and L2(H1(Ω)) norms and for σ in the discrete L2(L2(Ω)) norm are obtained. Finally, three numerical examples are given to confirm its feasibility and effectiveness. Full article
21 pages, 3158 KiB  
Article
Estimation of Leaf, Spike, Stem and Total Biomass of Winter Wheat Under Water-Deficit Conditions Using UAV Multimodal Data and Machine Learning
by Jinhang Liu, Wenying Zhang, Yongfeng Wu, Juncheng Ma, Yulin Zhang and Binhui Liu
Remote Sens. 2025, 17(15), 2562; https://doi.org/10.3390/rs17152562 - 23 Jul 2025
Abstract
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or [...] Read more.
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or full-quadrat harvesting, are labor intensive and may introduce substantial errors compared to the canopy-level estimates obtained from UAV imagery. This study proposes a novel method using Fractional Vegetation Coverage (FVC) to adjust field-sampled AGB to per-plant biomass, enhancing the accuracy of AGB estimation using UAV imagery. Correlation analysis and Variance Inflation Factor (VIF) were employed for feature selection, and estimation models for leaf, spike, stem, and total AGB were constructed using Random Forest (RF), Support Vector Machine (SVM), and Neural Network (NN) models. The aim was to evaluate the performance of multimodal data in estimating winter wheat leaves, spikes, stems, and total AGB. Results demonstrated that (1) FVC-adjusted per-plant biomass significantly improved correlations with most indicators, particularly during the filling stage, when the correlation between leaf biomass and NDVI increased by 56.1%; (2) RF and NN models outperformed SVM, with the optimal accuracies being R2 = 0.709, RMSE = 0.114 g for RF, R2 = 0.66, RMSE = 0.08 g for NN, and R2 = 0.557, RMSE = 0.117 g for SVM. Notably, the RF model achieved the highest prediction accuracy for leaf biomass during the flowering stage (R2 = 0.709, RMSE = 0.114); (3) among different water treatments, the R2 values of water and drought treatments were higher 0.723 and 0.742, respectively, indicating strong adaptability. This study provides an economically effective method for monitoring winter wheat growth in the field, contributing to improved agricultural productivity and fertilization management. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

19 pages, 2592 KiB  
Article
A Minimal Solution for Binocular Camera Relative Pose Estimation Based on the Gravity Prior
by Dezhong Chen, Kang Yan, Hongping Zhang and Zhenbao Yu
Remote Sens. 2025, 17(15), 2560; https://doi.org/10.3390/rs17152560 - 23 Jul 2025
Abstract
High-precision positioning is the foundation for the functionality of various intelligent agents. In complex environments, such as urban canyons, relative pose estimation using cameras is a crucial step in high-precision positioning. To take advantage of the ability of an inertial measurement unit (IMU) [...] Read more.
High-precision positioning is the foundation for the functionality of various intelligent agents. In complex environments, such as urban canyons, relative pose estimation using cameras is a crucial step in high-precision positioning. To take advantage of the ability of an inertial measurement unit (IMU) to provide relatively accurate gravity prior information over a short period, we propose a minimal solution method for the relative pose estimation of a stereo camera system assisted by the IMU. We rigidly connect the IMU to the camera system and use it to obtain the rotation matrices in the roll and pitch directions for the entire system, thereby reducing the minimum number of corresponding points required for relative pose estimation. In contrast to classic pose-estimation algorithms, our method can also calculate the camera focal length, which greatly expands its applicability. We constructed a simulated dataset and used it to compare and analyze the numerical stability of the proposed method and the impact of different levels of noise on algorithm performance. We also collected real-scene data using a drone and validated the proposed algorithm. The results on real data reveal that our method exhibits smaller errors in calculating the relative pose of the camera system compared with two classic reference algorithms. It achieves higher precision and stability and can provide a comparatively accurate camera focal length. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Figure 1

31 pages, 4937 KiB  
Article
Proximal LiDAR Sensing for Monitoring of Vegetative Growth in Rice at Different Growing Stages
by Md Rejaul Karim, Md Nasim Reza, Shahriar Ahmed, Kyu-Ho Lee, Joonjea Sung and Sun-Ok Chung
Agriculture 2025, 15(15), 1579; https://doi.org/10.3390/agriculture15151579 - 23 Jul 2025
Abstract
Precise monitoring of vegetative growth is essential for assessing crop responses to environmental changes. Conventional methods of geometric characterization of plants such as RGB imaging, multispectral sensing, and manual measurements often lack precision or scalability for growth monitoring of rice. LiDAR offers high-resolution, [...] Read more.
Precise monitoring of vegetative growth is essential for assessing crop responses to environmental changes. Conventional methods of geometric characterization of plants such as RGB imaging, multispectral sensing, and manual measurements often lack precision or scalability for growth monitoring of rice. LiDAR offers high-resolution, non-destructive 3D canopy characterization, yet applications in rice cultivation across different growth stages remain underexplored, while LiDAR has shown success in other crops such as vineyards. This study addresses that gap by using LiDAR for geometric characterization of rice plants at early, middle, and late growth stages. The objective of this study was to characterize rice plant geometry such as plant height, canopy volume, row distance, and plant spacing using the proximal LiDAR sensing technique at three different growth stages. A commercial LiDAR sensor (model: VPL−16, Velodyne Lidar, San Jose, CA, USA) mounted on a wheeled aluminum frame for data collection, preprocessing, visualization, and geometric feature characterization using a commercial software solution, Python (version 3.11.5), and a custom algorithm. Manual measurements compared with the LiDAR 3D point cloud data measurements, demonstrating high precision in estimating plant geometric characteristics. LiDAR-estimated plant height, canopy volume, row distance, and spacing were 0.5 ± 0.1 m, 0.7 ± 0.05 m3, 0.3 ± 0.00 m, and 0.2 ± 0.001 m at the early stage; 0.93 ± 0.13 m, 1.30 ± 0.12 m3, 0.32 ± 0.01 m, and 0.19 ± 0.01 m at the middle stage; and 0.99 ± 0.06 m, 1.25 ± 0.13 m3, 0.38 ± 0.03 m, and 0.10 ± 0.01 m at the late growth stage. These measurements closely matched manual observations across three stages. RMSE values ranged from 0.01 to 0.06 m and r2 values ranged from 0.86 to 0.98 across parameters, confirming the high accuracy and reliability of proximal LiDAR sensing under field conditions. Although precision was achieved across growth stages, complex canopy structures under field conditions posed segmentation challenges. Further advances in point cloud filtering and classification are required to reliably capture such variability. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

15 pages, 441 KiB  
Article
Efficient Nyström-Based Unitary Single-Tone 2D DOA Estimation for URA Signals
by Liping Yuan, Ke Wang and Fengkai Luan
Mathematics 2025, 13(15), 2335; https://doi.org/10.3390/math13152335 - 22 Jul 2025
Abstract
We propose an efficient Nyström-based unitary subspace method for low-complexity two-dimensional (2D) direction-of-arrival (DOA) estimation in uniform rectangular array (URA) signal processing systems. The conventional high-resolution DOA estimation methods often suffer from excessive computational complexity, particularly when dealing with large-scale antenna arrays. The [...] Read more.
We propose an efficient Nyström-based unitary subspace method for low-complexity two-dimensional (2D) direction-of-arrival (DOA) estimation in uniform rectangular array (URA) signal processing systems. The conventional high-resolution DOA estimation methods often suffer from excessive computational complexity, particularly when dealing with large-scale antenna arrays. The proposed method addresses this challenge by combining the Nyström approximation with a unitary transformation to reduce the computational burden while maintaining estimation accuracy. The signal subspace is approximated using a partitioned covariance matrix, and a real-valued transformation is applied to further simplify the eigenvalue decomposition (EVD) process. Furthermore, the linear prediction coefficients are estimated via a weighted least squares (WLS) approach, enabling robust extraction of the angular parameters. The 2D DOA estimates are then derived from these coefficients through a closed-form solution, eliminating the need for exhaustive spectral searches. Numerical simulations demonstrate that the proposed method achieves comparable estimation performance to state-of-the-art techniques while significantly reducing computational complexity. For a fixed array size of M=N=20, the proposed method demonstrates significant computational efficiency, requiring less than 50% of the running time compared to conventional ESPRIT, and only 6% of the time required by ML methods, while maintaining similar performance. This makes it particularly suitable for real-time applications where computational efficiency is critical. The novelty lies in the integration of Nyström approximation and unitary subspace techniques, which jointly enable efficient and accurate 2D DOA estimation without sacrificing robustness against noise. The method is applicable to a wide range of array processing scenarios, including radar, sonar, and wireless communications. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

22 pages, 4341 KiB  
Article
Structural Monitoring Without a Budget—Laboratory Results and Field Report on the Use of Low-Cost Acceleration Sensors
by Sven Giermann, Thomas Willemsen and Jörg Blankenbach
Sensors 2025, 25(15), 4543; https://doi.org/10.3390/s25154543 - 22 Jul 2025
Abstract
Authorities responsible for critical infrastructure, particularly bridges, face significant challenges. Many bridges, constructed in the 1960s and 1970s, are now approaching or have surpassed their intended service life. A report from the German Federal Ministry for Digital and Transport (BMVI) indicates that about [...] Read more.
Authorities responsible for critical infrastructure, particularly bridges, face significant challenges. Many bridges, constructed in the 1960s and 1970s, are now approaching or have surpassed their intended service life. A report from the German Federal Ministry for Digital and Transport (BMVI) indicates that about 12% of the 40,000 federal trunk road bridges in Germany are in “inadequate or unsatisfactory” condition. Similar issues are observed in other countries worldwide. Economic constraints prevent ad hoc replacements, necessitating continued operation with frequent and costly inspections. This situation creates an urgent need for cost-effective, permanent monitoring solutions. This study explores the potential use of low-cost acceleration sensors for monitoring infrastructure structures. Inclination is calculated from the acceleration data of the sensor, using gravitational acceleration as a reference point. Long-term changes in inclination may indicate a change in the geometry of the structure, thereby triggering alarm thresholds. It is particularly important to consider specific challenges associated with low measurement accuracy and the susceptibility of sensors to environmental influences in a low-cost setting. The results of laboratory tests allow for an estimation of measurement accuracy and an analysis of the various error characteristics of the sensors. The article outlines the methodology for developing low-cost inclination sensor systems, the laboratory tests conducted, and the evaluation of different measures to enhance sensor accuracy. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

21 pages, 5862 KiB  
Article
ICP-Based Mapping and Localization System for AGV with 2D LiDAR
by Felype de L. Silva, Eisenhawer de M. Fernandes, Péricles R. Barros, Levi da C. Pimentel, Felipe C. Pimenta, Antonio G. B. de Lima and João M. P. Q. Delgado
Sensors 2025, 25(15), 4541; https://doi.org/10.3390/s25154541 - 22 Jul 2025
Abstract
This work presents the development of a functional real-time SLAM system designed to enhance the perception capabilities of an Automated Guided Vehicle (AGV) using only a 2D LiDAR sensor. The proposal aims to address recurring gaps in the literature, such as the need [...] Read more.
This work presents the development of a functional real-time SLAM system designed to enhance the perception capabilities of an Automated Guided Vehicle (AGV) using only a 2D LiDAR sensor. The proposal aims to address recurring gaps in the literature, such as the need for low-complexity solutions that are independent of auxiliary sensors and capable of operating on embedded platforms with limited computational resources. The system integrates scan alignment techniques based on the Iterative Closest Point (ICP) algorithm. Experimental validation in a controlled environment indicated better performance using Gauss–Newton optimization and the point-to-plane metric, achieving pose estimation accuracy of 99.42%, 99.6%, and 99.99% in the position (x, y) and orientation (θ) components, respectively. Subsequently, the system was adapted for operation with data from the onboard sensor, integrating a lightweight graphical interface for real-time visualization of scans, estimated pose, and the evolving map. Despite the moderate update rate, the system proved effective for robotic applications, enabling coherent localization and progressive environment mapping. The modular architecture developed allows for future extensions such as trajectory planning and control. The proposed solution provides a robust and adaptable foundation for mobile platforms, with potential applications in industrial automation, academic research, and education in mobile robotics. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

23 pages, 4594 KiB  
Article
Ensemble Machine Learning Approaches for Bathymetry Estimation in Multi-Spectral Images
by Kazi Aminul Islam, Omar Abul-Hassan, Hongfang Zhang, Victoria Hill, Blake Schaeffer, Richard Zimmerman and Jiang Li
Geomatics 2025, 5(3), 34; https://doi.org/10.3390/geomatics5030034 - 22 Jul 2025
Abstract
Traditional bathymetry measures require a large number of human hours, and many bathymetry records are obsolete or missing. Automated measures of bathymetry would reduce costs and increase accessibility for research and applications. In this paper, we optimized a recent machine learning model, named [...] Read more.
Traditional bathymetry measures require a large number of human hours, and many bathymetry records are obsolete or missing. Automated measures of bathymetry would reduce costs and increase accessibility for research and applications. In this paper, we optimized a recent machine learning model, named CatBoostOpt, to estimate bathymetry based on high-resolution WorldView-2 (WV-2) multi-spectral optical satellite images. CatBoostOpt was demonstrated across the Florida Big Bend coastline, where the model learned correlations between in situ sound Navigation and Ranging (Sonar) bathymetry measurements and the corresponding multi-spectral reflectance values in WV-2 images to map bathymetry. We evaluated three different feature transformations as inputs for bathymetry estimation, including raw reflectance, log-linear, and log-ratio transforms of the raw reflectance value in WV-2 images. In addition, we investigated the contribution of each spectral band and found that utilizing all eight spectral bands in WV-2 images offers the best solution for handling complex water quality conditions. We compared CatBoostOpt with linear regression (LR), support vector machine (SVM), random forest (RF), AdaBoost, gradient boosting, and deep convolutional neural network (DCNN). CatBoostOpt with log-ratio transformed reflectance achieved the best performance with an average root mean square error (RMSE) of 0.34 and coefficient of determination (R2) of 0.87. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

15 pages, 1272 KiB  
Article
Gender Differences in Knowledge and Attitudes on Hematopoietic Stem Cell Donation Among Apulian Citizens: An Explorative Study
by Elsa Vitale, Roberto Lupo, Stefano Botti, Chiara Ianne, Alessia Lezzi, Giorgio De Nunzio, Donato Cascio, Ivan Rubbi, Simone Zacchino, Gianandrea Pasquinelli, Doria Valentini, Valeria Soffientini, Valentina De Cecco, Chiara Cannici, Marco Cioce and Luana Conte
Hemato 2025, 6(3), 24; https://doi.org/10.3390/hemato6030024 - 22 Jul 2025
Abstract
Background: It is estimated that in Italy, there were 364,000 new diagnoses of neoplasms each year and that the overall incidence of blood cancers was 10% of these. Leukemia and lymphomas represented the ninth and eighth places, respectively, among the causes of death [...] Read more.
Background: It is estimated that in Italy, there were 364,000 new diagnoses of neoplasms each year and that the overall incidence of blood cancers was 10% of these. Leukemia and lymphomas represented the ninth and eighth places, respectively, among the causes of death from neoplasia. Hematopoietic stem cell transplantation represented an effective treatment option for many of these malignancies, and not only that: benign and congenital diseases could also be treated. Objective: To assess knowledge among the Apulian population regarding stem cell donation and factors that could influence this choice, focusing especially on the knowledge of the residents of Puglia, Italy on how stem cells were harvested and their functions, their reasons for joining the National Registry, and the reasons that hold them back from making such a choice. Study Design: An observational and cross-sectional study was conducted, through snowball sampling methodology, until data saturation. An online survey was conducted, which included several Italian associations. The questionnaire administered contained five main sections, such as sociodemographic data, knowledge of the existence of National Registries and their adherence, the nationwide presence of various associations that promote donation, knowledge with respect to the structure, use and functions of stem cells, sources of procurement, such as bone marrow, peripheral blood and umbilical cord, and related procedures, beliefs, attitudes, values, and opinions of the Italian population regarding the topic, and degree of information and education regarding bone marrow donation. Results: A total of 567 Apulian citizens were enrolled. Of these, 75.3% were female and 96.8% were aged between 18 and 65 years. Most of participants were single (46.9%) and married (47.3%) and had a diploma (44.4%), and less had a degree (35.8%). Significant differences were recorded between gender, singles, and married participants, and participants with a diploma or a degree and the items proposed. Conclusions: A true culture of donation in our region was not clearly spread. Although something has been accomplished in recent years in terms of deceased donor donation, still a great deal needs to be achieved for living donation, which encountered a great deal of resistance. It has been deemed necessary to seek winning solutions to this issue in terms of communication and information campaigns, raising awareness and empowering citizens to express consciously their concerns about organs and tissues and to stand in solidarity with those who suffered. Full article
Show Figures

Figure 1

15 pages, 1443 KiB  
Article
Prediction of Waiting Lists for Medical Specialties in Hospitals in Costa Rica Using Queuing Theory and Monte Carlo Simulation
by Bernal Vargas-Vargas, Erick Pérez-Murillo, Jaime González-Domínguez and Justo García-Sanz-Calcedo
Hospitals 2025, 2(3), 17; https://doi.org/10.3390/hospitals2030017 - 22 Jul 2025
Viewed by 6
Abstract
This study applies stochastic discrete event modeling to demonstrate that reducing wait times for specialized outpatient clinics in the Costa Rican public healthcare system is possible. The classification process identified four medical specialties with the longest wait times. It includes the creation of [...] Read more.
This study applies stochastic discrete event modeling to demonstrate that reducing wait times for specialized outpatient clinics in the Costa Rican public healthcare system is possible. The classification process identified four medical specialties with the longest wait times. It includes the creation of a separate queuing theory model for each specialty. The birth and death model allowed for estimating the number of arrivals and consultations in the simulation. Validation was performed by comparing the model’s input and output data with real-world statistical reports. An analysis of medical specialists revealed that approximately 22% of patients referred to secondary care did not require specialized medical consultation. Through simulation and the use of stochastic input data, patient waiting times decreased. In an optimistic scenario, waiting times decreased steadily across all specialties over 24 months. Ophthalmology and orthopedics reduced their waiting times to less than 300 days. Otorhinolaryngology decreased from 370 to 250 days, and urology showed the most significant improvement, decreasing from 350 to 100 days in the first year and remaining stable. This evidence transforms the traditional paradigm of increasing capacity as the only solution to the waiting list problem and positions improving the referral process as an alternative. To achieve these results, the study highlights the importance of implementing improved triage protocols in primary care, integrating decision-support tools for general practitioners using machine learning, for example, to reduce unnecessary referrals. Training programs and feedback mechanisms could also align referral practices with specialty criteria. While these strategies were not implemented in this study, the simulation results provide a solid basis for their design and future evaluation. Full article
Show Figures

Figure 1

Back to TopTop