Quantifying Improvements in Derived Storm Events from Version 07 of GPM IMERG Early, Late, and Final Data Products over North Carolina
Abstract
1. Introduction
2. Methods
2.1. Study Region
2.2. Datasets
3. Results
3.1. Overall Event Errors for IMERG v06 and v07
3.2. Grouped Errors for IMERG v06 and v07
3.3. Event Errors for IMERG v06 and v07—Case Study: Hurricane Florence
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GPM | Global Precipitation Measurement |
IMERG | Integrated Multi-satellitE Retrievals for GPM |
TRMM | Tropical Rainfall Measuring Mission |
TMPA | TRMM Multi-Satellite Precipitation Analysis |
MODIS | Moderate Resolution Imaging Spectroradiometer |
v06 | Version 06 |
v07 | Version 07 |
PMW | Passive microwave |
IR | Infrared |
ME | Mean error |
RBias | Relative bias |
RMSE | Root mean square error |
POD | Probability of detection |
FAR | False alarm ratio |
LST | Land surface temperature |
FEMA | Federal Emergency Management Agency |
NOAA | National Oceanic and Atmospheric Administration |
GPROF | Goddard Profiling |
CORRA | Combined Radar Radiometer Analysis |
SHARPEN | Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood |
PERSIANN-CCS | Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System |
PDIR-Now | PERSIANN Dynamic Infrared–Rain Rate—Now |
Appendix A
Error Metric | Abbreviation | Formula | Range | Ideal Value |
---|---|---|---|---|
Mean Error | ME | −∞ to +∞ | 0 | |
Relative Bias | RBias | −∞ to +∞ | 0 | |
Root Mean Square Error | RMSE | 0 to +∞ | 0 | |
Probability of Detection | POD | 0 to 1 | 1 | |
False Alarm Ratio | FAR | 0 to 1 | 0 |
ME | RBias | RMSE | POD | FAR | ||
---|---|---|---|---|---|---|
Overall | Early, v06 | 6.0 | 0.14 | 39.6 | 0.83 | 0.20 |
Early, v07 | 1.5 | 0.04 | 28.9 | 0.84 | 0.20 | |
Late, v06 | 6.8 | 0.16 | 39.3 | 0.83 | 0.18 | |
Late, v07 | 0.95 | 0.03 | 27.5 | 0.84 | 0.18 | |
Final, v06 | 1.7 | 0.04 | 27.7 | 0.85 | 0.18 | |
Final, v07 | 0.26 | 0.02 | 23.7 | 0.86 | 0.18 | |
Early | <25, v06 | 14.8 | 0.89 | 25.9 | 0.67 | 0.37 |
<25, v07 | 0.50 | 0.04 | 5.1 | 0.70 | 0.39 | |
25–50, v06 | 12.0 | 0.41 | 28.6 | 0.81 | 0.22 | |
25–50, v07 | 0.25 | 0.01 | 5.6 | 0.85 | 0.19 | |
50–75, v06 | 8.3 | 0.19 | 36.1 | 0.89 | 0.14 | |
50–75, v07 | 0.32 | 0.01 | 8.2 | 0.91 | 0.14 | |
>75, v06 | −10.8 | −0.11 | 55.9 | 0.94 | 0.09 | |
>75, v07 | −2.0 | 0.00 | 40.4 | 0.96 | 0.07 | |
Late | <25, v06 | 13.8 | 0.89 | 24.3 | 0.67 | 0.35 |
<25, v07 | 0.22 | 0.02 | 5.1 | 0.69 | 0.35 | |
25–50, v06 | 11.8 | 0.44 | 26.8 | 0.82 | 0.20 | |
25–50, v07 | 0.34 | 0.02 | 5.6 | 0.85 | 0.18 | |
50–75, v06 | 9.6 | 0.23 | 34.4 | 0.90 | 0.13 | |
50–75, v07 | 0.19 | 0.01 | 8.0 | 0.92 | 0.12 | |
>75, v06 | −5.1 | −0.05 | 54.6 | 0.95 | 0.08 | |
>75, v07 | −1.2 | 0.01 | 38.9 | 0.96 | 0.07 | |
Final | <25, v06 | 11.3 | 0.73 | 18.9 | 0.70 | 0.37 |
<25, v07 | 0.63 | 0.05 | 5.1 | 0.72 | 0.39 | |
25–50, v06 | 7.8 | 0.29 | 18.7 | 0.85 | 0.19 | |
25–50, v07 | 0.76 | 0.03 | 5.5 | 0.87 | 0.17 | |
50–75, v06 | 3.4 | 0.08 | 22.1 | 0.92 | 0.11 | |
50–75, v07 | 0.60 | 0.02 | 8.0 | 0.92 | 0.11 | |
>75, v06 | −11.9 | −0.13 | 38.1 | 0.96 | 0.07 | |
>75, v07 | −7.4 | −0.06 | 32.0 | 0.96 | 0.06 | |
Late—Temperature | Cold, v06 | 13.5 | 0.30 | 38.5 | 0.77 | 0.33 |
Cold, v07 | 1.8 | 0.04 | 23.8 | 0.78 | 0.25 | |
Mid, v06 | 7.8 | 0.18 | 37.9 | 0.84 | 0.26 | |
Mid, v07 | 1.6 | 0.05 | 27.8 | 0.85 | 0.25 | |
High, v06 | −4.4 | −0.06 | 34.4 | 0.81 | 0.32 | |
High, v07 | 0.26 | 0.04 | 30.3 | 0.83 | 0.40 | |
Late—Regions | Mountain, v06 | 8.6 | 0.21 | 43.8 | 0.82 | 0.23 |
Mountain, v07 | 0.21 | 0.05 | 33.2 | 0.83 | 0.24 | |
Piedmont, v06 | 6.2 | 0.14 | 35.7 | 0.84 | 0.30 | |
Piedmont, v07 | 0.34 | 0.01 | 26.3 | 0.84 | 0.26 | |
Coast, v06 | 3.7 | 0.08 | 32.0 | 0.83 | 0.28 | |
Coast, v07 | 1.0 | 0.03 | 28.8 | 0.84 | 0.28 |
10-Day Hurricane Florence | All Matched Events | |||||
---|---|---|---|---|---|---|
Percent of Gauge Event Considered Similar | v06 Better | v07 Better | Similar | Mean v06 Better | Mean v07 Better | Mean Similar |
5 | 43.0 | 57.0 | 0.0 | 42.7 | 56.6 | 0.7 |
10 | 42.6 | 56.2 | 1.2 | 41.7 | 55.5 | 2.8 |
15 | 41.0 | 55.0 | 4.0 | 40.1 | 53.7 | 6.2 |
20 | 39.8 | 52.2 | 8.0 | 37.7 | 51.5 | 10.8 |
25 | 36.1 | 47.4 | 16.5 | 35.1 | 48.9 | 16.1 |
30 | 35.7 | 44.6 | 19.7 | 32.1 | 45.8 | 22.1 |
35 | 32.5 | 41.4 | 26.1 | 29.1 | 42.5 | 28.4 |
40 | 30.1 | 36.6 | 33.3 | 26.0 | 39.1 | 34.9 |
45 | 26.9 | 28.9 | 44.2 | 23.0 | 35.6 | 41.4 |
50 | 25.3 | 24.9 | 49.8 | 20.2 | 32.3 | 47.5 |
References
- Costliest U.S. Tropical Cyclones. National Center for Environmental Information. 2024. Available online: https://www.ncei.noaa.gov/access/billions/dcmi.pdf (accessed on 19 August 2024).
- Paul, S.; Ghebreyesus, D.; Sharif, H.O. Brief Communication: Analysis of the Fatalities and Socio-Economic Impacts Caused by Hurricane Florence. Geosciences 2019, 9, 58. [Google Scholar] [CrossRef]
- Drewry, K.R.; Jones, C.N.; Hayes, W.; Beighley, R.E.; Wang, Q.; Hochard, J.; Mize, W.; Fowlkes, J.; Goforth, C.; Pieper, K.J. Using Inundation Extents to Predict Microbial Contamination in Private Wells after Flooding Events. Environ. Sci. Technol. 2024, 58, 5220–5228. [Google Scholar] [CrossRef] [PubMed]
- Federal Emergency Management Agency. 4827-DR-NC Public Notice Amendment 003. 2024. Available online: http://fema.gov/disaster-federal-register-notice/4827-dr-nc-public-notice-amendment-003-0 (accessed on 4 June 2025).
- Lin, S.; Chen, S.; Rasanen, R.A.; Zhao, Q.; Chavan, V.; Tang, W.; Shanmugam, N.; Allan, C.; Braxtan, N.; Diemer, J. Landslide Prediction Validation in Western North Carolina After Hurricane Helene. Geotechnics 2024, 4, 1259–1281. [Google Scholar] [CrossRef]
- Marra, F.; Nikolopoulos, E.I.; Creutin, J.D.; Borga, M. Radar Rainfall Estimation for the Identification of Debris-Flow Occurrence Thresholds. J. Hydrol. 2014, 519, 1607–1619. [Google Scholar] [CrossRef]
- Habib, E.; Krajewski, W.F.; Ciach, G. Estimation of Rainfall Interstation Correlation. J. Hydrometeorol. 2001, 2, 621–629. [Google Scholar] [CrossRef]
- Nikolopoulos, E.I.; Borga, M.; Creutin, J.D.; Marra, F. Estimation of Debris Flow Triggering Rainfall: Influence of Rain Gauge Density and Interpolation Methods. Geomorphology 2015, 243, 40–50. [Google Scholar] [CrossRef]
- Masood, M.; Naveed, M.; Iqbal, M.; Nabi, G.; Kashif, H.M.; Jawad, M.; Mujtaba, A. Evaluation of Satellite Precipitation Products for Estimation of Floods in Data-Scarce Environment. Adv. Meteorol. 2023, 2023, 1685720. [Google Scholar] [CrossRef]
- Vieux, B.; Vieux, J. Rainfall Accuracy Considerations Using Radar and Rain Gauge Networks for Rainfall-Runoff Monitoring. J. Water Manag. Model. 2005, 13, 333–352. [Google Scholar] [CrossRef]
- NOAA Science Advisory Board Environmental Information Services Working Group (EISWG). NOAA Science Advisory Board Report on Radar Gaps. 2023. Available online: https://sab.noaa.gov/wp-content/uploads/SAB_Report_Nov2023_EISWG_Radar-Gaps-1.pdf (accessed on 15 October 2024).
- Houston, A.L.; PytlikZillig, L.M.; Walther, J.C. National Weather Service Data Needs for Short-Term Forecasts and the Role of Unmanned Aircraft in Filling the Gap: Results from a Nationwide Survey. Bull. Am. Meteorol. Soc. 2021, 102, E2106–E2120. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Chen, J. Evaluation of the GPM IMERG Satellite-Based Precipitation Products and the Hydrological Utility. Atmos. Res. 2017, 196, 151–163. [Google Scholar] [CrossRef]
- Precipitation Processing System. File Specification for TRMM Products, Tropical Rainfall Measuring Mission; NASA: Washington, DC, USA, 2017. Available online: https://gpm.nasa.gov/sites/default/files/2020-02/filespec.TRMM_.V7.pdf (accessed on 15 August 2024).
- Le, H.; Sutton, J.; Bui, D.; Bolten, J.; Lakshmi, V. Comparison and Bias Correction of TMPA Precipitation Products over the Lower Part of Red–Thai Binh River Basin of Vietnam. Remote Sens. 2018, 10, 1582. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Ocean Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Wang, J.; Petersen, W.A.; Wolff, D.B. Validation of Satellite-Based Precipitation Products from TRMM to GPM. Remote Sens. 2021, 13, 1745. [Google Scholar] [CrossRef]
- Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. IMERG V06: Changes to the Morphing Algorithm. J. Atmos. Ocean Technol. 2019, 36, 2471–2482. [Google Scholar] [CrossRef]
- Draper, D.W.; Newell, D.A.; Wentz, F.J.; Krimchansky, S.; Skofronick-Jackson, G.M. The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument Overview and Early On-Orbit Performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3452–3462. [Google Scholar] [CrossRef]
- Smith, E.A.; Asrar, G.; Furuhama, Y.; Ginati, A.; Mugnai, A.; Nakamura, K.; Adler, R.F.; Chou, M.-D.; Desbois, M.; Durning, J.F.; et al. International Global Precipitation Measurement (GPM) Program and Mission: An Overview. In Measuring Precipitation From Space; Springer: Dordrecht, The Netherlands, 2007; pp. 611–653. [Google Scholar] [CrossRef]
- Pradhan, R.K.; Markonis, Y.; Vargas Godoy, M.R.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG Performance: A Global Perspective. Remote Sens. Environ. 2022, 268, 112754. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V. Status of Satellite Precipitation Retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [Google Scholar] [CrossRef]
- Berg, W.; Bilanow, S.; Chen, R.; Datta, S.; Draper, D.; Ebrahimi, H.; Farrar, S.; Jones, W.L.; Kroodsma, R.; McKague, D.; et al. Intercalibration of the GPM Microwave Radiometer Constellation. J. Atmos. Ocean Technol. 2016, 33, 2639–2654. [Google Scholar] [CrossRef]
- Tan, J.; Huffman, G.J. Computing Morphing Vectors for Version 06 IMERG. NASA/GSFC Code 612, 9p. Available online: https://gpm.nasa.gov/sites/default/files/2020-10/MorphingInV06IMERG_201006.pdf (accessed on 19 August 2024).
- Joyce, R.J.; Xie, P. Kalman Filter–Based CMORPH. J. Hydrometeorol. 2011, 12, 1547–1563. [Google Scholar] [CrossRef]
- Sutton, J.R.P.; Kirschbaum, D.; Stanley, T.; Orland, E. Evaluating Precipitation Events Using GPM IMERG 30-Minute Near-Real-Time Precipitation Estimates. J. Hydrometeorol. 2024, 25, 991–1006. [Google Scholar] [CrossRef]
- Turk, F.J.; Arkin, P.; Sapiano, M.R.P.; Ebert, E.E. Evaluating High-Resolution Precipitation Products. Bull. Am. Meteorol. Soc. 2008, 89, 1911–1916. [Google Scholar] [CrossRef]
- Gebregiorgis, A.S.; Kirstetter, P.; Hong, Y.E.; Gourley, J.J.; Huffman, G.J.; Petersen, W.A.; Xue, X.; Schwaller, M.R. To What Extent Is the Day 1 GPM IMERG Satellite Precipitation Estimate Improved as Compared to TRMM TMPA-RT? J. Geophys. Res. Atmos. 2018, 123, 1694–1707. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. Integrated Multi-SatellitE Retrievals for GPM (IMERG) Technical Documentation. NASA/GSFC Code 612, 83p. Available online: https://gpm.nasa.gov/sites/default/files/2020-10/IMERG_doc_201006.pdf (accessed on 1 October 2024).
- Skofronick-Jackson, G.; Kirschbaum, D.; Petersen, W.; Huffman, G.; Kidd, C.; Stocker, E.; Kakar, R. The Global Precipitation Measurement (GPM) Mission’s Scientific Achievements and Societal Contributions: Reviewing Four Years of Advanced Rain and Snow Observations. Q. J. R. Meteorol. Soc. 2018, 144, 27–48. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have Satellite Precipitation Products Improved over Last Two Decades? A Comprehensive Comparison of GPM IMERG with Nine Satellite and Reanalysis Datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Joyce, R.; Nelkin, E.J.; Tan, J.; Braithwaite, D.; Hsu, K.; Kelley, O.A.; Nguyen, P.; Sorooshian, S.; et al. NASA Global Precipitation Measurement (GPM) Integrated Multi-SatellitE Retrievals for GPM (IMERG) Version 07; NASA/GSFC: Greenbelt, MD, USA, 2023. Available online: http://disc.sci.gsfc.nasa.gov/ (accessed on 18 August 2024).
- Ramadhan, R.; Marzuki, M.; Suryanto, W.; Sholihun, S.; Yusnaini, H.; Muharsyah, R. Validating IMERG Data for Diurnal Rainfall Analysis across the Indonesian Maritime Continent Using Gauge Observations. Remote Sens. Appl. 2024, 34, 101186. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Joyce, R.; Kelley, O.A.; Nelkin, E.J.; Portier, A.; Stocker, E.F.; Tan, J.; Watters, D.C.; West, B.J. IMERG V07 Release Notes. NASA/GSFC Code 612, 23p. Available online: https://gpm.nasa.gov/sites/default/files/2024-02/IMERG_V07_ReleaseNotes_240221.pdf (accessed on 1 August 2024).
- Nguyen, P.; Ombadi, M.; Gorooh, V.A.; Shearer, E.J.; Sadeghi, M.; Sorooshian, S.; Hsu, K.; Bolvin, D.; Ralph, M.F. PERSIANN Dynamic Infrared–Rain Rate (PDIR-Now): A Near-Real-Time, Quasi-Global Satellite Precipitation Dataset. J. Hydrometeorol. 2020, 21, 2893. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Rajagopal, M. SHARPEN: A Scheme to Restore the Distribution of Averaged Precipitation Fields. J. Hydrometeorol. 2020, 22, 2105–2116. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Joyce, R.; Kelley, O.A.; Nelkin, E.J.; Tan, J.; Watters, D.C.; West, B.J. Integrated Multi-SatellitE Retrievals for GPM (IMERG) Technical Documentation. 2023; NASA/GSFC Code 612, 97p. Available online: https://gpm.nasa.gov/sites/default/files/2023-07/IMERG_TechnicalDocumentation_final_230713.pdf (accessed on 2 October 2024).
- Wang, Y.; You, Y.; Kulie, M. Global Virga Precipitation Distribution Derived From Three Spaceborne Radars and Its Contribution to the False Radiometer Precipitation Detection. Geophys. Res. Lett. 2018, 45, 4446–4455. [Google Scholar] [CrossRef]
- Fan, N.; Lin, X.; Guo, H. An Analysis for the Applicability of Global Precipitation Measurement Mission (GPM) IMERG Precipitation Data in Typhoons. Atmosphere 2023, 14, 1224. [Google Scholar] [CrossRef]
- Bartuska, E.; Beighley, R.E. Assessing Precipitation Event Characteristics throughout North Carolina Derived from GPM IMERG Data Products. Front. Water 2024, 6, 1296586. [Google Scholar] [CrossRef]
- Chen, M.; Nabih, S.; Brauer, N.S.; Gao, S.; Gourley, J.J.; Hong, Z.; Kolar, R.L.; Hong, Y. Can Remote Sensing Technologies Capture the Extreme Precipitation Event and Its Cascading Hydrological Response? A Case Study of Hurricane Harvey Using EF5 Modeling Framework. Remote Sens. 2019, 12, 445. [Google Scholar] [CrossRef]
- Shi, J.; Yuan, F.; Shi, C.; Zhao, C.; Zhang, L.; Ren, L.; Zhu, Y.; Jiang, S.; Liu, Y. Statistical Evaluation of the Latest GPM-Era IMERG and GSMaP Satellite Precipitation Products in the Yellow River Source Region. Water 2020, 12, 1006. [Google Scholar] [CrossRef]
- Derin, Y.; Kirstetter, P.-E.; Brauer, N.; Gourley, J.J.; Wang, J. Evaluation of IMERG Satellite Precipitation over the Land–Coast–Ocean Continuum. Part II: Quantification. J. Hydrometeorol. 2022, 23, 1297–1314. [Google Scholar] [CrossRef]
- Sun, W.; Sun, Y.; Li, X.; Wang, T.; Wang, Y.; Qiu, Q.; Deng, Z. Evaluation and Correction of GPM IMERG Precipitation Products over the Capital Circle in Northeast China at Multiple Spatiotemporal Scales. Adv. Meteorol. 2018, 2018, 4714173. [Google Scholar] [CrossRef]
- Guo, H.; Tian, Y.; Li, J.; Guo, C.; Meng, X.; Wang, W.; De Maeyer, P. Has IMERG_V07 Improved the Precision of Precipitation Retrieval in Mainland China Compared to IMERG_V06? Remote Sens. 2024, 16, 2671. [Google Scholar] [CrossRef]
- Lyu, X.; Li, Z.; Li, X. Evaluation of GPM IMERG Satellite Precipitation Products in Event-Based Flood Modeling over the Sunshui River Basin in Southwestern China. Remote Sens. 2024, 16, 2333. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Gao, L.; Zhong, Y.; Peng, X. Comparison of GPM IMERG Version 06 Final Run Products and Its Latest Version 07 Precipitation Products across Scales: Similarities, Differences and Improvements. Remote Sens. 2023, 15, 5622. [Google Scholar] [CrossRef]
- Zhu, S.; Li, Z.; Chen, M.; Wen, Y.; Gao, S.; Zhang, J.; Wang, J.; Nan, Y.; Ferraro, S.C.; Tsoodle, T.E.; et al. How Has the Latest IMERG V07 Improved the Precipitation Estimates and Hydrologic Utility over CONUS against IMERG V06? J. Hydrol. 2024, 645, 132257. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef]
- Zhou, Y.; Nelson, K.; Mohr, K.I.; Huffman, G.J.; Levy, R.; Grecu, M. A Spatial-Temporal Extreme Precipitation Database from GPM IMERG. J. Geophys. Res. Atmos. 2019, 124, 10344–10363. [Google Scholar] [CrossRef]
- Kehoe, J.; Raman, S.; Boyles, R. Characteristics of Landfalling Tropical Cyclones in North Carolina. Mar. Geod. 2010, 33, 394–411. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Easterling, D.R.; Ballinger, A.; Bililign, S.; Champion, S.M.; Corbett, D.R.; Dello, K.D.; Dissen, J.; Lackmann, G.M.; Luettich, R.A., Jr.; et al. North Carolina Climate Science Report. North Carolina Institute for Climate Studies. 2020. Available online: https://ncics.org/wp-content/uploads/2020/10/NC_Climate_Science_Report_Findings_ExecSummary_Final_revised_September2020.pdf (accessed on 15 October 2024).
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmos. Ocean Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Pendergrass, A.G. What Precipitation Is Extreme? Science 2018, 360, 1072–1073. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Wang, J.; Yu, X.; Li, Y.; Yan, D.; Jian, S. Definition of Extreme Rainfall Events and Design of Rainfall Based on the Copula Function. Water Resour. Manag. 2022, 36, 3759–3778. [Google Scholar] [CrossRef]
- Gimeno, L.; Sorí, R.; Vázquez, M.; Stojanovic, M.; Algarra, I.; Eiras-Barca, J.; Gimeno-Sotelo, L.; Nieto, R. Extreme Precipitation Events. WIREs Water 2022, 9, e1611. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 6km SIN Grid V061 [Data Set]; NASA Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [CrossRef]
- Fenneman, N.M.; Johnson, D.W. Physiographic Divisions of the Conterminous U. S.; U.S. Geologic Survey: Reston, VA, USA, 2023. [CrossRef]
- Bonnin, G.M.; Martin, D.; Lin, B.; Parzybok, T.; Yekta, M.; Riley, D. NOAA Atlas 14 Precipitation-Frequency Atlas of the United States; U.S. Department of Commerce: Silver Spring, MD, USA, 2004. Available online: https://www.weather.gov/media/owp/oh/hdsc/docs/Atlas14_Volume2.pdf (accessed on 5 May 2025).
- do Nascimento, A.C.L.; Galvani, E.; Gobo, J.P.A.; Wollmann, C.A. Comparison between Air Temperature and Land Surface Temperature for the City of São Paulo, Brazil. Atmosphere 2022, 13, 491. [Google Scholar] [CrossRef]
- Naserikia, M.; Hart, M.A.; Nazarian, N.; Bechtel, B.; Lipson, M.; Nice, K.A. Land Surface and Air Temperature Dynamics: The Role of Urban Form and Seasonality. Sci. Total Environ. 2023, 905, 167306. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, J. Extreme Rainfall and Flooding from Hurricane Florence. Trop. Cyclone Res. Rev. 2020, 9, 172–177. [Google Scholar] [CrossRef]
- Roberson, M.W.; Bell, A.E.; Roberson, L.; Walker, T.A. Geospatial Analytics of Hurricane Florence Flooding Effects Using Overhead Imagery. In Proceedings of the Geospatial Informatics IX, Baltimore, MD, USA, 15–16 April 2019; Palaniappan, K., Seetharaman, G., Doucette, P.J., Eds.; SPIE: Bellingham, WA, USA, 2019; p. 8. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Champion, S.M. An Assessment of Rainfall from Hurricanes Harvey and Florence Relative to Other Extremely Wet Storms in the United States. Geophys. Res. Lett. 2019, 46, 13500–13506. [Google Scholar] [CrossRef]
- Dao, V.; Arellano, C.J.; Nguyen, P.; Almutlaq, F.; Hsu, K.; Sorooshian, S. Bias Correction of Satellite Precipitation Estimation Using Deep Neural Networks and Topographic Information Over the Western U.S. J. Geophys. Res. Atmos. 2025, 130, e2024JD042181. [Google Scholar] [CrossRef]
- Wang, X.; Xu, M.; Kang, S.; Li, X.; Han, H.; Li, X. Comprehensive Applicability Evaluation of Four Precipitation Products at Multiple Spatiotemporal Scales in Northwest China. J. Arid Land 2024, 16, 1232–1254. [Google Scholar] [CrossRef]
- Burkhartt, M. Hurricane Florence Hits Coast with Heavy Rain, Storm Surge. Citizen Times, 16 September 2018. Available online: https://www.citizen-times.com/picture-gallery/news/local/2018/09/11/incoming-hurricane-florence-forces-evacuations-and-preparation/1264595002/ (accessed on 22 April 2025).
- Bartuska, E. Quantifying Improvements in Derived Storm Events from Version 7 of GPM IMERG. 2025. Available online: http://www.hydroshare.org/resource/b34b47a11a744651878954e56129309a (accessed on 4 February 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartuska, E.; Beighley, R.E.; Pieper, K.J.; Jones, C.N. Quantifying Improvements in Derived Storm Events from Version 07 of GPM IMERG Early, Late, and Final Data Products over North Carolina. Remote Sens. 2025, 17, 2567. https://doi.org/10.3390/rs17152567
Bartuska E, Beighley RE, Pieper KJ, Jones CN. Quantifying Improvements in Derived Storm Events from Version 07 of GPM IMERG Early, Late, and Final Data Products over North Carolina. Remote Sensing. 2025; 17(15):2567. https://doi.org/10.3390/rs17152567
Chicago/Turabian StyleBartuska, Elizabeth, R. Edward Beighley, Kelsey J. Pieper, and C. Nathan Jones. 2025. "Quantifying Improvements in Derived Storm Events from Version 07 of GPM IMERG Early, Late, and Final Data Products over North Carolina" Remote Sensing 17, no. 15: 2567. https://doi.org/10.3390/rs17152567
APA StyleBartuska, E., Beighley, R. E., Pieper, K. J., & Jones, C. N. (2025). Quantifying Improvements in Derived Storm Events from Version 07 of GPM IMERG Early, Late, and Final Data Products over North Carolina. Remote Sensing, 17(15), 2567. https://doi.org/10.3390/rs17152567