Efficient Nyström-Based Unitary Single-Tone 2D DOA Estimation for URA Signals
Abstract
1. Introduction
Notation
2. Signal Model
3. Algorithm Development
3.1. The Nyström Approximation
3.2. The Unitary Estimation of DOA
3.3. Computational Complexity Analysis
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Wang, W.; Huang, Y.; Liu, S. Decoupled 2-D direction of arrival estimation in L-shaped array. IEEE Commun. Lett. 2017, 21, 1989–1992. [Google Scholar] [CrossRef]
- Jian, L.; Wang, X.; Shi, J.; Lan, X. Robust sparse bayesian learning scheme for DOA estimation with non-circular sources. Mathematics 2022, 10, 923. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, X.; Ding, L.; Jin, X.; Zhang, Q. DOA-estimation method based on improved spatial-smoothing technique. Mathematics 2024, 12, 45. [Google Scholar] [CrossRef]
- Cui, J.; Pan, W.; Wang, H. Direction of arrival estimation method based on eigenvalues and eigenvectors for coherent signals in impulsive noise. Mathematics 2024, 12, 832. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-Estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Wax, M.; Shan, T.-J.; Kailath, T. Spatio-temporal spectral analysis by eigenstructure methods. IEEE Trans. Acoust. Speech Signal Process. 1984, 32, 817–827. [Google Scholar] [CrossRef]
- Zoltowski, M.; Haardt, M.; Mathews, C. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary esprit. IEEE Trans. Signal Process. 1996, 44, 316–328. [Google Scholar] [CrossRef]
- Fernandez del Rio, J.; Catedra-Perez, M. The matrix pencil method for two-dimensional direction of arrival estimation employing an l-shaped array. IEEE Trans. Antennas Propag. 1997, 45, 1693–1694. [Google Scholar] [CrossRef]
- Yilmazer, N.; Sarkar, T.K. 2-D unitary matrix pencil method for efficient direction of arrival estimation. Digit. Signal Process. 2006, 16, 767–781. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Yan, S.; Hou, C. Single snapshot DOA estimation by compressive sampling. Appl. Acoust. 2013, 74, 926–930. [Google Scholar] [CrossRef]
- Wang, X.H.; Mao, X.P.; Zhang, N.T. Single-snapshot DOA estimation based on compressed sensing in pcr systems. In Proceedings of the 2014 IEEE Radar Conference, Cincinnati, OH, USA, 19–23 May 2014; pp. 528–531. [Google Scholar]
- Radich, B.; Buckley, K. Single-snapshot DOA estimation and source number detection. IEEE Signal Process. Lett. 1997, 4, 109–111. [Google Scholar] [CrossRef]
- Jagannath, R. Detection and estimation of multiple DoA targets with single snapshot measurements. In Proceedings of the 2019 National Conference on Communications (NCC), Bangalore, India, 20–23 February 2019; pp. 1–6. [Google Scholar]
- Chang, A.C.; Shen, C.C. Orthogonal projection DOA estimation with a single snapshot. IEICE Trans. Commun. 2013, E96-B, 1215–1217. [Google Scholar] [CrossRef]
- Yan, F.-G.; Jin, M.; Liu, S.; Qiao, X.-L. Real-valued MUSIC for efficient direction estimation with arbitrary array geometries. IEEE Trans. Signal Process. 2014, 62, 1548–1560. [Google Scholar] [CrossRef]
- Yan, F.-G.; Shuai, L.; Wang, J.; Shi, J.; Jin, M. Real-valued root-MUSIC for DOA estimation with reduced-dimension EVD/SVD computation. Signal Process. 2018, 152, 1–12. [Google Scholar] [CrossRef]
- Yu, H.; Qiu, X.; Zhang, X.; Wang, C.; Yang, G. Two-dimensional direction of arrival (DOA) estimation for rectangular array via compressive sensing trilinear model. Int. J. Antennas Propag. 2015, 2015, 297572. [Google Scholar] [CrossRef]
- Wang, C.; Hu, J.; Zhang, Q.; Yuan, X. An efficient 2D DOA estimation algorithm based on OMP for rectangular array. Electronics 2023, 12, 1634. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, X.; Feng, W.; Gong, J. Low-complexity 2D DOA estimation and self-calibration for uniform rectangle array with gain-phase error. Remote Sens. 2022, 14, 3064. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, F.; Shi, J.; He, J.; Truong, T.-K. 2D-DOA estimation for coherent signals via a polarized uniform rectangular array. IEEE Signal Process. Lett. 2023, 30, 893–897. [Google Scholar] [CrossRef]
- Liu, W. Super resolution DOA estimation based on deep neural network. Sci. Rep. 2020, 10, 19859. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Wang, F.; Zhang, C. Large-scale eigenvector approximation via Hilbert space embedding Nyström. Pattern Recognit. 2014, 48, 1904–1912. [Google Scholar] [CrossRef]
- Dakulagi, V. A new approach to achieve a trade-off between direction-of-arrival estimation performance and computational complexity. IEEE Commun. Lett. 2021, 25, 1183–1186. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, S.; Peng, G.; Yang, W. Improved eigenstructure-based 2D DOA estimation approaches based on Nyström approximation. China Commun. 2019, 16, 139–147. [Google Scholar]
- Qian, C.; Huang, L.; So, H.C.; Sidiropoulos, N.D.; Xie, J. Unitary PUMA algorithm for estimating the frequency of a complex sinusoid. IEEE Trans. Signal Process. 2015, 63, 5358–5368. [Google Scholar] [CrossRef]
- Haardt, M.; Nossek, J.A. Unitary ESPRIT: How to obtain increased estimation accuracy with a reduced computational burden. IEEE Trans. Signal Process. 1995, 43, 1232–1242. [Google Scholar] [CrossRef]
- Pesavento, M.; Gershman, A.B.; Haardt, M. Unitary root-MUSIC with a real-valued eigendecomposition: A theoretical and experimental performance study. IEEE Trans. Signal Process. 2000, 48, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- So, H.C.; Chan, F.K.W.; Lau, W.H.; Chan, C.F. An efficient approach for two-dimensional parameter estimation of a single-tone. IEEE Trans. Signal Process. 2010, 58, 1999–2009. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y. Low complexity root-music algorithm for angle estimation in monostatic mimo radar. Syst. Eng. Electron. 2017, 39, 2434–2440. [Google Scholar]
- Kuroda, T.; Kikuma, N.; Inagaki, N. DOA estimation and pairing method in 2D-ESPRIT using triangular antenna array. Electron. Commun. Japan Part I Commun. 2003, 86, 59–68. [Google Scholar] [CrossRef]
- Chan, A.Y.J.; Litva, J. MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array. IEE Proc.-Radar Sonar Navig. 1995, 142, 105–114. [Google Scholar] [CrossRef]
Step 1: Decompose X into two sub-matrices and to obtain as (7). |
Step 2: Compute the covariance matrices and with (12) and (13). |
Step 3: Perform EVD on to obtain and to construct in (17). |
Step 4: Use in step 3 to construct in (18) and obtain ; then, perform EVD on to obtain the subspace of the signal. |
Method | M = 18 | M = 24 | M = 28 |
---|---|---|---|
Proposed | 0.007 | 0.009 | 0.009 |
ESPRIT | 0.011 | 0.035 | 0.056 |
ML | 0.051 | 0.255 | 0.354 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Wang, K.; Luan, F. Efficient Nyström-Based Unitary Single-Tone 2D DOA Estimation for URA Signals. Mathematics 2025, 13, 2335. https://doi.org/10.3390/math13152335
Yuan L, Wang K, Luan F. Efficient Nyström-Based Unitary Single-Tone 2D DOA Estimation for URA Signals. Mathematics. 2025; 13(15):2335. https://doi.org/10.3390/math13152335
Chicago/Turabian StyleYuan, Liping, Ke Wang, and Fengkai Luan. 2025. "Efficient Nyström-Based Unitary Single-Tone 2D DOA Estimation for URA Signals" Mathematics 13, no. 15: 2335. https://doi.org/10.3390/math13152335
APA StyleYuan, L., Wang, K., & Luan, F. (2025). Efficient Nyström-Based Unitary Single-Tone 2D DOA Estimation for URA Signals. Mathematics, 13(15), 2335. https://doi.org/10.3390/math13152335