Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (351)

Search Parameters:
Keywords = equivalent exchange

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4209 KiB  
Article
Finite Element Analysis on Stress Development in Alveolar Bone During Insertion of a Novel Dental Implant Design
by Ning Zhang, Matthias Karl and Frank Wendler
Appl. Sci. 2025, 15(15), 8366; https://doi.org/10.3390/app15158366 - 28 Jul 2025
Viewed by 143
Abstract
A novel macrodesign for a dental implant characterized by a non-monotonic variation in core diameter and thread shape has been described to produce lower stress levels during insertion as compared to conventional tapered implants. Two finite element models resembling the lower left molar [...] Read more.
A novel macrodesign for a dental implant characterized by a non-monotonic variation in core diameter and thread shape has been described to produce lower stress levels during insertion as compared to conventional tapered implants. Two finite element models resembling the lower left molar region with preformed osteotomies were created based on a cone beam computed tomography (CBCT) scan. Insertion of both the novel and the conventional, tapered implant type were simulated using Standard for the Exchange of Product model data (STEP) files of both implant types. Von Mises equivalent stress, strain development, and amount of redistributed bone were recorded. The conventional implant demonstrated a continuous increase in strain values and reaction moment throughout the insertion process, with a brief decrease observed during the final stages. Stress levels in the cortical bone gradually increased, followed by a reduction when the implant was finally positioned subcrestally. The novel implant achieved the maximum magnitude of reaction moment and cortical bone strain values when the implant’s maximum core diameter passed the cortical bone layer at around 60% of the insertion process. Following a notable decrease, both the reaction moment and stress started to rise again as the implant penetrated further. The novel implant removed more bones in the trabecular region while the conventional implant predominantly interacted with cortical bone. Overall, the novel design seems to be less traumatic to alveolar bone during the insertion process and hence may lead to reduced levels of initial peri-implant bone loss. Full article
(This article belongs to the Special Issue Dental Implants and Restorations: Challenges and Prospects)
Show Figures

Figure 1

20 pages, 483 KiB  
Article
A Sea Horse Optimization-Based Approach for PEM Fuel Cell Model Parameter Estimation
by Ali Erduman, Gizem Hazar and Evrim Baran Aydın
Appl. Sci. 2025, 15(15), 8316; https://doi.org/10.3390/app15158316 - 26 Jul 2025
Viewed by 275
Abstract
This study aims to determine the model parameters of proton exchange membrane fuel cells (PEMFC) by employing the Sea Horse Optimization (SHO) algorithm, a novel metaheuristic approach inspired by natural behaviors. Although conventional algorithms in the literature have achieved considerable success in parametric [...] Read more.
This study aims to determine the model parameters of proton exchange membrane fuel cells (PEMFC) by employing the Sea Horse Optimization (SHO) algorithm, a novel metaheuristic approach inspired by natural behaviors. Although conventional algorithms in the literature have achieved considerable success in parametric modeling accuracy, many of them suffer from inherent drawbacks, such as premature convergence and entrapment in local minima. The SHO algorithm, with its adaptive and dynamic nature, is designed to overcome these limitations. To further evaluate its performance, a detailed parametric sensitivity analysis is conducted on SHO-specific control parameters. In this work, experimental polarization data from a Ballard Mark V PEMFC is used as a reference to estimate the equivalent circuit model parameters ϵ1, ϵ2, ϵ3, ϵ4, β, λ, Rc. The SHO algorithm achieved a mean absolute error (MAE) of 0.001079 and a coefficient of determination (R2) of 0.999791, with a model-to-experiment fit ratio of 99.92%. Compared to similar studies reported in the literature, the results indicate that the SHO algorithm offers competitive performance. Moreover, the average convergence time is recorded as 1.74 s for 5000 iteration, highlighting the algorithm’s rapid convergence and low computational cost. Overall, the SHO algorithm is demonstrated to be an efficient, robust, and promising alternative to conventional methods for parameter identification in PEMFC modeling. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

23 pages, 3140 KiB  
Article
Socioeconomic and Environmental Dimensions of Agriculture, Livestock, and Fisheries: A Network Study on Carbon and Water Footprints in Global Food Trade
by Murilo Mazzotti Silvestrini, Thiago Joel Angrizanes Rossi and Flavia Mori Sarti
Standards 2025, 5(3), 19; https://doi.org/10.3390/standards5030019 - 25 Jul 2025
Viewed by 180
Abstract
Agriculture, livestock, and fisheries significantly impact socioeconomic, environmental, and health dimensions at global level, ensuring food supply for growing populations whilst promoting economic welfare through international trade, employment, and income. Considering that bilateral food exchanges between countries represent exchanges of natural resources involved [...] Read more.
Agriculture, livestock, and fisheries significantly impact socioeconomic, environmental, and health dimensions at global level, ensuring food supply for growing populations whilst promoting economic welfare through international trade, employment, and income. Considering that bilateral food exchanges between countries represent exchanges of natural resources involved in food production (i.e., food imports are equivalent to savings of natural resources), the purpose of the study is to investigate the evolution of carbon and water footprints corresponding to the global food trade networks between 1986 and 2020. The research aims to identify potential associations between carbon and water footprints embedded in food trade and countries’ economic welfare. Complex network analysis was used to map countries’ positions within annual food trade networks, and countries’ metrics within networks were used to identify connections between participation in global trade of carbon and water footprints and economic welfare. The findings of the study show an increase in carbon and water footprints linked to global food exchanges between countries during the period. Furthermore, a country’s centrality within the network was linked to economic welfare, showing that countries with higher imports of carbon and water through global food trade derive economic benefits from participating in global trade. Global efforts towards transformations of food systems should prioritize sustainable development standards to ensure continued access to healthy sustainable diets for populations worldwide. Full article
(This article belongs to the Special Issue Sustainable Development Standards)
Show Figures

Figure 1

18 pages, 9956 KiB  
Article
Hydrogen Storage Vessel for a Proton-Exchange Membrane (PEM) Fuel Cell Auxiliary Power Unit for Commercial Aircraft
by Anto Nickhil Antony Ramesh, Aliyu M. Aliyu, Nick Tucker and Ibrahim M. Albayati
Appl. Sci. 2025, 15(14), 8006; https://doi.org/10.3390/app15148006 - 18 Jul 2025
Viewed by 294
Abstract
Approximately 20% of emissions from air travel are attributed to the auxiliary power units (APUs) carried in commercial aircraft. This paper proposes to reduce greenhouse gas emissions in international air transport by adopting proton-exchange membrane (PEM) fuel cells to replace APUs in commercial [...] Read more.
Approximately 20% of emissions from air travel are attributed to the auxiliary power units (APUs) carried in commercial aircraft. This paper proposes to reduce greenhouse gas emissions in international air transport by adopting proton-exchange membrane (PEM) fuel cells to replace APUs in commercial aircraft: we consider the design of three compressed hydrogen storage vessels made of 304 stainless steel, 6061-T6 aluminium, and Grade 5 (Ti-6Al-4V) titanium and capable of delivering 440 kW—enough for a PEM fuel cell for a Boeing 777. Complete structural analyses for pressures from 35 MPa to 70 MPa and wall thicknesses of 25, 50, 100, and 150 mm are used to determine the optimal material for aviation applications. Key factors such as deformation, safety factors, and Von Mises equivalent stress are evaluated to ensure structural integrity under a range of operating conditions. In addition, CO2 emissions from a conventional 440 kW gas turbine APU and an equivalent PEM fuel cell are compared. This study provides insights into optimal material selection for compressed hydrogen storage vessels, emphasising safety, reliability, cost, and weight reduction. Ultimately, this research aims to facilitate the adoption of fuel cell technology in aviation, contributing to greenhouse emissions reduction and hence sustainable air transport. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

16 pages, 2441 KiB  
Article
Phosphonium Salt-Functionalized β-Cyclodextrin Film for Ultrasensitive and Selective Electrochemical Impedance Spectroscopy Detection of Perchlorate in Drinking Water
by Zeineb Baatout, Achref Jebnouni, Nawfel Sakly, Safa Teka, Nuzaiha Mohamed, Sayda Osman, Raoudha Soury, Mabrouka El Oudi, Salman Hamdan Alsaqri, Nejmeddine Smida Jaballah and Mustapha Majdoub
Polymers 2025, 17(14), 1937; https://doi.org/10.3390/polym17141937 - 15 Jul 2025
Viewed by 377
Abstract
This work represents the first use of a phosphonium salt-functionalized β-Cyclodextrin polymer (β-CDP) as a highly selective sensing membrane for monitoring the safety of drinking water against perchlorate ions (ClO4) using electrochemical impedance spectroscopy (EIS). Structural confirmation via 1H [...] Read more.
This work represents the first use of a phosphonium salt-functionalized β-Cyclodextrin polymer (β-CDP) as a highly selective sensing membrane for monitoring the safety of drinking water against perchlorate ions (ClO4) using electrochemical impedance spectroscopy (EIS). Structural confirmation via 1H NMR, 13C NMR, 31P NMR, and FT-IR spectroscopies combined with AFM and contact angle measurements demonstrate how the enhanced solubility of modified cyclodextrin improves thin film quality. The innovation lies in the synergistic combination of two detection mechanisms: the “Host-Guest” inclusion in the cyclodextrin cavity and anionic exchange between the bromide ions of the phosphonium groups and perchlorate anions. Under optimized functionalization conditions, EIS reveals high sensitivity and selectivity, achieving a record-low detection limit (LOD) of ~10−12 M and a wide linear range of detection (10−11 M–10−4 M). Sensing mechanisms at the functionalized transducer interfaces are examined through numerical fitting of Cole-Cole impedance spectra via a single relaxation equivalent circuit. Real water sample analysis confirms the sensor’s practical applicability, with recoveries between 96.9% and 109.8% and RSDs of 2.4–4.8%. Finally, a comparative study with reported membrane sensors shows that β-CDP offers superior performance, wider range, higher sensitivity, lower LOD, and simpler synthesis. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Figure 1

32 pages, 2768 KiB  
Article
A Comprehensive Simplified Algorithm for Heat Transfer Modeling of Medium-Deep Borehole Heat Exchangers Considering Soil Stratification and Geothermal Gradient
by Boyu Li, Fei Lei and Zibo Shen
Energies 2025, 18(14), 3716; https://doi.org/10.3390/en18143716 - 14 Jul 2025
Viewed by 209
Abstract
Medium-deep borehole heat exchanger (BHE) systems represent an emerging form of ground source heat pump technology. Their heat transfer process is significantly influenced by geothermal gradient and soil stratification, typically simulated using segmented finite line source (SFLS) models. However, this approach involves computationally [...] Read more.
Medium-deep borehole heat exchanger (BHE) systems represent an emerging form of ground source heat pump technology. Their heat transfer process is significantly influenced by geothermal gradient and soil stratification, typically simulated using segmented finite line source (SFLS) models. However, this approach involves computationally intensive procedures that hinder practical engineering implementation. Building upon an SFLS model adapted for complex geological conditions, this study proposes a comprehensive simplified algorithm: (1) For soil stratification: A geothermally-weighted thermal conductivity method converts layered heterogeneous media into an equivalent homogeneous medium; (2) For geothermal gradient: A temperature correction method establishes fluid temperatures under geothermal gradient by superimposing correction terms onto uniform-temperature model results (g-function model). Validated through two engineering case studies, this integrated algorithm provides a straightforward technical tool for heat transfer calculations in BHE systems. Full article
Show Figures

Figure 1

20 pages, 1055 KiB  
Article
Reduction-Driven Mobilization of Structural Fe in Clay Minerals with High Fe Content
by Anke Neumann, Luiza Notini, W. A. P. Jeewantha Premaratne, Drew E. Latta and Michelle M. Scherer
Minerals 2025, 15(7), 713; https://doi.org/10.3390/min15070713 - 4 Jul 2025
Viewed by 338
Abstract
Clay minerals contain significant amounts of Fe in their alumosilicate framework, and this structural Fe can be reduced and re-oxidized, constituting a potentially renewable source of reduction equivalents in sedimentary environments. However, dissolution and/or clay mineral transformations during microbial Fe reduction contradict this [...] Read more.
Clay minerals contain significant amounts of Fe in their alumosilicate framework, and this structural Fe can be reduced and re-oxidized, constituting a potentially renewable source of reduction equivalents in sedimentary environments. However, dissolution and/or clay mineral transformations during microbial Fe reduction contradict this concept. Here, we investigate how Fe reduction and re-oxidation affect the propensity of Fe to be released from the clay mineral structure and use selective sequential extractions in combination with Mössbauer spectroscopy. Negligible amounts of Fe were released in the sequential extraction of high Fe content clay minerals NAu-1 and NAu-2. Once aqueous Fe(II) was added as a reductant, the extraction procedure recovered the initially added Fe amount and up to 30% of the Fe from the clay mineral structure as both Fe(II) and Fe(III). Similar extents of Fe mobilization were found for clay minerals partly reduced (7%–20%) with dithionite, suggesting that mobilization was reduction-induced and independent of the source of reduction equivalents (Fe(II), dithionite). Although higher Fe reduction extents mobilized more structural Fe, i.e., >90% in fully reduced clay minerals, re-oxidation largely reverted the reduction-induced Fe mobilization in clay minerals. Our finding of reduction-driven Fe mobilization provides a plausible explanation for conflicting reports on Fe release from clay minerals and how extensive Fe atom exchange between aqueous and clay mineral Fe occurs. Full article
(This article belongs to the Special Issue Redox Reactivity of Iron Minerals in the Geosphere, 2nd Edition)
Show Figures

Figure 1

24 pages, 1500 KiB  
Article
Coupling Relationship Between Transportation Corridors and Ecosystem Service Value Realization in Giant Panda National Park
by Lulin Liu, Renna Du, Qian Mao, Gaoru Zhu and Hong Zhong
Land 2025, 14(7), 1385; https://doi.org/10.3390/land14071385 - 1 Jul 2025
Viewed by 257
Abstract
As critical zones for ecological conservation, national parks necessitate integrated management of transportation corridors (TCs) and ecosystem service value (ESV) to advance ecological civilisation. This study investigates the TC-ESV mutual construction mechanism in the Giant Panda National Park (GPNP). This research employs the [...] Read more.
As critical zones for ecological conservation, national parks necessitate integrated management of transportation corridors (TCs) and ecosystem service value (ESV) to advance ecological civilisation. This study investigates the TC-ESV mutual construction mechanism in the Giant Panda National Park (GPNP). This research employs the TOPSIS method to measure the development level of TCs, applies the equivalent factor method to calculate the ESV, and uses a coupling coordination model and local spatial autocorrelation analysis to evaluate their interaction patterns. The results show that TC development in the GPNP has been increasing, accompanied by a significant rise in ESV. A coupling coordination relationship exists between TCs and ESV, with notable spatial differentiation. TCs not only increase the market ESV by reducing distribution costs and facilitating the outward flow of ESV, they also improve the accessibility of national parks, promote ecotourism and cultural services, facilitate the movement of people and the exchange of knowledge, and enhance the ability of local populations and migrants to realise the ESV in the long term. However, challenges persist, including ESV conversion difficulties and TC construction’s potential impacts on ESV realisation. Therefore, we propose optimised green transport corridors and differentiated ecological compensation mechanisms, and by analysing the interaction between them, the innovation of this paper is to provide an innovative framework for sustainable spatial governance of ESV conversion and TC development in national parks, enriching the interdisciplinary approach. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

14 pages, 1884 KiB  
Article
Study of Radon Radiation in the Area of the Akchatau Polymetallic Mine, Republic of Kazakhstan
by Yuriy Pak, Dmitriy Pak, Vladimir Matonin, Diana Ibragimova, Pavel Timoshenko, Yuriy Barkov, Anar Tebayeva and Pavel Medvedev
Atmosphere 2025, 16(7), 769; https://doi.org/10.3390/atmos16070769 - 23 Jun 2025
Viewed by 297
Abstract
The data on the volumetric radon activity of the Akchatau territory were systematized in the context of radioecological safety. Radon (Rn222 and Rn220) and indoor radon (isotopes Po, Pb, and Bi) make a significant contribution to radon radiation in residential [...] Read more.
The data on the volumetric radon activity of the Akchatau territory were systematized in the context of radioecological safety. Radon (Rn222 and Rn220) and indoor radon (isotopes Po, Pb, and Bi) make a significant contribution to radon radiation in residential and industrial premises. Increased radon concentration in a number of areas is associated with the Akchatau tungsten–molybdenum mine. The source of radon in geological terms is acid leucocratic granites in the northwestern and southeastern parts of the studied territory. Seasonal assessment of radon radiation was carried out using modern devices “Alfarad Plus” and “Ramon-Radon”. Frequency analysis of the average annual equivalent equilibrium concentration (EEC) in 181 premises showed that only in 47.5% of the premises does the volumetric radon activity not exceed the current standards (200 Bq/m3). Differentiated values of radon concentration were obtained in cases where daily and seasonal observations were carried out. In 43.1% of premises, the effective dose varies from 6.6 mSv/year to 33 mSv/year, and for 9.4% of premises, from 33 mSv/year to 680 mSv/year. The increased radon concentration is caused by high exhalation from the soil surface, the radioactivity of building materials, and low air exchange in the surveyed premises. In the northwestern part of Akchatau, anomalous zones were found where the exposure dose rate of gamma radiation exceeds 0.6 mkSv/hour. An objective assessment of radon largely depends on a number of factors that take into account the geological, technical, atmospheric, and climatic conditions of the region. Therefore, when planning an optimal radon rehabilitation strategy, it is necessary to take the following factors into account: the design features of residential premises and socio-economic conditions. Practical recommendations are given for radiation-ecological and hygienic monitoring of radon safety levels in the environment to reduce effective doses on the population. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

33 pages, 1265 KiB  
Article
Sizing of Fuel Distribution and Thermopropulsion Systems for Liquid-Hydrogen-Powered Aircraft Using an MBSE Approach
by Abdoulaye Sarr, Joël Jézégou and Pierre de Saqui-Sannes
Aerospace 2025, 12(6), 554; https://doi.org/10.3390/aerospace12060554 - 17 Jun 2025
Viewed by 708
Abstract
Hydrogen-powered aircraft constitute a transformative innovation in aviation, motivated by the imperative for sustainable and environmentally friendly transportation solutions. This paper aims to concentrate on the design of hydrogen powertrains employing a system approach to propose representative design models for distribution and propulsion [...] Read more.
Hydrogen-powered aircraft constitute a transformative innovation in aviation, motivated by the imperative for sustainable and environmentally friendly transportation solutions. This paper aims to concentrate on the design of hydrogen powertrains employing a system approach to propose representative design models for distribution and propulsion systems. Initially, the requirements for powertrain design are formalized, and a use-case-driven analysis is conducted to determine the functional and physical architectures. Subsequently, for each component pertinent to preliminary design, an analytical model is proposed for multidisciplinary analysis and optimization for powertrain sizing. A double-wall pipe model, incorporating foam and vacuum multi-layer insulation, was developed. The internal and outer pipes sizing were performed in accordance with standards for hydrogen piping design. Valves sizing is also considered in the present study, following current standards and using data available in the literature. Furthermore, models for booster pumps to compensate pressure drop and high-pressure pumps to elevate pressure at the combustion chamber entrance are proposed. Heat exchanger and evaporator models are also included and connected to a burning hydrogen engine in the sizing process. An optimal liner pipe diameter was identified, which minimizes distribution systems weight. We also expect a reduction in engine length and weight while maintaining equivalent thrust. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 2085 KiB  
Article
Steady-State Model Enabled Dynamic PEMFC Performance Degradation Prediction via Recurrent Neural Network
by Qiang Liu, Weihong Zang, Wentao Zhang, Yang Zhang, Yuqi Tong and Yanbiao Feng
Energies 2025, 18(10), 2665; https://doi.org/10.3390/en18102665 - 21 May 2025
Viewed by 453
Abstract
Proton exchange membrane fuel cells (PEMFC), distinguished by rapid refueling capability and zero tailpipe emissions, have emerged as a transformative energy conversion technology for automotive applications. Nevertheless, their widespread commercialization remains constrained by technical limitations mainly in operational longevity. Precise prognostics of performance [...] Read more.
Proton exchange membrane fuel cells (PEMFC), distinguished by rapid refueling capability and zero tailpipe emissions, have emerged as a transformative energy conversion technology for automotive applications. Nevertheless, their widespread commercialization remains constrained by technical limitations mainly in operational longevity. Precise prognostics of performance degradation could enable real-time optimization of operation, thereby extending service life. This investigation proposes a hybrid prognostic framework integrating steady-state modeling with dynamic condition. First, a refined semi-empirical steady-state model was developed. Model parameters’ identification was achieved using grey wolf optimizer. Subsequently, dynamic durability testing data underwent systematic preprocessing through a correlation-based screening protocol. The processed dataset, comprising model-calculated reference outputs under dynamic conditions synchronized with filtered operational parameters, served as inputs for a recurrent neural network (RNN). Comparative analysis of multiple RNN variants revealed that the hybrid methodology achieved superior prediction fidelity, demonstrating a root mean square error of 0.6228%. Notably, the integration of steady-state physics could reduce the RNN structural complexity while maintaining equivalent prediction accuracy. This model-informed data fusion approach establishes a novel paradigm for PEMFC lifetime assessment. The proposed methodology provides automakers with a computationally efficient framework for durability prediction and control optimization in vehicular fuel cell systems. Full article
(This article belongs to the Special Issue Advances in Fuel Cells: Materials, Technologies, and Applications)
Show Figures

Figure 1

41 pages, 5521 KiB  
Article
Integrated Approach to Ship Electrification Using Fuel Cells and an Ammonia Decomposition System
by Onur Yuksel, Eduardo Blanco-Davis, David Hitchmough, G Viknash Shagar, Andrew Spiteri, Maria Carmela Di Piazza, Marcello Pucci, Nikolaos Tsoulakos, Milad Armin and Jin Wang
J. Mar. Sci. Eng. 2025, 13(5), 977; https://doi.org/10.3390/jmse13050977 - 18 May 2025
Viewed by 820
Abstract
This study investigates the environmental and economic performance of integrating a proton exchange membrane fuel cell, battery systems, and an organic Rankine cycle-based waste heat recovery system for ship electrification. The analysis examines an onboard ammonia decomposition system for hydrogen production and ammonia [...] Read more.
This study investigates the environmental and economic performance of integrating a proton exchange membrane fuel cell, battery systems, and an organic Rankine cycle-based waste heat recovery system for ship electrification. The analysis examines an onboard ammonia decomposition system for hydrogen production and ammonia production pathways. Additionally, the study benchmarks the effectiveness of onboard ammonia decomposition against green hydrogen bunkering scenarios (H2-BS). The analysis is based on data collected over two years from a bulk carrier provided by Laskaridis Shipping Co., Ltd. The environmental analysis includes well-to-wake emissions calculations. At the same time, economic performance is assessed through levelised cost of energy (LCOE) computations for 2025 and 2040, factoring in different fuel and carbon price scenarios. Consequently, the analysis utilises the Complex Proportional Assessment method to compare configurations featuring various ammonia production pathways across economic cases. The results indicate that green and pink ammonia feedstocks achieve maximum equivalent carbon dioxide reductions in the electrification plant of up to 47.28% and 48.47%, respectively, compared to H2-BS and 95.56% and 95.66% compared to the base scenario. Ammonia decomposition systems prove more economically viable than H2-BS due to lower storage and fuel costs, leading to competitive LCOE values that improve under higher carbon pricing scenarios. Full article
(This article belongs to the Special Issue Marine Fuel Cell Technology: Latest Advances and Prospects)
Show Figures

Figure 1

21 pages, 2943 KiB  
Article
Microstructure and Microorganisms Alternation of Paddy Soil: Interplay of Biochar and Water-Saving Irrigation
by Jiazhen Hu, Shihong Yang, Wim M. Cornelis, Mairan Zhang, Qian Huang, Haonan Qiu, Suting Qi, Zewei Jiang, Yi Xu and Lili Zhu
Plants 2025, 14(10), 1498; https://doi.org/10.3390/plants14101498 - 16 May 2025
Viewed by 394
Abstract
Biochar application and controlled irrigation (CI) enhance water conservation, lower emissions, and increase crop yields. However, the synergistic effects on the relationship between paddy soil microstructure and microbiome remain poorly understood. This study investigates the impact of different irrigation regimes and biochar applications [...] Read more.
Biochar application and controlled irrigation (CI) enhance water conservation, lower emissions, and increase crop yields. However, the synergistic effects on the relationship between paddy soil microstructure and microbiome remain poorly understood. This study investigates the impact of different irrigation regimes and biochar applications on soil physicochemical properties, soil microstructure, and the composition and functions of soil microorganisms in paddy soil. The CA treatment (CI with 60 t/hm2 biochar) showed higher abundances of Mycobacteriaceae, Streptomycetaceae, Comamonadaceae, and Nocardioidaceae than the CK treatment (CI without biochar), which was attributed to two main factors. First, CA increased the pore throat equivalent radius (EqR), throat surface area (SAR), total throat number (TTN), volume fraction (VF), and connected porosity (CP) by 1.47–9.61%, 7.50–25.21%, 41.55–45.99%, 61.12–73.04%, and 46.36–93.75%, respectively, thereby expanding microbial habitats and providing refuges for microorganisms. Second, CA increased the cation exchange capacity (CEC), mean weight diameter (MWD), soil organic carbon (SOC), and total nitrogen (TN) by 22.14–25.06%, 42.24–56.61%, 22.98–56.5%, and 9.41–87.83%, respectively, reinforcing soil structural stability and carbon storage, which promoted microbial community diversity. FK (flood irrigation without biochar) showed no significant correlations with these environmental factors. Compared to CK soil metabolites at Level 2 and Level 3, FK exhibited higher levels of the citrate cycle, indicating that changes in water and oxygen environments due to CI reduced soil organic matter decomposition and carbon cycle. CA and CK strongly correlated with the soil microstructure (VF, CP, TTN, SAR, EqR), and CA notably enhanced soil metabolites related to the synthesis and degradation of ketone bodies, suggesting that biochar can mitigate the adverse metabolomic effects of CI. These results indicate that biochar application in CI paddy fields highlights the critical role of soil microstructure in microbial composition and function and better supports soil sustainability. Full article
Show Figures

Figure 1

19 pages, 1043 KiB  
Article
Optimization of Active Disturbance Rejection Controller for Distillation Process Based on Quantitative Feedback Theory
by Yinghao Ye, Yun Cheng, Feng Zhou and Guoping Lu
Processes 2025, 13(5), 1436; https://doi.org/10.3390/pr13051436 - 8 May 2025
Viewed by 406
Abstract
The continuously increasing requirements for product purity and heat exchange efficiency in distillation processes exacerbate the system’s nonlinearity, coupling effects, and uncertainties. To address these challenges, this research proposes an optimized design approach for multivariable active disturbance rejection control (ADRC) that integrates quantitative [...] Read more.
The continuously increasing requirements for product purity and heat exchange efficiency in distillation processes exacerbate the system’s nonlinearity, coupling effects, and uncertainties. To address these challenges, this research proposes an optimized design approach for multivariable active disturbance rejection control (ADRC) that integrates quantitative feedback theory (QFT). An extended state observer is first employed to estimate and compensate for coupling and uncertainties, thus enabling effective decoupling. Under a two-degree-of-freedom equivalent model, QFT performance boundaries are transformed into a fitness function, turning controller parameter tuning into a frequency-domain multi-objective optimization problem. An improved multi-objective grey wolf algorithm is then introduced to optimize the controller parameters. The proposed approach is verified in a toluene–methylcyclohexane (MCH) extractive distillation process and compared with proportional–integral (PI) control and model predictive control (MPC). The simulation results indicate that, under the same feed temperature disturbance, the ADRC–QFT strategy reduces the system settling time by over 67% and lowers the integral of absolute error (IAE) index by more than 53% compared with PI–QFT and MPC, while also exhibiting stronger robustness to model uncertainties. These findings suggest that the proposed method provides an effective solution for achieving high precision and robust control in complex coupled distillation processes. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

13 pages, 2270 KiB  
Article
Assessing the Validity and Reliability of the PNOE¯ for Measuring Cardiometabolic Outcomes During Walking Exercise
by Manny M. Y. Kwok, Shamay S. M. Ng, Jonathan Myers and Billy C. L. So
J. Funct. Morphol. Kinesiol. 2025, 10(2), 159; https://doi.org/10.3390/jfmk10020159 - 6 May 2025
Viewed by 516
Abstract
Background: The accuracy of measurement of cardiometabolic outcomes in terms of gaseous exchange and energy expenditure of individuals is crucial. The objective of this study was to compare the validity and reliability of the PNOE¯ in measuring cardiometabolic outcomes from the [...] Read more.
Background: The accuracy of measurement of cardiometabolic outcomes in terms of gaseous exchange and energy expenditure of individuals is crucial. The objective of this study was to compare the validity and reliability of the PNOE¯ in measuring cardiometabolic outcomes from the respiratory gaseous exchange of healthy individuals during treadmill walking exercise. Methods: A total of 21 healthy subjects (15 male and 6 female) aged 22.76 ± 3.85 years took part in this study. Oxygen uptake (VO2), carbon dioxide production (VCO2), respiratory exchange ratio (RER), metabolic equivalents (METs), tidal volume (VT), and energy expenditure (EE) were measured using the PNOE¯ and COSMED K5 portable systems during a twenty-eight-minute, four-stage incremental protocol, where speed increased from 1.7 mph to 4.2 mph with a 2% incline on a treadmill. Test–retest reliability was tested on separate days with trail repetition. Validity was evaluated by Bland–Altman plots, intraclass correlation coefficients (ICCs) and mean percentage difference. Results: ICCs showed that VCO2 was in the good range (0.75–0.90). The ICC of the RER from stages 1 to 3 of the incremental protocol and the VT from stages 2 to 4 of the incremental protocol showed good to excellent reliability. No clear trend was seen for VO2, VCO2, and EE datapoints with variations in speed. Pearson’s correlation coefficients were moderately high (r = 0.60–0.79) between VO2, VCO2, RER, METs, VT, and EE measured by the PNOE¯ and K5 systems. All subjects, except for a few cases in VT, were within the upper and lower 95% confidence intervals of the acceptable range of the Bland–Altman plots. Conclusions: The PNOE¯ system is a valid and reliable measure of cardiometabolic outcomes and is comparable to the COSMED K5 system. Full article
Show Figures

Figure 1

Back to TopTop