Socioeconomic and Environmental Dimensions of Agriculture, Livestock, and Fisheries: A Network Study on Carbon and Water Footprints in Global Food Trade
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Design
- The first dataset, used for the network analysis, was based on bilateral trade data of carbon and water footprints embedded within food items between pairs of countries. The data reflects the import perspective (i.e., the reporter country is the importer, and the partner country is the exporter), organized by year.
- The second dataset, used for the regression analysis, included demographic, socioeconomic, political, geographical, and trade characteristics of countries, including globalization indices and countries’ positions within trade networks related to carbon and water footprint exchanges, organized by year.
3.2. Data Sources
- 1.
- Food and Agriculture Organization (FAOSTAT);
- 2.
- World Bank:
- World Integrated Trade Solution (WITS);
- World Bank country and lending groups;
- World Development Indicators;
- 3.
- Su-EATABLE LIFE (SEL) database;
- 4.
- Konjunkturforschungsstelle Swiss Economic Institute (KOF);
- 5.
- Economic Complexity Observatory;
- 6.
- Atlas of Economic Complexity from the Growth Lab.
3.3. Variables
- Country of origin (exporter);
- Income level of the country of origin (exporter);
- Country of destination (importer);
- Income level of the country of destination (importer);
- Year of trade transaction;
- Trade flows of carbon (kg CO2 eq) or water (liters H2O) footprints within foods.
3.4. Network Analyses
3.5. Statistical Analyses
4. Results
4.1. Network Analyses
4.2. Statistical Analyses
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elsner, W.; Heinrich, T.; Schwardt, H. The Microeconomics of Complex Economies: Evolutionary, Institutional, Neoclassical, and Complexity Perspectives; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Benavides, P.T.; Diwekar, U.; Cabezas, H. Controllability of complex networks for sustainable system dynamics. J. Complex Netw. 2015, 3, 566–583. [Google Scholar] [CrossRef]
- Béné, C.; Prager, S.D.; Achicanoy, H.A.E.; Toro, P.A.; Lamotte, L.; Cedrez, C.B.; Mapes, B.R. Understanding food systems drivers: A critical review of the literature. Glob. Food Secur. 2019, 23, 149–159. [Google Scholar] [CrossRef]
- Jennings-Dobbs, E.M.; Forester, S.M.; Drewnowski, A. Visualizing data interoperability for food systems sustainability research—from spider webs to neural networks. Curr. Dev. Nutr. 2023, 7, 102006. [Google Scholar] [CrossRef] [PubMed]
- Silvestrini, M.M.; Smith, N.W.; Sarti, F.M. Evolution of global food trade network and its effects on population nutritional status. Curr. Res. Food Sci. 2023, 6, 100517. [Google Scholar] [CrossRef] [PubMed]
- Silvestrini, M.M.; Smith, N.W.; Fletcher, A.J.; McNabb, W.C.; Sarti, F.M. Complex network analysis and health implications of nutrient trade. Glob. Food Secur. 2024, 40, 100743. [Google Scholar] [CrossRef]
- Meadows, D.H.; Wright, D. Thinking in Systems: A Primer; Chelsea Green Publishing: New York, NY, USA, 2009. [Google Scholar]
- Estrada, E.; Knight, P.A. A First Course in Network Theory, 1st ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Cazcarro, I.; Schyns, J.F.; Arto, I.; Sanz, M.J. Nations’ water footprints and virtual water trade of wood products. Adv. Water Resour. 2022, 164, 104188. [Google Scholar] [CrossRef]
- Ye, Q.; Bruckner, M.; Wang, R.; Schyns, J.F.; Zhuo, L.; Yang, L.; Su, H.; Krol, M.S. A hybrid multi-regional input-output model of China: Integrating the physical agricultural biomass and food system into the monetary supply chain. Resour. Conserv. Recycl. 2022, 177, 105981. [Google Scholar] [CrossRef]
- Marchioni, D.M.; Carvalho, A.M.D.; Villar, B.S. Dietas sustentáveis e sistemas alimentares: Novos desafios da nutrição em saúde pública. Rev. USP 2021, 128, 61–76. [Google Scholar] [CrossRef]
- Steen-Olsen, K.; Weinzettel, J.; Cranston, G.; Ercin, A.E.; Hertwich, E.G. Carbon, land, and water footprint accounts for the European Union: Consumption, production, and displacements through international trade. Environ. Sci. Technol. 2012, 46, 10883–10891. [Google Scholar] [CrossRef] [PubMed]
- Weinzettel, J.; Wood, R. Environmental footprints of agriculture embodied in international trade: Sensitivity of harvested area footprint of Chinese exports. Ecol. Econ. 2018, 145, 323–330. [Google Scholar] [CrossRef]
- Bruckner, M.; Wood, R.; Moran, D.; Kuschnig, N.; Wieland, H.; Maus, V.; Börner, J. FABIO—The construction of the food and agriculture biomass input-output model. Environ. Sci. Technol. 2019, 53, 11302–11312. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Leontief, W.; Strout, A. Multiregional input-output analysis. In Structural Interdependence and Economic Development; Barna, T., Ed.; Palgrave Macmillan: London, UK, 1963. [Google Scholar]
- Jiang, Q.; Liao, H.; Ouyang, X.; Fu, Q.; He, X.; Wu, Y.; Wang, Z. Dynamic simulation of China’s water-grain-meat system and evaluation of its support capability based on water footprint theory. Int. J. Agric. Biol. Eng. 2023, 16, 270–282. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, R.; Han, H. Where has carbon footprint research gone? Ecol. Indic. 2021, 120, 106882. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Peters, G.P. Carbon footprint of nations: A global, trade-linked analysis. Environ. Sci. Technol. 2009, 43, 6414–6420. [Google Scholar] [CrossRef] [PubMed]
- Zhan-Ming, C.; Chen, G.Q. Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade. Ecol. Indic. 2013, 28, 142–149. [Google Scholar] [CrossRef]
- López, L.A.; Arce, G.; Kronenberg, T.; Rodrigues, J.F.D. Trade from resource-rich countries avoids the existence of a global pollution haven hypothesis. J. Clean. Prod. 2018, 175, 599–611. [Google Scholar] [CrossRef]
- D’Odorico, P.; Carr, J.A.; Laio, F.; Ridolfi, L.; Vandoni, S. Feeding humanity through global food trade. Earth’s Future 2014, 2, 458–469. [Google Scholar] [CrossRef]
- Puma, M.J.; Bose, S.; Chon, S.Y.; Cook, B.I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 2015, 10, 024007. [Google Scholar] [CrossRef]
- Fair, K.R.; Bauch, C.T.; Anand, M. Dynamics of the global wheat trade network and resilience to shocks. Sci. Rep. 2017, 7, 7177. [Google Scholar] [CrossRef] [PubMed]
- Torregiani, S.; Mangioni, G.; Puma, M.J.; Fagiolo, G. Identifying the community structure of the food-trade international multi-network. Environ. Res. Lett. 2018, 13, 054026. [Google Scholar] [CrossRef]
- Dupas, M.C.; Halloy, J.; Chatzimpiros, P. Time dynamics and invariant subnetwork structures in the world cereals trade network. PLoS ONE 2019, 14, e0216318. [Google Scholar] [CrossRef] [PubMed]
- Grassia, M.; Mangioni, G.; Schiavo, S.; Traverso, S. Insights into countries’ exposure and vulnerability to food trade shocks from network-based simulations. Sci. Rep. 2022, 12, 4644. [Google Scholar] [CrossRef] [PubMed]
- Ercsey-Ravasz, M.; Toroczkai, Z.; Lakner, Z.; Baranyi, J. Complexity of the international agro-food trade network and its impact on food safety. PLoS ONE 2012, 7, e37810. [Google Scholar] [CrossRef]
- Gephart, J.A.; Pace, M.L. Structure and evolution of the global seafood trade network. Environ. Res. Lett. 2015, 10, 125014. [Google Scholar] [CrossRef]
- Bentham, J.; Singh, G.M.; Danaei, G.; Green, R.; Lin, J.K.; Stevens, G.A.; Farzadfar, F.; E Bennett, J.; Di Cesare, M.; Dangour, A.D.; et al. Multidimensional characterization of global food supply from 1961 to 2013. Nat. Food 2020, 1, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dai, C. Evolution of global food trade patterns and its implications for food security based on complex network analysis. Foods 2021, 10, 2657. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.; Brinkley, C.; Ulimwengu, J. Connected and extracted: Understanding how centrality in the global wheat supply chain affects global hunger using a network approach. PLoS ONE 2022, 17, e0269891. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Vidmer, A. A comparative analysis of the predictive abilities of economic complexity metrics using international trade network. Complexity 2018, 1, 2825948. [Google Scholar] [CrossRef]
- Shutters, S.T.; Muneepeerakul, R. Agricultural trade networks and patterns of economic development. PLoS ONE 2012, 7, e39756. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Tan, Z.; Chen, M.; Zhao, L.; Yang, L.; Chen, S. Carbon footprint research based on input-output model—A global scientometric visualization analysis. Int. J. Environ. Res. Public Health 2022, 19, 11343. [Google Scholar] [CrossRef] [PubMed]
- Norde, M.M.; Porciuncula, L.; Garrido, G.; Nunes-Galbes, N.M.; Sarti, F.M.; Marchioni, D.M.L.; de Carvalho, A.M. Measuring food systems sustainability in heterogenous countries: The Brazilian multidimensional index updated version applicability. Sustain. Dev. 2023, 31, 91–107. [Google Scholar] [CrossRef]
- Statistics Division of the Food and Agriculture Organization (FAOSTAT). Food and Agriculture Data—Detailed Trade Matrix. 2024. Available online: https://www.fao.org/faostat/en/#data/TM (accessed on 2 May 2025).
- World Bank. World Integrated Trade Solution; World Bank: Washington, DC, USA, 2024; Available online: https://wits.worldbank.org/ (accessed on 2 May 2025).
- World Bank. World Bank Country and Lending Groups. 2023. Available online: https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html (accessed on 2 May 2025).
- Petersson, T.; Secondi, L.; Magnani, A.; Antonelli, M.; Dembska, K.; Valentini, R.; Varotto, A.; Castaldi, S. A multilevel carbon and water footprint dataset of food commodities. Sci. Data 2021, 8, 127. [Google Scholar] [CrossRef] [PubMed]
- World Bank. World Development Indicators. 2025. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 2 May 2025).
- Konjunkturforschungsstelle Swiss Economic Institute (KOF). KOF Globalization Index. 2023. Available online: https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-globalisation-index.html (accessed on 2 May 2025).
- Simoes, A.J.G.; Hidalgo, C.A. The Economic Complexity Observatory: An Analytical Tool for Understanding the Dynamics of Economic Development. In Scalable Integration of Analytics and Visualization, Proceedings of the 25th AAAI Conference on Artificial Intelligence; San Francisco, CA, USA, 7–18 August 2011, AAAI: Washington, DC, USA; Available online: https://oec.world/en/rankings/legacy/eci (accessed on 4 May 2025).
- Growth Lab. Atlas of Economic Complexity. 2024. Available online: https://atlas.hks.harvard.edu/rankings (accessed on 4 May 2025).
- Brandes, U. A faster algorithm for betweenness centrality. J. Math. Sociol. 2001, 25, 163–177. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 10, 10008. [Google Scholar] [CrossRef]
- Lambiotte, R.; Delvenne, J.-C.; Barahona, M. Random walks, Markov processes and the multiscale modular organization of complex networks. IEEE Trans. Netw. Sci. Eng. 2015, 1, 76–90. [Google Scholar] [CrossRef]
- Wilkins, A.S. To lag or not to lag? Re-evaluating the use of lagged dependent variables in regression analysis. Political Sci. Res. Methods 2018, 6, 393–411. [Google Scholar] [CrossRef]
- Yu, Y.; Qayyum, M. Impacts of financial openness on economic complexity: Cross-country evidence. Int. J. Financ. Econ. 2023, 28, 1514–1526. [Google Scholar] [CrossRef]
- Hung, N.T. Causal relationship between globalization, economic growth and CO2 emissions in Vietnam using Wavelet analysis. Energy Environ. 2023, 34, 2386–2412. [Google Scholar] [CrossRef]
- Neagu, O. The link between economic complexity and carbon emissions in the European Union countries: A model based on the environmental Kuznets curve (EKC) approach. Sustainability 2019, 11, 4753. [Google Scholar] [CrossRef]
- Neagu, O. Economic complexity and ecological footprint: Evidence from the most complex economies in the world. Sustainability 2020, 12, 9031. [Google Scholar] [CrossRef]
- Pata, U.K. Renewable and non-renewable energy consumption, economic complexity, CO2 emissions, and ecological footprint in the USA: Testing the EKC hypothesis with a structural break. Environ. Sci. Pollut. Res. 2020, 28, 846–861. [Google Scholar] [CrossRef] [PubMed]
- Romero, J.P.; Gramkow, C. Economic complexity and greenhouse gas emissions. World Dev. 2021, 139, 105317. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, S.; Shi, H. Analysis of the water-food-energy nexus and water competition based on a Bayesian network. Water Resour. Manag. 2022, 36, 3349–3366. [Google Scholar] [CrossRef]
- Usman, M.; Kousar, R.; Yaseen, M.; Makhdum, M.S.A. An empirical nexus between economic growth, energy utilization, trade policy, and ecological footprint: A continent-wise comparison in upper-middle-income countries. Environ. Sci. Pollut. Res. 2020, 27, 38995–39018. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Ahmed, Z.; Majeed, A.A.; Huang, B. An environmental impact assessment of economic complexity and energy consumption: Does institutional quality make a difference? Environ. Impact Assess. Rev. 2021, 89, 106603. [Google Scholar] [CrossRef]
- Rafei, M.; Esmaeili, P.; Balsalobre-Lorente, D. A step towards environmental mitigation: How do economic complexity and natural resources matter? Focusing on different institutional quality level countries. Resour. Policy 2022, 78, 102848. [Google Scholar] [CrossRef]
- Aluko, O.; Opoku, E.; Acheampong, A. Economic complexity and environmental degradation: Evidence from OECD countries. Bus. Strategy Environ. 2022, 32, 2767–2788. [Google Scholar] [CrossRef]
- Moran, D.; Wackernagel, M.; Kitzes, J.; Heumann, B.W.; Phan, D.; Goldfinger, S. Trading spaces: Calculating embodied ecological footprints in international trade using a product land use matrix (PLUM). Ecol. Econ. 2009, 68, 1938–1951. [Google Scholar] [CrossRef]
- Wiedmann, T.; Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 2018, 11, 314–321. [Google Scholar] [CrossRef]
- Rice, J. Ecological unequal exchange: International trade and uneven utilization of environmental space in the world system. Soc. Forces 2007, 85, 1369–1392. [Google Scholar] [CrossRef]
- Statistics Division of the Food and Agriculture Organization (FAOSTAT). Trade/Detailed Trade Matrix—Metadata. 2025. Available online: https://www.fao.org/faostat/en/#data/TM/metadata (accessed on 5 May 2025).
- Marshall, Q.; Fanzo, J.; Barrett, C.B.; Jones, A.D.; Herforth, A.; McLaren, R. Building a global food systems typology: A new tool for reducing complexity in food systems analysis. Front. Sustain. Food Syst. 2021, 5, 746512. [Google Scholar] [CrossRef]
- Doytch, N. The impact of foreign direct investment on the ecological footprints of nations. Environ. Sustain. Indic. 2020, 8, 100085. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Janssen, C.; Havlík, P.; Krisztin, T.; Baker, J.; Frank, S.; Hasegawa, T.; Leclère, D.; Ohrel, S.; Ragnauth, S.; Schmid, E.; et al. Global hunger and climate change adaptation through international trade. Nat. Clim. Change 2020, 10, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Geyik, Ö.; Hadjikakou, M.; Bryan, B.A. Climate-friendly and nutrition-sensitive interventions can close the global dietary nutrient gap while reducing GHG emissions. Nat. Food 2023, 4, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Nutrizio, M.; Dukić, J.; Sabljak, I.; Samardžija, A.; Fučkar, V.B.; Djekić, I.; Jambrak, A.R. Upcycling of food by-products and waste: Nonthermal green extractions and life cycle assessment approach. Sustainability 2024, 16, 9143. [Google Scholar] [CrossRef]
- Bhat, R.; Sharma, M.; Rätsep, R.; Malenica, D.; Jõgi, K. Challenges and prospects of tackling food loss and wastes in the circular economy context. In Sustainable Food Value Chain Development; Narula, S.A., Raj, S.P., Eds.; Springer: Singapore, 2023. [Google Scholar]
- Magliocca, N.R. Agent-based modeling for integrating human behavior into the food-energy-water nexus. Land 2020, 9, 519. [Google Scholar] [CrossRef]
- Irz, X.; Tapanainen, H.; Saarinen, M.; Salminen, J.; Sares-Jäske, L.; Valsta, L.M. Reducing the carbon footprint of diets across socio-demographic groups in Finland: A mathematical optimisation study. Public Health Nutr. 2024, 27, e98. [Google Scholar] [CrossRef] [PubMed]
- Conrad, Z.; Thorne-Lyman, A.L.; Wu, S.; DiStaso, C.; Korol, M.; Love, D.C. Are healthier diets more sustainable? A cross-sectional assessment of 8 diet quality indexes and 7 sustainability metrics. Am. J. Clin. Nutr. 2025, 121, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Conrad, Z.; DiStaso, C.; Korol, M.; Rose, D. Augmenting the national nutrition data system to promote diet sustainability analyses. Curr. Dev. Nutr. 2024, 8, 103793. [Google Scholar] [CrossRef] [PubMed]
- Ingrassia, M.; Altamore, L.; Columba, P.; Raffermati, S.; Lo Grasso, G.; Bacarella, S.; Chironi, S. Mediterranean diet, sustainability, and tourism—A study of the market’s demand and knowledge. Foods 2023, 12, 2463. [Google Scholar] [CrossRef] [PubMed]
- Miljkovic, D.; Shaik, S.; Miranda, S.; Barabanov, N.; Liogier, A. Globalisation and obesity. World Econ. 2015, 38, 1278–1294. [Google Scholar] [CrossRef]
- Conrad, Z.; Johnson, L.K.; Peters, C.J.; Jahns, L. Capacity of the US food system to accommodate improved diet quality: A biophysical model projecting to 2030. Curr. Dev. Nutr. 2018, 2, nzy007. [Google Scholar] [CrossRef] [PubMed]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision agriculture for crop and livestock farming—Brief review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef] [PubMed]
- Bunge, A.C.; Wood, A.; Halloran, A.; Gordon, L.J. A systematic scoping review of the sustainability of vertical farming, plant-based alternatives, food delivery services and blockchain in food systems. Nat. Food 2022, 3, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Eyinade, G.A.; Mushunje, A.; Yusuf, S.F.G. The willingness to consume organic food: A review. Food Agric. Immunol. 2021, 32, 78–104. [Google Scholar] [CrossRef]
- Stein, A.J.; Santini, F. The sustainability of ‘local’ food: A review for policy-makers. Rev. Agric. Food Environ. Stud. 2022, 103, 77–89. [Google Scholar] [CrossRef] [PubMed]
- van Bussel, L.M.; Kuijsten, A.; Mars, M.; van’t Veer, P. Consumers’ perceptions on food-related sustainability: A systematic review. J. Clean. Prod. 2022, 341, 130904. [Google Scholar] [CrossRef]
- Hoehnel, A.; Zannini, E.; Arendt, E.K. Targeted formulation of plant-based protein-foods: Supporting the food system’s transformation in the context of human health, environmental sustainability and consumer trends. Trends Food Sci. Technol. 2022, 128, 238–252. [Google Scholar] [CrossRef]
- Carey, C.N.; Paquette, M.; Sahye-Pudaruth, S.; Dadvar, A.; Dinh, D.; Khodabandehlou, K.; Liang, F.; Mishra, E.; Sidhu, M.; Brown, R.; et al. The environmental sustainability of plant-based dietary patterns: A scoping review. J. Nutr. 2023, 153, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Qaim, M.; Barrangou, R.; Ronald, P.C. Sustainability of animal-sourced foods and plant-based alternatives. Proc. Natl. Acad. Sci. USA 2024, 121, e2400495121. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.M.; Garcia, L.M.T.; Lourenço, B.H.; Verly Junior, E.; Carioca, A.A.F.; Jacob, M.C.M.; Gomes, S.M.; Sarti, F.M. Exploring the nexus between food systems and the global syndemic among children under five years of age through the complex systems approach. Int. J. Env. Res. Public Health 2024, 21, 893. [Google Scholar] [CrossRef] [PubMed]
Regression Analysis | N | μ | SD | Min | Max | |
---|---|---|---|---|---|---|
Population ages 0–14 years old | (%) | 7006 | 31.17 | 10.88 | 11.60 | 51.18 |
Population ages 15–64 years old | (%) | 7006 | 61.64 | 7.22 | 46.10 | 86.08 |
Population ages ≥ 65 years old | (%) | 7006 | 7.19 | 5.12 | 0.17 | 29.58 |
Population, male | (%) | 7006 | 50.04 | 2.73 | 45.11 | 76.61 |
Population, female | (%) | 7006 | 49.96 | 2.73 | 23.39 | 54.89 |
Urban population | (%) | 7006 | 56.00 | 24.13 | 5.13 | 100.00 |
Labor force unemployment | (%) | 3705 | 8.28 | 5.83 | 0.10 | 38.80 |
Life expectancy at birth | (years) | 6691 | 68.29 | 9.71 | 14.10 | 85.39 |
Fertility rate | (per woman) | 6695 | 3.24 | 1.72 | 0.79 | 8.79 |
GDP per capita, 2021 PPP | (ln) | 5829 | 9.31 | 1.21 | 6.22 | 12.07 |
Food dependency ratio | 4807 | 434.66 | 656.55 | 0.00 | 9637.45 | |
Indegree centrality for CWF | 6752 | 0.31 | 0.23 | 0.00 | 0.94 | |
Outdegree centrality for CWF | 6752 | 0.31 | 0.25 | 0.00 | 0.94 | |
Betweenness centrality for CWF | 6752 | 0.00 | 0.01 | 0.00 | 0.05 | |
Economic globalization de facto | 6400 | 54.64 | 17.49 | 6.75 | 98.85 | |
Economic globalization de jure | 6034 | 50.31 | 20.34 | 6.75 | 96.72 | |
Social globalization de facto | 6496 | 50.35 | 21.81 | 4.06 | 97.74 | |
Social globalization de jure | 6512 | 55.76 | 20.89 | 6.11 | 95.18 | |
Political globalization de facto | 6603 | 50.50 | 27.43 | 1.36 | 98.85 | |
Political globalization de jure | 6603 | 58.69 | 25.07 | 1.00 | 99.69 | |
Region | 7621 | 4.50 | 2.20 | 1.00 | 8.00 | |
Year | 7621 | - | - | 1986 | 2020 |
Metric | 1986 | 1990 | 2000 | 2010 | 2020 |
---|---|---|---|---|---|
Average degree | 21.796 | 22.196 | 47.557 | 55.545 | 62.447 |
Weighted degree for carbon | 0.253 | 0.228 | 0.558 | 0.773 | 1.036 |
Weighted degree for water | 420.568 | 405.195 | 857.171 | 1123.743 | 1481.105 |
Network diameter | 4.000 | 3.000 | 4.000 | 4.000 | 3.000 |
Density | 0.086 | 0.087 | 0.187 | 0.219 | 0.246 |
Modularity | 0.491 | 0.450 | 0.458 | 0.499 | 0.480 |
Average clustering coefficient | 0.477 | 0.548 | 0.579 | 0.591 | 0.620 |
Average path length | 1.714 | 1.645 | 1.695 | 1.691 | 1.636 |
Proportion of Trade Volume (%) | 1986 | 1990 | 2000 | 2010 | 2020 |
---|---|---|---|---|---|
Carbon footprint exports | |||||
High income | 68.87 | 67.93 | 66.67 | 63.87 | 59.26 |
Upper-middle income | 9.39 | 8.89 | 15.28 | 26.16 | 28.07 |
Lower-middle income | 12.99 | 17.43 | 10.12 | 9.09 | 12.05 |
Low income | 5.55 | 5.64 | 7.91 | 0.84 | 0.57 |
Undefined income level | 3.20 | 0.11 | 0.02 | 0.03 | 0.06 |
Carbon footprint imports | |||||
High income | 65.62 | 68.15 | 63.41 | 63.71 | 56.74 |
Upper-middle income | 11.25 | 13.66 | 13.95 | 25.61 | 29.30 |
Lower-middle income | 9.57 | 9.11 | 17.48 | 9.04 | 11.84 |
Low income | 3.25 | 9.08 | 5.16 | 1.62 | 1.92 |
Undefined income level | 10.31 | 0.00 | 0.00 | 0.02 | 0.20 |
Water footprint exports | |||||
High income | 56.42 | 56.29 | 56.94 | 54.99 | 50.75 |
Upper-middle income | 11.60 | 10.03 | 16.67 | 29.33 | 31.00 |
Lower-middle income | 19.05 | 23.16 | 12.50 | 13.60 | 16.68 |
Low income | 11.09 | 10.47 | 13.88 | 2.05 | 1.53 |
Undefined income level | 1.84 | 0.06 | 0.02 | 0.03 | 0.04 |
Water footprint imports | |||||
High income | 62.49 | 66.83 | 61.75 | 59.68 | 51.33 |
Upper-middle income | 10.81 | 11.24 | 13.73 | 28.76 | 32.37 |
Lower-middle income | 10.15 | 9.84 | 18.03 | 9.65 | 13.91 |
Low income | 4.11 | 12.09 | 6.49 | 1.89 | 2.20 |
Undefined income level | 12.44 | 0.00 | 0.00 | 0.02 | 0.20 |
Characteristics | 1990 | 2000 | 2010 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|
μ | SD | μ | SD | μ | SD | μ | SD | ||
Population ages 0–14 years old | (%) | 35.857 | 10.106 | 32.312 | 10.342 | 28.547 | 10.718 | 26.918 | 10.476 |
Population ages 15–64 years old | (%) | 58.253 | 6.892 | 60.986 | 6.814 | 63.813 | 7.211 | 63.767 | 6.264 |
Population ages ≥ 65 years old | (%) | 5.890 | 4.128 | 6.702 | 4.588 | 7.640 | 5.302 | 9.315 | 6.469 |
Population, male | (%) | 50.191 | 2.433 | 49.958 | 2.496 | 50.032 | 3.049 | 50.044 | 2.962 |
Population, female | (%) | 49.809 | 2.433 | 50.042 | 2.496 | 49.968 | 3.049 | 49.956 | 2.962 |
Urban population | (%) | 51.125 | 25.420 | 55.055 | 23.816 | 58.419 | 23.509 | 61.057 | 23.172 |
Labor force unemployment | (%) | 7.611 | 5.214 | 8.750 | 6.071 | 8.476 | 6.159 | 7.807 | 5.136 |
Life expectancy at birth | (yrs) | 64.405 | 10.187 | 67.116 | 9.813 | 70.452 | 8.824 | 72.179 | 7.522 |
Fertility rate | (pw) | 4.148 | 1.901 | 3.222 | 1.722 | 2.902 | 1.511 | 2.559 | 1.291 |
GDP per capita, 2021 PPP | (ln) | 8.999 | 1.214 | 9.161 | 1.224 | 9.446 | 1.189 | 9.537 | 1.149 |
Food dependency ratio | 300.179 | 441.760 | 399.237 | 601.989 | 430.212 | 669.730 | 439.880 | 602.435 | |
Indegree centrality for CWF | 0.185 | 0.128 | 0.302 | 0.215 | 0.348 | 0.239 | 0.413 | 0.271 | |
Outdegree centrality for CWF | 0.185 | 0.246 | 0.302 | 0.235 | 0.348 | 0.238 | 0.413 | 0.235 | |
Betweenness centrality for CWF | 0.002 | 0.004 | 0.003 | 0.006 | 0.003 | 0.005 | 0.003 | 0.005 | |
Economic globalization de facto | 47.330 | 17.707 | 54.858 | 16.181 | 58.397 | 16.696 | 58.196 | 17.267 | |
Economic globalization de jure | 39.810 | 18.239 | 51.615 | 21.989 | 55.292 | 18.723 | 56.053 | 19.200 | |
Social globalization de facto | 40.019 | 20.774 | 45.285 | 20.964 | 58.123 | 19.808 | 60.246 | 19.045 | |
Social globalization de jure | 42.901 | 20.045 | 52.568 | 20.117 | 63.845 | 17.878 | 67.270 | 16.675 | |
Political globalization de facto | 46.737 | 25.973 | 48.391 | 28.169 | 54.005 | 27.306 | 56.551 | 26.519 | |
Political globalization de jure | 39.855 | 19.196 | 57.937 | 23.320 | 66.931 | 23.191 | 70.387 | 22.552 |
GDP Per Capita, 2021 PPP (ln) § | t0 | t5 | t8 | ||||||
---|---|---|---|---|---|---|---|---|---|
β | SE | Sig. | β | SE | Sig. | β | SE | Sig. | |
Population ages 15–64 years old | 0.0283 | 0.0017 | *** | 0.0230 | 0.0026 | *** | 0.0228 | 0.0029 | *** |
Population, male | 0.0308 | 0.0029 | *** | 0.0374 | 0.0046 | *** | 0.0416 | 0.0051 | *** |
Urban population | 0.0089 | 0.0004 | *** | 0.0093 | 0.0007 | *** | 0.0096 | 0.0008 | *** |
Labor force unemployment | −0.0072 | 0.0011 | *** | −0.0067 | 0.0017 | *** | −0.0054 | 0.0019 | ** |
Life expectancy at birth | 0.0111 | 0.0022 | *** | 0.0131 | 0.0034 | *** | 0.0166 | 0.0037 | *** |
Food dependency ratio | −0.0002 | 0.0000 | *** | −0.0002 | 0.0000 | *** | −0.0002 | 0.0000 | *** |
Indegree centrality for CWF | 0.1222 | 0.0565 | * | 0.4003 | 0.0875 | *** | 0.2160 | 0.0939 | * |
Outdegree centrality for CWF | −0.0726 | 0.0661 | −0.0033 | 0.1046 | −0.0004 | 0.1126 | |||
Betweenness centrality for CWF | 11.0370 | 1.8400 | *** | 7.9669 | 2.7890 | ** | 10.9553 | 2.9934 | *** |
Economic globalization de facto | −0.0024 | 0.0006 | *** | −0.0014 | 0.0009 | −0.0002 | 0.0010 | ||
Economic globalization de jure | 0.0007 | 0.0006 | 0.0002 | 0.0009 | −0.0013 | 0.0010 | |||
Social globalization de facto | 0.0218 | 0.0009 | *** | 0.0183 | 0.0014 | *** | 0.0192 | 0.0015 | *** |
Social globalization de jure | 0.0134 | 0.0010 | *** | 0.0150 | 0.0015 | *** | 0.0123 | 0.0016 | *** |
Political globalization de facto | −0.0009 | 0.0006 | −0.0007 | 0.0010 | −0.0012 | 0.0011 | |||
Political globalization de jure | 0.0009 | 0.0008 | −0.0026 | 0.0013 | * | −0.0034 | 0.0014 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestrini, M.M.; Rossi, T.J.A.; Sarti, F.M. Socioeconomic and Environmental Dimensions of Agriculture, Livestock, and Fisheries: A Network Study on Carbon and Water Footprints in Global Food Trade. Standards 2025, 5, 19. https://doi.org/10.3390/standards5030019
Silvestrini MM, Rossi TJA, Sarti FM. Socioeconomic and Environmental Dimensions of Agriculture, Livestock, and Fisheries: A Network Study on Carbon and Water Footprints in Global Food Trade. Standards. 2025; 5(3):19. https://doi.org/10.3390/standards5030019
Chicago/Turabian StyleSilvestrini, Murilo Mazzotti, Thiago Joel Angrizanes Rossi, and Flavia Mori Sarti. 2025. "Socioeconomic and Environmental Dimensions of Agriculture, Livestock, and Fisheries: A Network Study on Carbon and Water Footprints in Global Food Trade" Standards 5, no. 3: 19. https://doi.org/10.3390/standards5030019
APA StyleSilvestrini, M. M., Rossi, T. J. A., & Sarti, F. M. (2025). Socioeconomic and Environmental Dimensions of Agriculture, Livestock, and Fisheries: A Network Study on Carbon and Water Footprints in Global Food Trade. Standards, 5(3), 19. https://doi.org/10.3390/standards5030019