Coupling Relationship Between Transportation Corridors and Ecosystem Service Value Realization in Giant Panda National Park
Abstract
1. Introduction
2. Materials and Methods
2.1. Geographic Location
2.2. Theoretical Analysis
2.3. Case Study on the Realisation of ESV in GPNP
2.3.1. Ecological Supply Services: TCs Contribute to the Upgrading of the Specialty Agricultural Industry Chain
2.3.2. Ecological Regulation and Support Services: TCs Facilitate Low-Carbon Ecological Service System Development
2.3.3. Ecological Cultural Services: Accessibility Reshapes the Ecotourism Experience
2.4. Data Sources and Collections
2.5. Construction of the Indicator System
2.6. Research Methods
2.6.1. TOPSIS Entropy Weighting Method
2.6.2. Accounting for the Value of Ecosystem Services
2.6.3. Coupling Coordination Degree Evaluation Model
2.6.4. Local Spatial Autocorrelation
3. Results and Analysis
3.1. Spatio-Temporal Characterisation of the Level of Development of TCs in GPNP
3.2. Characterisation of the ESV of GPNP
3.3. Characterisation of the Spatial and Temporal Coordination of the Coupling of TCs and ESV
3.4. Local Spatial Autocorrelation Analysis
4. Discussion
4.1. Discussion of the Multiple Relationships Between TCs and the Realisation of ESV
4.2. Discussion of the Results of the Study on the Value of TC and Ecosystem Services
4.3. Discussion on Limitations and Future Research Prospects
5. Conclusions and Policy Recommendations
5.1. Conclusions
5.2. Policy Applications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GPNP | Giant Panda National Park |
ESV | Ecosystem service value |
TC | Transportation corridors |
Appendix A
2018 | 2019 | 2020 | 2021 | 2022 | |
---|---|---|---|---|---|
Zhouzhi county | 64,542.62 | 66,410.81 | 72,814.32 | 74,743.53 | 78,573.63 |
Yang County | 70,456.12 | 72,905.64 | 80,591.80 | 83,046.76 | 87,502.38 |
Xingjing County | 45,934.07 | 47,271.04 | 51,624.08 | 53,043.26 | 55,597.15 |
Wenchuan County | 106,358.34 | 108,635.69 | 118,112.78 | 120,503.00 | 125,210.91 |
Wenxian | 119,213.18 | 122,314.61 | 133,474.74 | 137,116.35 | 144,901.80 |
Tianquan County | 59,624.72 | 61,117.27 | 66,712.70 | 68,509.40 | 71,879.22 |
Taibai County | 71,524.41 | 735,48.71 | 80,584.18 | 82,732.24 | 86,966.93 |
Songpan County | 182,761.08 | 186,496.86 | 203,484.63 | 208,752.77 | 218,373.77 |
Asbestos County | 69,934.81 | 72,072.61 | 78,959.08 | 81,089.84 | 84,832.70 |
Shifang | 12,480.54 | 12,944.54 | 14,198.67 | 14,559.83 | 15,211.50 |
Qingchuan County | 83,181.70 | 86,357.81 | 94,822.77 | 97,373.92 | 101,216.53 |
Pingwu County | 150,735.34 | 155,498.01 | 170,556.46 | 175,107.32 | 183,154.34 |
Pengzhou | 20,323.49 | 20,944.80 | 22,993.66 | 23,532.36 | 24,451.23 |
Ningxia County | 98,790.76 | 10,1553.15 | 111,165.27 | 114,111.53 | 119,954.06 |
Ningqiang County | 74,886.09 | 77,401.51 | 84,978.22 | 87,452.59 | 91,989.92 |
Mianzhu | 19,643.22 | 20,212.27 | 22,115.92 | 22,671.99 | 23,703.33 |
Meixian | 13,527.65 | 13,949.58 | 15,282.00 | 15,688.16 | 16,435.01 |
Mao County | 96,677.11 | 99,202.21 | 108,317.47 | 111,085.78 | 116,634.93 |
Lushan County | 29,784.61 | 30,560.78 | 33,340.10 | 34,237.00 | 35,852.60 |
Liuba County | 52,264.47 | 53,694.68 | 58,826.20 | 60,397.65 | 63,456.70 |
Jiuzhaigou County | 122,912.43 | 126,162.35 | 137,990.13 | 141,605.89 | 148,681.93 |
Hongya County | 41,814.17 | 43,178.93 | 47,056.14 | 48,422.53 | 50,636.10 |
Foping County | 33,894.59 | 34,832.26 | 38,140.00 | 39,165.53 | 41,318.34 |
Dujiangyan | 22,403.99 | 23,072.68 | 25,098.15 | 25,633.40 | 26,549.88 |
Dayi County | 22,328.98 | 23,172.11 | 25,285.34 | 26,009.55 | 26,640.31 |
Chongzhou | 16,318.77 | 16,804.46 | 18,259.33 | 18,719.97 | 18,967.53 |
Baoxing County | 77,434.70 | 79,837.47 | 87,434.40 | 89,746.72 | 93,840.34 |
References
- Bai, Y.; Wang, Q.; Yang, Y. From Pollution Control Cooperation of Lancang-Mekong River to “Two Mountains Theory”. Sustainability 2022, 14, 2392. [Google Scholar] [CrossRef]
- He, S.; Su, Y.; Wang, L.; Gallagher, L.; Cheng, H. Taking an Ecosystem Services Approach for a New National Park System in China. Resour. Conserv. Recycl. 2018, 137, 136–144. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, X.; Zhu, G.; Peng, Y.; Li, Y.; Zhao, X. Land Space and High-Speed Transportation Coordinated Development Evaluation in the Beijing–Tianjin–Hebei Urban Agglomeration of China. Land 2024, 13, 1693. [Google Scholar] [CrossRef]
- Meng, F.; Guo, J.; Guo, Z.; Lee, J.C.K.; Liu, G.; Wang, N. Urban Ecological Transition: The Practice of Ecological Civilization Construction in China. Sci. Total Environ. 2021, 755, 142633. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, G.; Liu, J.; Xu, H. The Research Progress of the Traffic Ecological Effects under the Perspective of “Pattern-Process-Function”. Ecol. Environ. 2022, 31, 634. [Google Scholar]
- Hong, J.; Chu, Z.; Wang, Q. Transport Infrastructure and Regional Economic Growth: Evidence from China. Transportation 2011, 38, 737–752. [Google Scholar] [CrossRef]
- Hlatshwayo, T.I.; Zungu, M.M.; Collinson-Jonker, W.J.; Downs, C.T. Mainstreaming Ecological Connectivity and Wildlife Needs in Green Road Transport Infrastructure Planning in South Africa. J. Environ. Manag. 2024, 371, 123062. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ma, R.; Zhou, W.; Yuan, Y.; Ren, J.; Cao, Y. Risk Assessment and Regulation between the Supply and Demand of Ecological Products: A Comprehensive Framework and Case Study. Ecol. Indic. 2023, 154, 110617. [Google Scholar] [CrossRef]
- Stratan, A. Infrastructure as a Determinant of the National Competitiveness. ACROSS 2024, 3, 31–38. [Google Scholar] [CrossRef]
- Li, L.; Fan, Z.; Xiong, K.; Shen, H.; Guo, Q.; Dan, W.; Li, R. Current Situation and Prospects of the Studies of Ecological Industries and Ecological Products in Eco-Fragile Areas. Environ. Res. 2021, 201, 111613. [Google Scholar] [CrossRef]
- Chen, W.; Bian, J.; Liang, J.; Pan, S.; Zeng, Y. Traffic Accessibility and the Coupling Degree of Ecosystem Services Supply and Demand in the Middle Reaches of the Yangtze River Urban Agglomeration, China. J. Geogr. Sci. 2022, 32, 1471–1492. [Google Scholar] [CrossRef]
- Chen, W.; Zeng, Y.; Zeng, J. Impacts of Traffic Accessibility on Ecosystem Services: An Integrated Spatial Approach. J. Geogr. Sci. 2021, 31, 1816–1836. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Yang, S.; Liu, C. Impact of Land-Use Change on Ecosystem Services in the Wuling Mountains from a Transport Development Perspective. Int. J. Environ. Res. Public Health 2023, 20, 1323. [Google Scholar] [CrossRef] [PubMed]
- Coffin, A.W. From Roadkill to Road Ecology: A Review of the Ecological Effects of Roads. J. Transp. Geogr. 2007, 15, 396–406. [Google Scholar] [CrossRef]
- Fujita, M. The Evolution of Spatial Economics: From Thünen to the New Economic Geography. Jpn. Econ. Rev. 2010, 61, 1–32. [Google Scholar] [CrossRef]
- Schwedes, O.; Hoor, M. Integrated Transport Planning: From Supply-to Demand-Oriented Planning. Considering the Benefits. Sustainability 2019, 11, 5900. [Google Scholar] [CrossRef]
- Costanza, R. Ecosystem Services: Multiple Classification Systems Are Needed. Biol. Conserv. 2008, 141, 350–352. [Google Scholar] [CrossRef]
- Zheng, H.; Wu, T.; Ouyang, Z.; Polasky, S.; Ruckelshaus, M.; Wang, L.; Xiao, Y.; Gao, X.; Li, C.; Daily, G.C. Gross Ecosystem Product (GEP): Quantifying Nature for Environmental and Economic Policy Innovation. Ambio 2023, 52, 1952–1967. [Google Scholar] [CrossRef]
- Wei, H.; Zhao, S. Construction on the System Model of the Ecological Industry Chain in the Nature Reserves. Ecol. Econ. 2014, 30, 38–41. [Google Scholar]
- Zhang, Z.; Xiong, K.; Chang, H.; Zhang, W.; Huang, D. A Review of Eco-Product Value Realization and Ecological Civilization and Its Enlightenment to Karst Protected Areas. Int. J. Environ. Res. Public Health 2022, 19, 5892. [Google Scholar] [CrossRef]
- Lang, C. Heterogeneous Transport Costs and Spatial Sorting in a Model of New Economic Geography. Pap. Reg. Sci. 2010, 89, 191–203. [Google Scholar] [CrossRef]
- He, M.; Shen, J.; Wu, X.; Luo, J. Logistics Space: A Literature Review from the Sustainability Perspective. Sustainability 2018, 10, 2815. [Google Scholar] [CrossRef]
- Hopkins, D. Sustainable Mobility at the Interface of Transport and Tourism: Introduction to the Special Issue on ‘Innovative Approaches to the Study and Practice of Sustainable Transport, Mobility and Tourism’. J. Sustain. Tour. 2020, 28, 129–143. [Google Scholar] [CrossRef]
- Chai, Y.; Tan, Y.; Shen, Y.; Kwan, M. Space-Behavior Interaction Theory: Basic Thinking of General Construction. Geogr. Res. 2017, 36, 1959–1970. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Felipe-Lucia, M.R.; Martín-López, B.; Lavorel, S.; Berraquero-Díaz, L.; Escalera-Reyes, J.; Comín, F.A. Ecosystem Services Flows: Why Stakeholders’ Power Relationships Matter. PLoS ONE 2015, 10, e0132232. [Google Scholar] [CrossRef]
- Yuan, Y.; Bai, Z.; Zhang, J.; Huang, Y. Investigating the Trade-Offs between the Supply and Demand for Ecosystem Services for Regional Spatial Management. J. Environ. Manag. 2023, 325, 116591. [Google Scholar] [CrossRef]
- Abdul Mutalib, N.H.; Mashros, N.; Aminudin, E.; Zakaria, R.; Haron, Z.; Abd Talib, M.H.; Abdul Hamid, A.R. Disturbance of Traffic Noise: Evaluation on the Effects and Management on Road Corridors. IOP Conf. Ser. Earth Environ. Sci 2018, 143, 12049. [Google Scholar] [CrossRef]
- Zhao, W. Beginning: China’s National Park System. Natl. Sci. Rev. 2022, 9, nwac150. [Google Scholar] [CrossRef]
- Hou, Q.; Du, Y.; Dong, W.; Zeng, Z.; Zhang, L.; Duan, Y.; Hou, X. Smart City Oriented Ecological Corridor Layout of Sanshui River Basin in Arid Area of Loess Plateau. Sustain. Energy Technol. Assess. 2021, 44, 100993. [Google Scholar] [CrossRef]
- Jian, P.; Huijuan, Z.; Yanxu, L.; Jiansheng, W.U. Research Progress and Prospect on Regional Ecological Security Pattern Construction. Geogr. Res. 2017, 585–597. [Google Scholar]
- Deryugina, T.; Moore, F.; Tol, R.S. Environmental Applications of the Coase Theorem. Environ. Sci. Policy 2021, 120, 81–88. [Google Scholar] [CrossRef]
- Daily, G.C. Introduction: What Are Ecosystem Services. Nature’s Serv. Soc. Depend. Nat. Ecosyst. 1997, 1–10. [Google Scholar]
- Yu, P.; Zhang, J.; Wang, Y.; Wang, C.; Zhang, H. Can Tourism Development Enhance Livelihood Capitals of Rural Households? Evidence from Huangshan National Park Adjacent Communities, China. Sci. Total Environ. 2020, 748, 141099. [Google Scholar] [CrossRef] [PubMed]
- Crowley, K. Jobs and Environment: The “Double Dividend” of Ecological Modernisation? Int. J. Soc. Econ. 1999, 26, 1013–1027. [Google Scholar] [CrossRef]
- Wen, J.; Chen, H. Green Innovation and the Urban–Rural Income Gap: Empirical Evidence from China. Sustainability 2025, 17, 2106. [Google Scholar] [CrossRef]
- Bastiaanssen, J.; Johnson, D.; Lucas, K. Does Transport Help People to Gain Employment? A Systematic Review and Meta-Analysis of the Empirical Evidence. Transp. Rev. 2020, 40, 607–628. [Google Scholar] [CrossRef]
- Michałowski, A. System Aspects Research of Ecosystem Services in the Economy for Sustainable Development. Probl. Ekorozwoju 2014, 9, 71–80. [Google Scholar]
- Luo, H.; Sun, G.; Zhou, W.; Lian, J.; Sun, Y.; Hu, Y. Promoting Rural Revitalization via Natural Resource Value Realization in National Parks: A Case Study of Baishanzu National Park. Land 2025, 14, 298. [Google Scholar] [CrossRef]
- Gregory, A.; Spence, E.; Beier, P.; Garding, E. Toward Best Management Practices for Ecological Corridors. Land 2021, 10, 140. [Google Scholar] [CrossRef]
- Simmonds, H.; Gazley, A. Impact Value and Sustainable, Well-Being Centred Service Systems. Eur. J. Mark. 2021, 55, 593–617. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Cao, K.; He, S.; Shan, L. Ecological Conservation–and Economic Development–Based Multiobjective Land-Use Optimization: Case Study of a Rapidly Developing City in Central China. J. Urban Plan. Dev. 2019, 145, 05018023. [Google Scholar] [CrossRef]
- Wang, D.; Wang, K.; Wang, Z.; Fan, H.; Chai, H.; Wang, H.; Long, H.; Gao, J.; Xu, J. Spatial-Temporal Evolution and Influencing Mechanism of Traffic Dominance in Qinghai-Tibet Plateau. Sustainability 2022, 14, 11031. [Google Scholar] [CrossRef]
- Tian, T.; Ma, Y. Interactive Effect and Spatial Characteristics of Agricultural Development Level and Transport Superiority Degree in Main Grain-Producing Areas of the Central Jilin Province, China. Chin. Geogr. Sci. 2022, 32, 643–664. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; Liu, X.; Yang, Z. The Evolution and Economic and Social Effects of the Spatial and Temporal Pattern of Transport Superiority Degree in Southern Xinjiang, China. Land 2024, 13, 216. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Sutton, P.C.; Duncan, S.L.; Anderson, S.J. Valuing Our National Parks: An Ecological Economics Perspective. Land 2019, 8, 54. [Google Scholar] [CrossRef]
- Wilson, M.A.; Carpenter, S.R. Economic Valuation of Freshwater Ecosystem Services in the United States: 1971–1997. Ecol. Appl. 1999, 9, 772–783. [Google Scholar]
- Tang, Z. An Integrated Approach to Evaluating the Coupling Coordination between Tourism and the Environment. Tour. Manag. 2015, 46, 11–19. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Mathur, M. Spatial Autocorrelation Analysis in Plant Population: An Overview. J. Appl. Nat. Sci. 2015, 7, 501. [Google Scholar] [CrossRef]
- Youngs, Y.L.; White, D.D.; Wodrich, J.A. Transportation Systems as Cultural Landscapes in National Parks: The Case of Yosemite. Soc. Nat. Resour. 2008, 21, 797–811. [Google Scholar] [CrossRef]
- Haines, A.L. Yellowstone National Park: Its Exploration and Establishment; US National Park Service: Washington, DC, USA, 1974.
- Choni, D.; Blomvik, R.F.; Nordgård, B.A. Hvordan Kan Den Operasjonelle Driften På En Ferge Automatiseres? Bachelor’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2017. [Google Scholar]
- James, S. Right of Way: Cruise Tourism in Fiordland, New Zealand. Doctoral dissertation, University of Waikato, Hamilton, New Zealand, 2003. [Google Scholar]
- Pu, M.; Zhao, Y.; Ni, Z.; Huang, Z.; Peng, W.; Zhou, Y.; Liu, J.; Gong, Y. Spatial-Temporal Evolution and Driving Forces of NDVI in China’s Giant Panda National Park. Int. J. Environ. Res. Public Health 2022, 19, 6722. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, R.; Xue, C.; Xia, Z. Ecological Sensitivity Evaluation and Explanatory Power Analysis of the Giant Panda National Park in China. Ecol. Indic. 2023, 146, 109792. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, J.; Qiao, Q.; Lin, Z.; Zhang, W. Unlocking the Value of Nature: A Deep Dive into China’s Ecological Product Realization and Its Driving Mechanisms. Forests 2024, 16, 37. [Google Scholar] [CrossRef]
Ecosystems | Indicator Weight | |
---|---|---|
Accessibility | Road density | 0.068 |
Distance to the province | 0.037 | |
Infrastructure | Road area | 0.266 |
Traffic land | 0.267 | |
Logistics land | 0.282 | |
Sustainability | co2 emission | 0.015 |
Green coverage | 0.022 | |
pm25 | 0.038 |
Ecosystems | Cropland | Forests | Grasslands | Shrubs | Wetlands | Watersheds | Bare Ground | |
---|---|---|---|---|---|---|---|---|
Supply Services | Food Production | 1.11 | 0.27 | 0.23 | 0.19 | 0.51 | 0.8 | 0 |
Raw material production | 0.25 | 0.63 | 0.34 | 0.43 | 0.5 | 0.23 | 0 | |
Water supply | −1.31 | 0.33 | 0.19 | 0.22 | 2.59 | 8.29 | 0 | |
Regulatory Services | Gas regulation | 0.89 | 2.07 | 1.21 | 1.41 | 1.9 | 0.77 | 0.02 |
Climate regulation | 0.47 | 6.2 | 3.19 | 4.23 | 3.6 | 2.29 | 0 | |
Purification of the environment | 0.14 | 1.8 | 1.05 | 1.28 | 3.6 | 5.55 | 0.1 | |
Hydrology | 1.5 | 3.86 | 2.34 | 3.35 | 24.23 | 102.24 | 0.03 | |
Support Services | Soil conservation | 0.52 | 2.52 | 1.47 | 1.72 | 2.31 | 0.93 | 0.02 |
Maintaining nutrient cycles | 0.16 | 0.19 | 0.11 | 0.13 | 0.18 | 0.07 | 0 | |
Biodiversity | 0.17 | 2.3 | 1.34 | 1.57 | 7.87 | 2.55 | 0.02 | |
Cultural Services | Aesthetic landscape | 0.08 | 1.01 | 0.59 | 0.69 | 4.73 | 1.89 | 0.01 |
2018 | 2019 | 2020 | 2021 | 2022 | |
---|---|---|---|---|---|
Cultivation area | 1149 | 1131 | 1128 | 1138 | 1149 |
Economic output per unit area | 0.151 | 0.154 | 0.156 | 0.156 | 0.154 |
An equivalent factor value | 0.142 | 0.144 | 0.151 | 0.149 | 0.150 |
Index | GPNP | Nationwide |
---|---|---|
Annual mean temperature | 12.63 | 10.1 |
Annual precipitation | 267,252 | 63,937 |
Net primary productivity | 2888 | 2877 |
Regional difference coefficient | 1 | 1 |
2018 | 2019 | 2020 | 2021 | 2022 | |
---|---|---|---|---|---|
Social development coefficients (K) | 0.94 | 0.93 | 0.97 | 0.95 | 0.97 |
Ecosystems | Cropland | Forests | Grasslands | Shrubs | Wetlands | Watersheds | Bare Ground | |
---|---|---|---|---|---|---|---|---|
Supply Services | Food Production | 0.17 | 0.04 | −0.2 | 0.13 | 0.07 | 0.02 | 0.23 |
Raw material production | 0.04 | 0.09 | 0.05 | 0.31 | 0.93 | 0.27 | 0.58 | |
Water supply | 0.03 | 0.05 | 0.03 | 0.18 | 0.48 | 0.16 | 0.35 | |
Regulatory Services | Gas regulation | 0.03 | 0.06 | 0.03 | 0.21 | 0.64 | 0.19 | 0.5 |
Climate regulation | 0.08 | 0.08 | 0.39 | 0.29 | 0.54 | 0.54 | 3.65 | |
Purification of the environment | 0.12 | 0.03 | 1.25 | 0.12 | 0.35 | 0.84 | 15.41 | |
Hydrology | 0 | 0 | 0 | 0 | 0 | 0.02 | 0 | |
Support Services | Soil conservation | 0.17 | 0.04 | −0.2 | 0.13 | 0.07 | 0.02 | 0.23 |
Maintaining nutrient cycles | 0.04 | 0.09 | 0.05 | 0.31 | 0.93 | 0.27 | 0.58 | |
Biodiversity | 0.03 | 0.05 | 0.03 | 0.18 | 0.48 | 0.16 | 0.35 | |
Cultural Services | Aesthetic landscape | 0.03 | 0.06 | 0.03 | 0.21 | 0.64 | 0.19 | 0.5 |
Service Category | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|
Supply Service | 113.3 | 114.4 | 120.2 | 118.7 | 119 |
Regulatory Services | 1305.5 | 1318.6 | 1385.9 | 1368.2 | 1371 |
Support Services | 448.9 | 454.1 | 478 | 472.3 | 474.8 |
Cultural Services | 90 | 91 | 95.8 | 94.6 | 95.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Du, R.; Mao, Q.; Zhu, G.; Zhong, H. Coupling Relationship Between Transportation Corridors and Ecosystem Service Value Realization in Giant Panda National Park. Land 2025, 14, 1385. https://doi.org/10.3390/land14071385
Liu L, Du R, Mao Q, Zhu G, Zhong H. Coupling Relationship Between Transportation Corridors and Ecosystem Service Value Realization in Giant Panda National Park. Land. 2025; 14(7):1385. https://doi.org/10.3390/land14071385
Chicago/Turabian StyleLiu, Lulin, Renna Du, Qian Mao, Gaoru Zhu, and Hong Zhong. 2025. "Coupling Relationship Between Transportation Corridors and Ecosystem Service Value Realization in Giant Panda National Park" Land 14, no. 7: 1385. https://doi.org/10.3390/land14071385
APA StyleLiu, L., Du, R., Mao, Q., Zhu, G., & Zhong, H. (2025). Coupling Relationship Between Transportation Corridors and Ecosystem Service Value Realization in Giant Panda National Park. Land, 14(7), 1385. https://doi.org/10.3390/land14071385