Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (524)

Search Parameters:
Keywords = epigenetics diet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2678 KiB  
Article
Pre-Conception Maternal Obesity Confers Autism Spectrum Disorder-like Behaviors in Mice Offspring Through Neuroepigenetic Dysregulation
by Nina P. Allan, Amada Torres, Michael J. Corley, Brennan Y. Yamamoto, Chantell Balaan, Yasuhiro Yamauchi, Rafael Peres, Yujia Qin, Vedbar S. Khadka, Youping Deng, Monika A. Ward and Alika K. Maunakea
Cells 2025, 14(15), 1201; https://doi.org/10.3390/cells14151201 - 5 Aug 2025
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with early-life origins. Maternal obesity has been associated with increased ASD risk, yet the mechanisms and timing of susceptibility remain unclear. Using a mouse model combining in vitro fertilization (IVF) and embryo transfer, we [...] Read more.
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with early-life origins. Maternal obesity has been associated with increased ASD risk, yet the mechanisms and timing of susceptibility remain unclear. Using a mouse model combining in vitro fertilization (IVF) and embryo transfer, we separated the effects of pre-conception and gestational obesity. We found that maternal high fat diet (HFD) exposure prior to conception alone was sufficient to induce ASD-like behaviors in male offspring—including altered vocalizations, reduced sociability, and increased repetitive grooming—without anxiety-related changes. These phenotypes were absent in female offspring and those exposed only during gestation. Cortical transcriptome analysis revealed dysregulation and isoform shifts in genes implicated in ASD, including Homer1 and Zswim6. Whole-genome bisulfite sequencing of hippocampal tissue showed hypomethylation of an alternative Homer1 promoter, correlating with increased expression of the short isoform Homer1a, which is known to disrupt synaptic scaffolding. This pattern was specific to mice with ASD-like behaviors. Our findings show that pre-conceptional maternal obesity can lead to lasting, isoform-specific transcriptomic and epigenetic changes in the offspring’s brain. These results underscore the importance of maternal health before pregnancy as a critical and modifiable factor in ASD risk. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Autism Spectrum Disorder)
Show Figures

Figure 1

19 pages, 1016 KiB  
Article
Genetic Associations of ITGB3, FGG, GP1BA, PECAM1, and PEAR1 Polymorphisms and the Platelet Activation Pathway with Recurrent Pregnancy Loss in the Korean Population
by Eun Ju Ko, Eun Hee Ahn, Hyeon Woo Park, Jae Hyun Lee, Da Hwan Kim, Young Ran Kim, Ji Hyang Kim and Nam Keun Kim
Int. J. Mol. Sci. 2025, 26(15), 7505; https://doi.org/10.3390/ijms26157505 - 3 Aug 2025
Viewed by 239
Abstract
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more pregnancy losses before 20 weeks of gestation. RPL is a common medical condition among reproductive-age women, with approximately 23 million cases reported annually worldwide. Up to 5% of pregnant women [...] Read more.
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more pregnancy losses before 20 weeks of gestation. RPL is a common medical condition among reproductive-age women, with approximately 23 million cases reported annually worldwide. Up to 5% of pregnant women may experience two or more consecutive pregnancy losses. Previous studies have investigated risk factors for RPL, including maternal age, uterine pathology, genetic anomalies, infectious agents, endocrine disorders, thrombophilia, and immune dysfunction. However, RPL is a disease caused by a complex interaction of genetic factors, environmental factors (e.g., diet, lifestyle, and stress), epigenetic factors, and the immune system. In addition, due to the lack of research on genetics research related to RPL, the etiology remains unclear in up to 50% of cases. Platelets play a critical role in pregnancy maintenance. This study examined the associations of platelet receptor and ligand gene variants, including integrin subunit beta 3 (ITGB3) rs2317676 A > G, rs3809865 A > T; fibrinogen gamma chain (FGG) rs1049636 T > C, rs2066865 T > C; glycoprotein 1b subunit alpha (GP1BA) rs2243093 T > C, rs6065 C > T; platelet endothelial cell adhesion molecule 1 (PECAM1) rs2812 C > T; and platelet endothelial aggregation receptor 1 (PEAR1) rs822442 C > A, rs12137505 G > A, with RPL prevalence. In total, 389 RPL patients and 375 healthy controls (all Korean women) were enrolled. Genotyping of each single nucleotide polymorphism was performed using polymerase chain reaction–restriction fragment length polymorphism and the TaqMan genotyping assay. All samples were collected with approval from the Institutional Review Board at Bundang CHA Medical Center. The ITGB3 rs3809865 A > T genotype was strongly associated with RPL prevalence (pregnancy loss [PL] ≥ 2: adjusted odds ratio [AOR] = 2.505, 95% confidence interval [CI] = 1.262–4.969, p = 0.009; PL ≥ 3: AOR = 3.255, 95% CI = 1.551–6.830, p = 0.002; PL ≥ 4: AOR = 3.613, 95% CI = 1.403–9.307, p = 0.008). The FGG rs1049636 T > C polymorphism was associated with a decreased risk in women who had three or more pregnancy losses (PL ≥ 3: AOR = 0.673, 95% CI = 0.460–0.987, p = 0.043; PL ≥ 4: AOR = 0.556, 95% CI = 0.310–0.997, p = 0.049). These findings indicate significant associations of the ITGB3 rs3809865 A > T and FGG rs1049636 T > C polymorphisms with RPL, suggesting that platelet function influences RPL in Korean women. Full article
(This article belongs to the Special Issue Molecular Research in Gynecological Diseases—2nd Edition)
Show Figures

Figure 1

27 pages, 1434 KiB  
Review
Unmasking the Epigenome: Insights into Testicular Cell Dynamics and Reproductive Function
by Shabana Anjum, Yamna Khurshid, Stefan S. Du Plessis and Temidayo S. Omolaoye
Int. J. Mol. Sci. 2025, 26(15), 7305; https://doi.org/10.3390/ijms26157305 - 28 Jul 2025
Viewed by 618
Abstract
The epigenetic landscape plays a pivotal role in regulating the functions of both germ and somatic cells (Sertoli and Leydig cells) within the testis, which are essential for male fertility. While somatic cells support germ cell maturation and testosterone synthesis, the epigenetic regulation [...] Read more.
The epigenetic landscape plays a pivotal role in regulating the functions of both germ and somatic cells (Sertoli and Leydig cells) within the testis, which are essential for male fertility. While somatic cells support germ cell maturation and testosterone synthesis, the epigenetic regulation of germ cells is critical for proper spermatogenesis and function. Epigenetic modifications such as DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs (ncRNAs) are crucial for regulating gene expression that is essential for spermatogenesis and reproductive function. Although numerous studies have highlighted the significance of the epigenome and its implications for male reproductive health, a comprehensive overview of the existing literature and knowledge is lacking. This review aims to provide an in-depth analysis of the role of epigenetics in spermatogenesis and reproductive health, with a specific focus on DNA methylation, histone remodeling, and small noncoding RNAs (sncRNAs). Additionally, we examine the impact of lifestyle and environmental factors, such as diet, smoking, physical activity, and exposure to endocrine-disrupting chemicals, on the sperm epigenome. We emphasize how these factors influence fertility, embryonic development, and potential transgenerational inheritance. This review underscores how recent advances in the understanding of the epigenetic modulation of testicular function can inform the pathophysiology of male infertility, thereby paving the way for the development of targeted diagnostic and therapeutic strategies. Full article
(This article belongs to the Special Issue Advances in Spermatogenesis and Male Infertility)
Show Figures

Figure 1

13 pages, 573 KiB  
Review
Developmental Programming and Postnatal Modulations of Muscle Development in Ruminants
by Kiersten Gundersen and Muhammad Anas
Biology 2025, 14(8), 929; https://doi.org/10.3390/biology14080929 - 24 Jul 2025
Viewed by 343
Abstract
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5 [...] Read more.
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5, MYOD1, and MYOG. Studies in sheep and cattle indicate that nutrient restriction or overnutrition alters muscle fiber number, the cross-sectional area, and the transcriptional regulation of myogenic genes in offspring. Postnatally, muscle hypertrophy is primarily mediated by satellite cells, which are activated via PAX7, MYOD, and MYF5, and regulated through mechanisms such as CARM1-induced chromatin remodeling and miR-31-mediated mRNA expression. Hormonal signaling via the GH–IGF1 axis and thyroid hormones further modulate satellite cell proliferation and protein accretion. Genetic variants, such as myostatin mutations in Texel sheep and Belgian Blue cattle, enhance muscle mass but may compromise reproductive efficiency. Nutritional interventions, including the plane of nutrition, supplementation strategies, and environmental stressors such as heat and stocking density, significantly influence muscle fiber composition and carcass traits. This review provides a comprehensive overview of skeletal muscle programming in ruminants, tracing the developmental trajectory from progenitor cell differentiation to postnatal growth and maturation. These insights underscore the need for integrated approaches combining maternal diet optimization, molecular breeding, and precision livestock management to enhance muscle growth, meat quality, and production sustainability in ruminant systems. Full article
Show Figures

Figure 1

47 pages, 4589 KiB  
Review
Understanding Sex Differences in Autoimmune Diseases: Immunologic Mechanisms
by Yu Rin Kim, YunJae Jung, Insug Kang and Eui-Ju Yeo
Int. J. Mol. Sci. 2025, 26(15), 7101; https://doi.org/10.3390/ijms26157101 - 23 Jul 2025
Viewed by 418
Abstract
Autoimmune diseases such as systemic lupus erythematosus and Sjögren’s syndrome show pronounced sex disparities in prevalence, severity, and clinical outcomes, with females disproportionately affected. Emerging evidence highlights sex-based differences in immune and inflammatory responses as key contributors to this bias. Genetic factors—including sex [...] Read more.
Autoimmune diseases such as systemic lupus erythematosus and Sjögren’s syndrome show pronounced sex disparities in prevalence, severity, and clinical outcomes, with females disproportionately affected. Emerging evidence highlights sex-based differences in immune and inflammatory responses as key contributors to this bias. Genetic factors—including sex chromosomes, skewed X chromosome inactivation, and sex-biased microRNAs—as well as sex hormones and pregnancy modulate gene expression and immune cell function in a sex-specific manner. Additionally, sex hormone-dependent epigenetic modifications influence the transcription of critical immune regulators. These genetic and hormonal factors collectively shape the activation, differentiation, and effector functions of diverse immune cell types. Environmental factors—including infections, gut microbiota, environmental chemicals and pollutants, and lifestyle behaviors such as diet, smoking, UV exposure, alcohol and caffeine intake, physical activity, and circadian rhythms—further modulate immune function and autoimmune disease pathogenesis in a sex-dependent manner. Together, these mechanisms contribute to the heightened risk and distinct clinical features of autoimmunity in females. A deeper understanding of sex-biased immune regulation will facilitate the identification of novel biomarkers, enable patient stratification, and inform the development of sex-specific diagnostic and therapeutic strategies for autoimmune diseases. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

37 pages, 1234 KiB  
Review
The Complex Gene–Carbohydrate Interaction in Type 2 Diabetes: Between Current Knowledge and Future Perspectives
by Francesca Gorini and Alessandro Tonacci
Nutrients 2025, 17(14), 2350; https://doi.org/10.3390/nu17142350 - 17 Jul 2025
Viewed by 470
Abstract
Type 2 diabetes (T2D) represents a public health problem globally, with the highest prevalence reported among older adults. While an interplay of various determinants including genetic, epigenetic, environmental factors and unhealthy lifestyle, particularly diet, has been established to contribute to T2D development, emerging [...] Read more.
Type 2 diabetes (T2D) represents a public health problem globally, with the highest prevalence reported among older adults. While an interplay of various determinants including genetic, epigenetic, environmental factors and unhealthy lifestyle, particularly diet, has been established to contribute to T2D development, emerging evidence supports the role of interactions between nutrients or dietary patterns and genes in the pathogenesis of this metabolic disorder. The amount, and especially the type of carbohydrates, in particular, have been correlated with the risk of non-communicable chronic disease and mortality. This narrative review aims to discuss the updated data on the complex and not fully elucidated relationship between carbohydrate–gene interactions and incidence of T2D, identifying the most susceptible genes able to modulate the dual association between carbohydrate intake and risk of developing T2D. The identification of genetic polymorphisms in response to this macronutrient represents a potentially powerful target to estimate individual risk and prevent the development of T2D in the context of personalized medicine. The postulation around novel foods potentially tailored to minimize the risks of developing T2D will pave the way for a new era into food research in relation to the safeguarding of well-being status in patients affected by, or at risk for, T2D. Full article
(This article belongs to the Special Issue Advances in Gene–Diet Interactions and Human Health)
Show Figures

Figure 1

17 pages, 9983 KiB  
Article
Integrated Multi-Omics of the Longissimus Dorsal Muscle Transcriptomics and Metabolomics Reveals Intramuscular Fat Accumulation Mechanism with Diet Energy Differences in Yaks
by Jingying Deng, Pengjia Bao, Ning Li, Siyuan Kong, Tong Wang, Minghao Zhang, Qinran Yu, Xinyu Cao, Jianlei Jia and Ping Yan
Biomolecules 2025, 15(7), 1025; https://doi.org/10.3390/biom15071025 - 16 Jul 2025
Viewed by 253
Abstract
IMF (intramuscular fat, IMF), as a key index for evaluating meat quality traits (shear force and cooking loss, etc.), and its deposition process are jointly regulated by nutritional and genetic factors. In this study, we analyzed the molecular regulation mechanism of IMF deposition [...] Read more.
IMF (intramuscular fat, IMF), as a key index for evaluating meat quality traits (shear force and cooking loss, etc.), and its deposition process are jointly regulated by nutritional and genetic factors. In this study, we analyzed the molecular regulation mechanism of IMF deposition in the LD (longissimus dorsal muscle, LD) by dietary energy level in Pamir yaks. Meat quality assessment showed that the meat quality of the High-energy diet group (1.53 MJ/Kg, G) and the Medium-energy diet group (1.38 MJ/Kg, Z) were significantly improved compared with that of the Low-energy diet group (0.75 MJ/Kg, C), in which IMF content in the LD of yaks in G group was significantly higher (p < 0.05) compared with Z and C groups. Further analysis by combined transcriptomics and lipid metabolomics revealed that the differences in IMF deposition mainly originated from the metabolism of lipids, such as TG (triglycerides, TG), PS (phosphatidylserine, PS), and LPC (lysophosphatidylcholine, LPC), and were influenced by SFRP4, FABP4, GADD45A, PDGFRA, RBP4, and DGAT2 genes, further confirming the importance of lipid–gene interactions in IMF deposition. This study reveals the energy-dependent epigenetic regulatory mechanism of IMF deposition in plateau ruminants, which provides molecular targets for optimizing yak nutritional strategies and quality meat production, while having important theoretical and practical value for the sustainable development of livestock husbandry on the Tibetan Plateau. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

27 pages, 1303 KiB  
Review
Nutrition and DNA Methylation: How Dietary Methyl Donors Affect Reproduction and Aging
by Fanny Cecília Dusa, Tibor Vellai and Miklós Sipos
Dietetics 2025, 4(3), 30; https://doi.org/10.3390/dietetics4030030 - 14 Jul 2025
Viewed by 616
Abstract
Methylation is a biochemical process involving the addition of methyl groups to proteins, lipids, and nucleic acids (both DNA and RNA). DNA methylation predominantly occurs on cytosine and adenine nucleobases, and the resulting products—most frequently 5-methylcytosine and N6-methyladenine epigenetic marks—can significantly [...] Read more.
Methylation is a biochemical process involving the addition of methyl groups to proteins, lipids, and nucleic acids (both DNA and RNA). DNA methylation predominantly occurs on cytosine and adenine nucleobases, and the resulting products—most frequently 5-methylcytosine and N6-methyladenine epigenetic marks—can significantly influence gene activity at the affected genomic sites without modifying the DNA sequence called nucleotide order. Various environmental factors can alter the DNA methylation pattern. Among these, methyl donor micronutrients, such as specific amino acids, choline, and several B vitamins (including folate, pyridoxine, thiamine, riboflavin, niacin, and cobalamin), primarily regulate one-carbon metabolism. This molecular pathway stimulates glutathione synthesis and recycles intracellular methionine. Glutathione plays a pivotal role during oocyte activation by protecting against oxidative stress, whereas methionine is crucial for the production of S-adenosyl-L-methionine, which serves as the universal direct methyl donor for cellular methylation reactions. Because local DNA methylation patterns at genes regulating fertility can be inherited by progeny for multiple generations even in the absence of the original disrupting factors to which the parent was exposed, and DNA methylation levels at specific genomic sites highly correlate with age and can also be passed to offspring, nutrition can influence reproduction and life span in a transgenerational manner. Full article
Show Figures

Figure 1

29 pages, 538 KiB  
Review
Dynamic Rendition of Adipose Genes Under Epigenetic Regulation: Revealing New Mechanisms of Obesity Occurrence
by Weijing Wen, Simeng Gu, Fanjia Guo, Zhijian Chen, Sujun Yan and Zhe Mo
Curr. Issues Mol. Biol. 2025, 47(7), 540; https://doi.org/10.3390/cimb47070540 - 11 Jul 2025
Viewed by 582
Abstract
Obesity is a chronic metabolic disorder and a growing global public health challenge, affecting hundreds of millions of individuals worldwide. While diet and physical activity are well-established contributors, increasing evidence underscores the critical role of epigenetic mechanisms in mediating obesity-related processes. Epigenetic modifications—such [...] Read more.
Obesity is a chronic metabolic disorder and a growing global public health challenge, affecting hundreds of millions of individuals worldwide. While diet and physical activity are well-established contributors, increasing evidence underscores the critical role of epigenetic mechanisms in mediating obesity-related processes. Epigenetic modifications—such as DNA methylation, RNA methylation (particularly N6-methyladenosine), histone modifications, non-coding RNAs, and chromatin remodeling—modulate gene expression without altering the DNA sequence. This review aims to provide an overview of the epigenetic mechanisms involved in obesity, with an emphasis on their molecular functions and regulatory networks. Integrating findings from relevant studies, we discuss how these modifications influence obesity-related outcomes through regulating key processes such as adipocyte differentiation and energy metabolism. Advancing our understanding of epigenetic regulation may pave the way for novel, targeted strategies in the prevention and treatment of obesity. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2025)
Show Figures

Figure 1

17 pages, 532 KiB  
Review
The Fundamental Role of Nutrients for Metabolic Balance and Epigenome Integrity Maintenance
by Ana Paula de Souza, Vitor Marinho and Marcelo Rocha Marques
Epigenomes 2025, 9(3), 23; https://doi.org/10.3390/epigenomes9030023 - 9 Jul 2025
Viewed by 458
Abstract
Epigenetic modifications act as crucial regulators of gene activity and are influenced by both internal and external environmental factors, with diet being the most impactful external factor. On the other hand, cellular metabolism encompasses a complex network of biochemical reactions essential for maintaining [...] Read more.
Epigenetic modifications act as crucial regulators of gene activity and are influenced by both internal and external environmental factors, with diet being the most impactful external factor. On the other hand, cellular metabolism encompasses a complex network of biochemical reactions essential for maintaining cellular function, and it impacts every cellular process. Many metabolic cofactors are critical for the activity of chromatin-modifying enzymes, influencing methylation and the global acetylation status of the epigenome. For instance, dietary nutrients, particularly those involved in one-carbon metabolism (e.g., folate, vitamins B12 and B6, riboflavin, methionine, choline, and betaine), take part in the generation of S-adenosylmethionine (SAM), which represents the main methyl donor for DNA and histone methylation; α-ketoglutarate and ascorbic acid (vitamin C) act, respectively, as a co-substrate and cofactor for Ten-eleven Translocation (TET), which is responsible for DNA demethylation; and metabolites such as Acetyl-CoA directly impact histone acetylation, linking metabolism of the TCA cycle to epigenetic regulation. Further, bioactive compounds, such as polyphenols, modulate epigenetic patterns by affecting methylation processes or targeting epigenetic enzymes. Since diet and nutrition play a critical role in shaping epigenome functions and supporting human health, this review offers a comprehensive update on recent advancements in metabolism, epigenetics, and nutrition, providing insights into how nutrients contribute to metabolic balance, epigenome integrity maintenance and, consequently, disease prevention. Full article
(This article belongs to the Collection Feature Papers in Epigenomes)
Show Figures

Graphical abstract

27 pages, 1374 KiB  
Review
Increasing Life Expectancy with Plant Polyphenols: Lessons from the Mediterranean and Japanese Diets
by Marco Fiore, Anton B. Tonchev, Ruzha Z. Pancheva, Tetsumori Yamashima, Sabrina Venditti, Giampiero Ferraguti and Sergio Terracina
Molecules 2025, 30(13), 2888; https://doi.org/10.3390/molecules30132888 - 7 Jul 2025
Viewed by 947
Abstract
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary [...] Read more.
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary patterns to increased longevity and reduced morbidity. This narrative review examines the chemical description of plant polyphenols, their mechanisms of action, including anti-inflammatory, antioxidant, and hormetic effects, and how supplementation or a diet rich in these compounds may provide further life extension. We discuss the major classes of polyphenols present in the Mediterranean dietary pattern (e.g., resveratrol and hydroxytyrosol) and in the Japanese diet (e.g., epigallocatechin gallate and soy isoflavones), comparing their biological behaviors and cooperative effects on metabolic, cardiovascular, and neurodegenerative conditions. We also examine a few preclinical and clinical studies that explain the beneficial impact of these chemicals on aging-associated biomarkers. Furthermore, both dietary habits are characterized by low consumption of processed foods and sugary carbonated drinks and reduced utilization of deep-frying with linoleic acid-rich oils, a practice that reduces the formation of harmful lipid peroxidation products, notably 4-hydroxynonenal, known to be implicated in accelerating the aging process. The Mediterranean dietary pattern is also characterized by a low/moderate daily consumption of wine, mainly red wine. This work debates emerging evidence addressing issues of bioavailability, dosage optimization, and formulation technologies for polyphenol supplementation, also comparing differences and similarities with the vegan and vegetarian diets. We also explore how these chemicals could modulate epigenetic modifications that affect gene expression patterns pertinent to health and aging. In conclusion, we aim to show a consolidated framework for the comprehension of how plant polyphenols could be utilized in nutritional strategies for potentiating life expectancy while stimulating further research on nutraceutical development. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, 3rd Edition)
Show Figures

Figure 1

32 pages, 3472 KiB  
Article
Exploring the Dietary Patterns and Health Behaviours of Centenarians in Ourense (Spain): Adherence to the Southern European Atlantic Diet
by Pablo García-Vivanco, Roberto Fernandez, Rosa Meijide-Faílde, Esperanza Navarro-Pardo, Cristina Conde, Ricardo de la Fuente, Cristina Margusinos, Alberto Rodríguez, Ana Canelada, Pablo Taboada, Alberto Cepeda and Alberto Coelho
Nutrients 2025, 17(13), 2231; https://doi.org/10.3390/nu17132231 - 5 Jul 2025
Viewed by 1231
Abstract
Background: Understanding the multifactorial determinants of human longevity remains a major scientific challenge. Certain regions of the world—so-called “longevity hotspots”—exhibit a notably high prevalence of centenarians; one such region is the province of Ourense, in north-western Spain. Objectives: This study aimed to analyse, [...] Read more.
Background: Understanding the multifactorial determinants of human longevity remains a major scientific challenge. Certain regions of the world—so-called “longevity hotspots”—exhibit a notably high prevalence of centenarians; one such region is the province of Ourense, in north-western Spain. Objectives: This study aimed to analyse, for the first time, the nutritional factors associated with healthy longevity among centenarians, as well as those linked to longevity irrespective of health status, in the province of Ourense. Methods: A cross-sectional, retrospective, observational, mixed-methods study was conducted. A population of 261 individuals aged 100 or over residing in Ourense was identified. A sample of 156 participants was included in the quantitative analysis; from this sample, 25 centenarians were selected for in-depth qualitative analysis through personal interviews. Results: Dietary patterns aligned with the Southern European Atlantic Diet (SEAD), combined with strong social bonds and a culture of self-sufficiency, appear to be key contributors to exceptional longevity in this population. Conclusions: Remarkable longevity in Ourense is associated with a combination of factors: adherence to an SEAD-style dietary pattern, an active and uncomplicated lifestyle, and strong social support networks. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Graphical abstract

28 pages, 933 KiB  
Review
Therapeutic Horizons: Gut Microbiome, Neuroinflammation, and Epigenetics in Neuropsychiatric Disorders
by Shabnam Nohesara, Hamid Mostafavi Abdolmaleky, Ahmad Pirani and Sam Thiagalingam
Cells 2025, 14(13), 1027; https://doi.org/10.3390/cells14131027 - 4 Jul 2025
Viewed by 787
Abstract
Neuroinflammation is a hallmark of many neuropsychiatric disorders (NPD), which are among the leading causes of disability worldwide. Emerging evidence highlights the significant role of the gut microbiota (GM)–immune system–brain axis in neuroinflammation and the pathogenesis of NPD, primarily through epigenetic mechanisms. Gut [...] Read more.
Neuroinflammation is a hallmark of many neuropsychiatric disorders (NPD), which are among the leading causes of disability worldwide. Emerging evidence highlights the significant role of the gut microbiota (GM)–immune system–brain axis in neuroinflammation and the pathogenesis of NPD, primarily through epigenetic mechanisms. Gut microbes and their metabolites influence immune cell activity and brain function, thereby contributing to neuroinflammation and the development and progression of NPD. The enteric nervous system, the autonomic nervous system, neuroendocrine signaling, and the immune system all participate in bidirectional communication between the gut and the brain. Importantly, the interaction of each of these systems with the GM influences epigenetic pathways. Here, we first explore the intricate relationship among intestinal microbes, microbial metabolites, and immune cell activity, with a focus on epigenetic mechanisms involved in NPD pathogenesis. Next, we provide background information on the association between inflammation and epigenetic aberrations in the context of NPD. Additionally, we review emerging therapeutic strategies—such as prebiotics, probiotics, methyl-rich diets, ketogenic diet, and medications—that may modulate the GM–immune system–brain axis via epigenetic regulation for the prevention or treatment of NPD. Finally, we discuss the challenges and future directions in investigating the critical role of this axis in mental health. Full article
Show Figures

Figure 1

18 pages, 1703 KiB  
Article
Transgenerational Epigenetic and Phenotypic Inheritance Across Five Generations in Sheep
by Mehmet Kizilaslan, Camila U. Braz, Jessica Townsend, Todd Taylor, Thomas D. Crenshaw and Hasan Khatib
Int. J. Mol. Sci. 2025, 26(13), 6412; https://doi.org/10.3390/ijms26136412 - 3 Jul 2025
Viewed by 435
Abstract
Despite two extensive reprogramming events during early embryogenesis and gametogenesis, epigenetic information can be passed to the next generations, which constitutes the transgenerational epigenetic inheritance of phenotypes. Considering its utmost importance, there have been few studies focused on the transgenerational effects of dietary [...] Read more.
Despite two extensive reprogramming events during early embryogenesis and gametogenesis, epigenetic information can be passed to the next generations, which constitutes the transgenerational epigenetic inheritance of phenotypes. Considering its utmost importance, there have been few studies focused on the transgenerational effects of dietary interventions, such as methionine supplementation, in livestock. Using whole-genome bisulfite sequencing, we implemented a single-base resolution differential methylation analysis for the F3 and F4 descendants of control vs. methionine-supplemented F0 twin-pair rams. Based on the results of our previous study on F0, F1, and F2 generations, we compared current results of 2981 and 1726 differentially methylated cytosines (DMCs), as well as 798 and 553 unique differentially methylated genes (DMGs), in F3 and F4, respectively. We identified 41 DMGs that exhibited transgenerational epigenetic inheritance (TEI-DMGs) across four generations and 11 TEI-DMGs across five generations. Finally, we estimated the effect size of F0 diet group on F3 and F4 growth and fertility-related phenotypes, providing evidence for transgenerational effects of diet group accompanying inherited differentially methylated genes. Here, for the first time using gene-level and phenotypic data, we demonstrate that a moderate dietary intervention can exert long-lasting transgenerational effects on offspring phenotypes extending beyond the F2 generation in sheep. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

32 pages, 1613 KiB  
Review
Ultra-Processed Diets and Endocrine Disruption, Explanation of Missing Link in Rising Cancer Incidence Among Young Adults
by Almir Fajkić, Orhan Lepara, Rijad Jahić, Almira Hadžović-Džuvo, Andrej Belančić, Alexander Chupin, Doris Pavković and Emina Karahmet Sher
Cancers 2025, 17(13), 2196; https://doi.org/10.3390/cancers17132196 - 29 Jun 2025
Viewed by 1069
Abstract
The global increase in early-onset cancers among adolescents and young adults has happened at the same time as the rise in the consumption of ultra-processed foods (UPFs). Far beyond their poor nutritional quality, UPFs are increasingly seen as Trojan horses, complex biological agents [...] Read more.
The global increase in early-onset cancers among adolescents and young adults has happened at the same time as the rise in the consumption of ultra-processed foods (UPFs). Far beyond their poor nutritional quality, UPFs are increasingly seen as Trojan horses, complex biological agents that interfere with many functions of the human organism. In this review, we utilise the Trojan horse model to explain the quiet and building health risks from UPFs as foods that seem harmless, convenient, and affordable while secretly delivering endocrine-disrupting chemicals (EDCs), causing chronic low-grade inflammation, altering the microbiome, and producing epigenetic alterations. We bring together new proof showing that UPFs mess up hormonal signals, harm the body’s ability to fight off harmful germs, lead to an imbalance of microbes, and cause detrimental changes linked to cancer. Important components, such as bisphenols and phthalates, can migrate from containers into food, while additional ingredients and effects from cooking disrupt the normal balance of cells. These exposures are especially harmful during vulnerable developmental periods and may lay the groundwork for disease many years later. The Trojan horse model illustrates the hidden nature of UPF-related damage, not through a sudden toxin but via chronic dysregulation of metabolic, hormonal, and genetic control. This model changes focus from usual diet worries to a bigger-picture view of UPFs as causes of life-disrupting damage. Ultimately, this review aims to identify gaps in current knowledge and epidemiological approaches and highlight the need for multi-omics, long-term studies and personalised nutrition plans to assess and reduce the cancer risk associated with UPFs. Recognising UPFs as a silent disruptor is crucial in shaping public health policies and cancer prevention programs targeting younger people. Full article
(This article belongs to the Special Issue Lifestyle Choices and Endocrine Dysfunction on Cancer Onset and Risk)
Show Figures

Figure 1

Back to TopTop