Dynamic Rendition of Adipose Genes Under Epigenetic Regulation: Revealing New Mechanisms of Obesity Occurrence
Abstract
1. Introduction
2. Epigenetic Regulation of Obesity and Underlying Mechanisms
2.1. DNA Methylation and Obesity
2.1.1. Regulation of DNA Methylation in Adipose Tissue Development and Differentiation
2.1.2. DNA Methylation and Obesity-Related Metabolism
2.1.3. DNA Methylation in the Adipose Tissue Microenvironment
2.2. RNA Methylation and Obesity
2.2.1. Regulation of RNA Methylation in Adipose Tissue Development and Differentiation
2.2.2. RNA Methylation and Obesity-Related Metabolism
Key Components | Enzymes Included | Functions | Target RNAs | Obesity-Related Functions | References |
---|---|---|---|---|---|
Methyltransferases (Writer) | METTL3, METTL14, etc. | Catalyze the methylation of specific adenosines in RNA | Fasn, Rubicon, Klf9, glycolysis-related mRNAs | Regulate lipid metabolism, promote WAT beiging, modulate autophagy, enhance glycolysis and glucose uptake | [108,109,110,111,124,125,128] |
Demethylases (Eraser) | FTO, ALKBH5, etc. | Removal of m6A methylation modification on RNA | Gcgr, Jak2, Atg5, Atg7, Cdk2, Ccna2 | Modulate gluconeogenesis, autophagy, insulin sensitivity, cell cycle, adipocyte differentiation | [112,114,117,118,130,131] |
m6A-binding proteins (Reader) | YTH domain family proteins, IGF2BP1–3, etc. | Recognizes and binds RNAs with m6A and participates in the regulation of RNA metabolism | Bmp8b, Jak2, Atg5, Atg7, Cdk2, Ccna2, glycolytic enzyme mRNAs | Promote adipogenesis, regulate cell cycle, glucose metabolism, RNA stability, thermogenesis in adipose tissues | [113,115,116,117,118,128] |
2.2.3. RNA Methylation in the Adipose Tissue Microenvironment
2.3. Histone Modifications and Obesity
2.3.1. Regulation of Histone Modifications in Adipose Tissue Development and Differentiation
2.3.2. Histone Modifications and Obesity-Related Metabolism
2.3.3. Histone Modifications in the Adipose Tissue Microenvironment
2.4. Additional Epigenetic Mechanisms Implicated in Obesity
2.4.1. Non-Coding RNAs
2.4.2. Chromatin Remodeling
2.4.3. Post-Translational Modifications
3. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
4e-bp1 | 4E-binding protein 1 |
5mC | 5-methylcytosine |
ALYREF | Aly/REF export factor |
AMPK | AMP-activated protein kinase |
Atg5 | Autophagy-related 5 |
Bmp8b | Bone morphogenetic protein 8b |
C/EBPα | CCAAT/enhancer binding protein α |
CCNA2 | Cyclin A2 |
CDK2 | Cyclin-dependent kinase 2 |
Cdkn1a | Cyclin-Dependent Kinase Inhibitor 1A |
DMPs | Differentially methylated positions |
DNMTs | DNA methyltransferases |
EMT | Epithelial–mesenchymal transition |
EP3 | Prostaglandin E receptor 3 |
FTO | Fat mass and obesity-associated |
Fasn | Fatty acid synthase |
FGF19 | Fibroblast growth factor 19 |
H4K16ac | Acetylation of lysine 16 on histone H4 |
H3K9me2 | Dimethylation of histone H3 at lysine 9 |
HDAC1 | Histone deacetylase 1 |
IGF2BPs | Insulin-like growth factor 2 mRNA-binding proteins |
INSR | Insulin receptor |
Jak2 | Janus kinase 2 |
JMJD3 | Jumonji domain-containing protein 3 |
JHDM2A | Jumonji histone demethylase 2a |
Klf9 | Krüppel-like factor 9 |
LSD1 | Lysine-specific demethylase 1 |
m6A | N6-methyladenosine |
MOF | Male absence on the first |
METTL | Methyltransferase-like |
MBPs | Methyl-binding proteins |
Myod1 | Myogenic differentiation 1 |
NADP | Nicotinamide adenine dinucleotide phosphate |
NSUN2 | NOP2/Sun domain family, member 2 |
Nsd2 | Nuclear receptor-binding SET domain 2 |
PPARγ | Peroxisome proliferator-activated receptor γ |
PGC1α | Peroxisome proliferator-activated receptor-γ coactivator 1α |
Pik3r1 | Phosphoinositide-3-kinase regulatory subunit 1 |
Prdm16 | PR domain-containing protein 16 |
PRMT1 | Protein arginine N-methyltransferase 1 |
PKA | Protein kinase A |
Srebp-1c | Sterol regulatory element-binding protein 1c |
SIRT1 | Silent mating-type information regulation 2 homolog 1 |
STAT3 | Sgnal transducer and activator of transcription 3 |
SMURF2 | Smad ubiquitination regulatory factor 2 |
SUV420H2 | Suppressor of variegation 4-20 homolog 2 |
TNF-α | Tumor necrosis factor α |
TET1 | Ten-eleven translocation 1 |
UTX | Ubiquitously transcribed tetratricopeptide repeat, X chromosome-encoded |
UCP1 | Uncoupling protein 1 |
VASPIN | Visceral adipose tissue-derived serine protease inhibitor |
VIRMA/KIAA1429 | Vir-like m6A methyltransferase associated |
WAT | White adipose tissue |
WTAP | Wilms tumor 1-associated protein |
Wnt10a | Wingless-type MMTV integration site family, member 10a |
YTHDF1 | YTH domain-containing family protein 1 |
Zfp410 | Zinc finger protein 410 |
References
- Phelps, N.H.; Singleton, R.K.; Zhou, B.; Heap, R.A.; Mishra, A.; Bennett, J.E.; Paciorek, C.J.; Lhoste, V.P.; Carrillo-Larco, R.M.; Stevens, G.A.; et al. Worldwide Trends in Underweight and Obesity from 1990 to 2022: A Pooled Analysis of 3663 Population-Representative Studies with 222 Million Children, Adolescents, and Adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef] [PubMed]
- Pi-Sunyer, X. The Medical Risks of Obesity. Postgrad. Med. 2009, 121, 21–33. [Google Scholar] [CrossRef]
- Mahmoud, A.M. An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. Int. J. Mol. Sci. 2022, 23, 1341. [Google Scholar] [CrossRef]
- Lu, S.; Zhao, H.; Zhou, Y.; Xu, F. Curcumin Affects Leptin-Induced Expression of Methionine Adenosyltransferase 2A in Hepatic Stellate Cells by Inhibition of JNK Signaling. Pharmacology 2021, 106, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.J.; Choi, M.-S. Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [Google Scholar] [CrossRef] [PubMed]
- Dragoo, J.L.; Shapiro, S.A.; Bradsell, H.; Frank, R.M. The Essential Roles of Human Adipose Tissue: Metabolic, Thermoregulatory, Cellular, and Paracrine Effects. J. Cartil. Jt. Preserv. 2021, 1, 100023. [Google Scholar] [CrossRef]
- Sakaguchi, M. Adipose Tissue Dynamics, Thermogenesis, and Interorgan Connections for Preventing Obesity and Metabolic Disorders. JMA J. 2024, 7, 172–177. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, X.; Su, S.; Ji, F.; Shao, D.; Duan, C.; Chen, T.; Liang, C.; Zhang, D.; Lu, H. Identifying of Immune-Associated Genes for Assessing the Obesity-Associated Risk to the Offspring in Maternal Obesity: A Bioinformatics and Machine Learning. CNS Neurosci. Ther. 2024, 30, e14700. [Google Scholar] [CrossRef]
- Górczyńska-Kosiorz, S.; Kosiorz, M.; Dzięgielewska-Gęsiak, S. Exploring the Interplay of Genetics and Nutrition in the Rising Epidemic of Obesity and Metabolic Diseases. Nutrients 2024, 16, 3562. [Google Scholar] [CrossRef]
- Berger, S.L.; Kouzarides, T.; Shiekhattar, R.; Shilatifard, A. An Operational Definition of Epigenetics. Genes Dev. 2009, 23, 781–783. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, K.; Guan, K.; Khan, F.A.; Pandupuspitasari, N.S.; Negara, W.; Sun, F.; Huang, C. Future in the Past: Paternal Reprogramming of Offspring Phenotype and the Epigenetic Mechanisms. Arch. Toxicol. 2024, 98, 1685–1703. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Rönn, T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab. 2019, 29, 1028–1044. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Mao, C.; Liu, S.; Tao, Y.; Xiao, D. Epigenetic Modifications in Obesity-Associated Diseases. MedComm 2024, 5, e496. [Google Scholar] [CrossRef]
- Vohl, M.-C.; Malagón, M.M.; Ramos-Molina, B. Editorial: Dietary Factors, Epigenetics and Their Implications for Human Obesity. Front. Endocrinol. 2020, 11, 601. [Google Scholar] [CrossRef]
- Park, Y.J.; Han, S.M.; Huh, J.Y.; Kim, J.B. Emerging Roles of Epigenetic Regulation in Obesity and Metabolic Disease. J. Biol. Chem. 2021, 297, 101296. [Google Scholar] [CrossRef]
- Izquierdo, A.G.; Crujeiras, A.B. Obesity-Related Epigenetic Changes after Bariatric Surgery. Front. Endocrinol. 2019, 10, 232. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Aghaei-Zarch, S.M. From Molecular Pathogenesis to Therapy: Unraveling Non-Coding RNAs/DNMT3A Axis in Human Cancers. Biochem. Pharmacol. 2024, 222, 116107. [Google Scholar] [CrossRef]
- Bird, A. DNA Methylation Patterns and Epigenetic Memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef]
- Wang, C.; Wang, M.; Ma, J. Analysis of Genome-Wide DNA Methylation Patterns in Obesity. Endocr. J. 2021, 68, 1439–1453. [Google Scholar] [CrossRef]
- McAllan, L.; Baranasic, D.; Villicaña, S.; Brown, S.; Zhang, W.; Lehne, B.; Adamo, M.; Jenkinson, A.; Elkalaawy, M.; Mohammadi, B.; et al. Integrative Genomic Analyses in Adipocytes Implicate DNA Methylation in Human Obesity and Diabetes. Nat. Commun. 2023, 14, 2784. [Google Scholar] [CrossRef]
- Nicoletti, C.F.; Cortes-Oliveira, C.; Noronha, N.Y.; Pinhel, M.A.S.; Dantas, W.S.; Jácome, A.; Marchini, J.S.; Gualano, B.; Crujeiras, A.B.; Nonino, C.B. DNA Methylation Pattern Changes Following a Short-Term Hypocaloric Diet in Women with Obesity. Eur. J. Clin. Nutr. 2020, 74, 1345–1353. [Google Scholar] [CrossRef]
- Pinhel, M.A.S.; Noronha, N.Y.; Nicoletti, C.F.; Pereira, V.A.; de Oliveira, B.A.; Cortes-Oliveira, C.; Salgado, W.; Barbosa, F.; Marchini, J.S.; Souza, D.R.; et al. Changes in DNA Methylation and Gene Expression of Insulin and Obesity-Related Gene PIK3R1 after Roux-En-Y Gastric Bypass. Int. J. Mol. Sci. 2020, 21, 4476. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.; Krassowska, A.; Gilbert, N.; Chevassut, T.; Forrester, L.; Ansell, J.; Ramsahoye, B. Severe Global DNA Hypomethylation Blocks Differentiation and Induces Histone Hyperacetylation in Embryonic Stem Cells. Mol. Cell. Biol. 2004, 24, 8862–8871. [Google Scholar] [CrossRef]
- Yagi, M.; Kabata, M.; Tanaka, A.; Ukai, T.; Ohta, S.; Nakabayashi, K.; Shimizu, M.; Hata, K.; Meissner, A.; Yamamoto, T.; et al. Identification of Distinct Loci for de Novo DNA Methylation by DNMT3A and DNMT3B during Mammalian Development. Nat. Commun. 2020, 11, 3199. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-F.; Li, B.-Z.; Li, Z.; Liu, P.; Wang, Y.; Tang, Q.; Ding, J.; Jia, Y.; Chen, Z.; Li, L.; et al. Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science 2011, 333, 1303–1307. [Google Scholar] [CrossRef]
- Mahmood, N.; Rabbani, S.A. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front. Oncol. 2019, 9, 489. [Google Scholar] [CrossRef] [PubMed]
- Kamei, Y.; Suganami, T.; Ehara, T.; Kanai, S.; Hayashi, K.; Yamamoto, Y.; Miura, S.; Ezaki, O.; Okano, M.; Ogawa, Y. Increased Expression of DNA Methyltransferase 3a in Obese Adipose Tissue: Studies with Transgenic Mice. Obesity 2010, 18, 314–321. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Yin, R.-X. Recent Progress in Epigenetics of Obesity. Diabetol. Metab. Syndr. 2022, 14, 171. [Google Scholar] [CrossRef]
- Bruggeman, E.C.; Garretson, J.T.; Wu, R.; Shi, H.; Xue, B. Neuronal Dnmt1 Deficiency Attenuates Diet-Induced Obesity in Mice. Endocrinology 2018, 159, 145–162. [Google Scholar] [CrossRef]
- Shinozaki, H.; Kawai, S.; Gamo-Kawasaki, M.; Takei, A.; Tsujikado, K.; Fukuda, K.; Yamauchi, M.; Hara, K.; Tsuchiya, T.; Takebayashi, K.; et al. Analysis of Serum Levels and DNA Methylation of Fibroblast Growth Factor 21 Using Peripheral Blood-Derived Genomes in Patients with Obesity. Endocr. J. 2024, 71, 907–924. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Vilarrubla, A.; Mas-Parés, B.; Carreras-Badosa, G.; Bonmatí-Santané, A.; Martínez-Calcerrada, J.-M.; Niubó-Pallàs, M.; de Zegher, F.; Ibáñez, L.; López-Bermejo, A.; Bassols, J. DNA Methylation Signatures in Paired Placenta and Umbilical Cord Samples: Relationship with Maternal Pregestational Body Mass Index and Offspring Metabolic Outcomes. Biomedicines 2024, 12, 301. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Huang, P.; Huang, X.; Zhang, L.; Liu, L.; Xiang, W.; Liu, L.; He, X. Alterations of DNA Methylation Profile in Peripheral Blood of Children with Simple Obesity. Health Inf. Sci. Syst. 2024, 12, 26. [Google Scholar] [CrossRef]
- Sehgal, R.; Perfilyev, A.; Männistö, V.; Ågren, J.; Nilsson, E.; Käkelä, P.; Ling, C.; de Mello, V.D.; Pihlajamäki, J. Liver Saturated Fat Content Associates with Hepatic DNA Methylation in Obese Individuals. Clin. Epigenetics 2023, 15, 21. [Google Scholar] [CrossRef]
- Kvaløy, K.; Page, C.M.; Holmen, T.L. Epigenome-Wide Methylation Differences in a Group of Lean and Obese Women—A HUNT Study. Sci. Rep. 2018, 8, 16330. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Berg, A.; Imamura Kawasawa, Y.; Bixler, E.O.; Fernandez-Mendoza, J.; Whitsel, E.A.; Liao, D. Association between DNA Methylation in Obesity-Related Genes and Body Mass Index Percentile in Adolescents. Sci. Rep. 2019, 9, 2079. [Google Scholar] [CrossRef]
- Salas-Pérez, F.; Ramos-Lopez, O.; Mansego, M.L.; Milagro, F.I.; Santos, J.L.; Riezu-Boj, J.I.; Martínez, J.A. DNA Methylation in Genes of Longevity-Regulating Pathways: Association with Obesity and Metabolic Complications. Aging 2019, 11, 1874–1899. [Google Scholar] [CrossRef]
- Keyhan, S.; Burke, E.; Schrott, R.; Huang, Z.; Grenier, C.; Price, T.; Raburn, D.; Corcoran, D.L.; Soubry, A.; Hoyo, C.; et al. Male Obesity Impacts DNA Methylation Reprogramming in Sperm. Clin. Epigenetics 2021, 13, 17. [Google Scholar] [CrossRef]
- Rushing, A.; Sommer, E.C.; Zhao, S.; Po’e, E.K.; Barkin, S.L. Salivary Epigenetic Biomarkers as Predictors of Emerging Childhood Obesity. BMC Med. Genet. 2020, 21, 34. [Google Scholar] [CrossRef]
- Nishida, H.; Onishi, K.; Kurose, S.; Tsutsumi, H.; Miyauchi, T.; Takao, N.; Yoshiuchi, S.; Fujii, A.; Kimura, Y. Changes in Body Composition and FTO Whole Blood DNA Methylation among Japanese Women: A Randomized Clinical Trial of Weight-Loss Program. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 2157–2167. [Google Scholar] [CrossRef]
- Jing, J.; Li, F.; Zha, L.; Yang, X.; Wu, R.; Wang, S.; Xue, B.; Shi, H. The Histone Methyltransferase Suv39h Regulates 3T3-L1 Adipogenesis. Adipocyte 2020, 9, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, R.; Shan, W.; Yu, L.; Xue, B.; Shi, H. DNA Methylation Biphasically Regulates 3T3-L1 Preadipocyte Differentiation. Mol. Endocrinol. 2016, 30, 677–687. [Google Scholar] [CrossRef]
- Ju, U.-I.; Jeong, D.-W.; Seo, J.; Park, J.B.; Park, J.-W.; Suh, K.-S.; Kim, J.B.; Chun, Y.-S. Neddylation of Sterol Regulatory Element-Binding Protein 1c Is a Potential Therapeutic Target for Nonalcoholic Fatty Liver Treatment. Cell Death Dis. 2020, 11, 283. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, L.; Pandak, W.M.; Heuman, D.; Hylemon, P.B.; Ren, S. High Glucose Induces Lipid Accumulation via 25-Hydroxycholesterol DNA-CpG Methylation. iScience 2020, 23, 101102. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Tsujimoto, K.; Hashimoto, K.; Kawahori, K.; Hanzawa, N.; Hamaguchi, M.; Seki, T.; Nawa, M.; Ehara, T.; Kitamura, Y.; et al. Epigenetic Modulation of Fgf21 in the Perinatal Mouse Liver Ameliorates Diet-Induced Obesity in Adulthood. Nat. Commun. 2018, 9, 636. [Google Scholar] [CrossRef]
- Xiao, M.; Tang, Y.; Wang, S.; Wang, J.; Wang, J.; Guo, Y.; Zhang, J.; Gu, J. The Role of Fibroblast Growth Factor 21 in Diabetic Cardiovascular Complications and Related Epigenetic Mechanisms. Front. Endocrinol. 2021, 12, 598008. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Seok, S.; Zhang, Y.; Ma, J.; Kong, B.; Guo, G.; Kemper, B.; Kemper, J.K. Intestinal FGF15/19 Physiologically Repress Hepatic Lipogenesis in the Late Fed-State by Activating SHP and DNMT3A. Nat. Commun. 2020, 11, 5969. [Google Scholar] [CrossRef]
- Tovy, A.; Reyes, J.M.; Zhang, L.; Huang, Y.-H.; Rosas, C.; Daquinag, A.C.; Guzman, A.; Ramabadran, R.; Chen, C.-W.; Gu, T.; et al. Constitutive Loss of DNMT3A Causes Morbid Obesity through Misregulation of Adipogenesis. eLife 2022, 11, e72359. [Google Scholar] [CrossRef]
- Ma, L.; Dai, X.; Wu, C.; Li, M.; Sheng, H.; Mao, W. Tanyu Tongzhi Formula Delays Atherosclerotic Plaque Progression by Promoting Alternative Macrophage Activation via PPARγ and AKT/ERK Signal Pathway in ApoE Knock-out Mice. Front. Pharmacol. 2021, 12, 734589. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Shen, C. Peroxisome Proliferator-Activated Receptor γ in White and Brown Adipocyte Regulation and Differentiation. Physiol. Res. 2020, 69, 759–773. [Google Scholar] [CrossRef]
- Longo, M.; Raciti, G.A.; Zatterale, F.; Parrillo, L.; Desiderio, A.; Spinelli, R.; Hammarstedt, A.; Hedjazifar, S.; Hoffmann, J.M.; Nigro, C.; et al. Epigenetic Modifications of the Zfp/ZNF423 Gene Control Murine Adipogenic Commitment and Are Dysregulated in Human Hypertrophic Obesity. Diabetologia 2018, 61, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Li, R.-L.; Kang, S. Rewriting Cellular Fate: Epigenetic Interventions in Obesity and Cellular Programming. Mol. Med. Camb. Mass 2024, 30, 169. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-E.; Schmidt, H.; Lai, B.; Ge, K. Transcriptional and Epigenomic Regulation of Adipogenesis. Mol. Cell. Biol. 2019, 39, e00601-18. [Google Scholar] [CrossRef]
- Ricquier, D. Uncoupling Protein 1 of Brown Adipocytes, the Only Uncoupler: A Historical Perspective. Front. Endocrinol. 2011, 2, 85. [Google Scholar] [CrossRef]
- Liang, X.; Guan, H.; Sun, J.; Qi, Y.; Yao, W. Comparative Proteomic Analysis of tPVAT during Ang II Infusion. Biomedicines 2021, 9, 1820. [Google Scholar] [CrossRef]
- Weiner, J.; Rohde, K.; Krause, K.; Zieger, K.; Klöting, N.; Kralisch, S.; Kovacs, P.; Stumvoll, M.; Blüher, M.; Böttcher, Y.; et al. Brown Adipose Tissue (BAT) Specific Vaspin Expression Is Increased after Obesogenic Diets and Cold Exposure and Linked to Acute Changes in DNA-Methylation. Mol. Metab. 2017, 6, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Damal Villivalam, S.; You, D.; Kim, J.; Lim, H.W.; Xiao, H.; Zushin, P.-J.H.; Oguri, Y.; Amin, P.; Kang, S. TET1 Is a Beige Adipocyte-Selective Epigenetic Suppressor of Thermogenesis. Nat. Commun. 2020, 11, 4313. [Google Scholar] [CrossRef] [PubMed]
- Nigro, E.; Scudiero, O.; Monaco, M.L.; Palmieri, A.; Mazzarella, G.; Costagliola, C.; Bianco, A.; Daniele, A. New Insight into Adiponectin Role in Obesity and Obesity-Related Diseases. Biomed Res. Int. 2014, 2014, 658913. [Google Scholar] [CrossRef]
- Choi, H.M.; Doss, H.M.; Kim, K.S. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int. J. Mol. Sci. 2020, 21, 1219. [Google Scholar] [CrossRef]
- Benomar, Y.; Gertler, A.; De Lacy, P.; Crépin, D.; Ould Hamouda, H.; Riffault, L.; Taouis, M. Central Resistin Overexposure Induces Insulin Resistance through Toll-like Receptor 4. Diabetes 2013, 62, 102–114. [Google Scholar] [CrossRef]
- Yao, H.; Fan, C.; Lu, Y.; Fan, X.; Xia, L.; Li, P.; Wang, R.; Tang, T.; Wang, Y.; Qi, K. Alteration of Gut Microbiota Affects Expression of Adiponectin and Resistin through Modifying DNA Methylation in High-Fat Diet-Induced Obese Mice. Genes Nutr. 2020, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.Y.; Park, Y.J.; Pan, X.; Shin, K.C.; Kwak, S.-H.; Bassas, A.F.; Sallam, R.M.; Park, K.S.; Alfadda, A.A.; Xu, A.; et al. Obesity-Induced DNA Hypermethylation of the Adiponectin Gene Mediates Insulin Resistance. Nat. Commun. 2015, 6, 7585. [Google Scholar] [CrossRef]
- Un Nisa, K.; Reza, M.I. Key Relevance of Epigenetic Programming of Adiponectin Gene in Pathogenesis of Metabolic Disorders. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 506–517. [Google Scholar] [CrossRef]
- Wang, S.; Zha, L.; Cui, X.; Yeh, Y.-T.; Liu, R.; Jing, J.; Shi, H.; Chen, W.; Hanover, J.; Yin, J.; et al. Epigenetic Regulation of Hepatic Lipid Metabolism by DNA Methylation. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2023, 10, e2206068. [Google Scholar] [CrossRef]
- Zhong, X.; Jin, F.; Huang, C.; Du, M.; Gao, M.; Wei, X. DNA Methylation of AMHRII and INSR Gene Is Associated with the Pathogenesis of Polycystic Ovary Syndrome (PCOS). Technol. Health Care 2021, 29, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Payankaulam, S.; Raicu, A.-M.; Arnosti, D.N. Transcriptional Regulation of INSR, the Insulin Receptor Gene. Genes 2019, 10, 984. [Google Scholar] [CrossRef]
- Kaminska, D.; Hämäläinen, M.; Cederberg, H.; Käkelä, P.; Venesmaa, S.; Miettinen, P.; Ilves, I.; Herzig, K.-H.; Kolehmainen, M.; Karhunen, L.; et al. Adipose Tissue INSR Splicing in Humans Associates with Fasting Insulin Level and Is Regulated by Weight Loss. Diabetologia 2014, 57, 347–351. [Google Scholar] [CrossRef]
- Calcaterra, V.; Zuccotti, G.; Mari, A.; Iafusco, F.; Maione, G.; Iafusco, D.; Tinto, N. Can Obesity Exacerbate Hyperinsulinaemia in the Presence of the Mutation of an Insulin Receptor Gene? Clin. Obes. 2023, 13, e12619. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Song, J.; He, X.; Zhang, M.; Hu, S.; Zhang, S.; Yu, Q.; Yang, P.; Xiong, F.; Wang, D.W.; et al. Loss of Mbd2 Protects Mice against High-Fat Diet-Induced Obesity and Insulin Resistance by Regulating the Homeostasis of Energy Storage and Expenditure. Diabetes 2016, 65, 3384–3395. [Google Scholar] [CrossRef]
- Mirza, I.; Mohamed, A.; Deen, H.; Balaji, S.; Elsabbahi, D.; Munasser, A.; Naquiallah, D.; Abdulbaseer, U.; Hassan, C.; Masrur, M.; et al. Obesity-Associated Vitamin D Deficiency Correlates with Adipose Tissue DNA Hypomethylation, Inflammation, and Vascular Dysfunction. Int. J. Mol. Sci. 2022, 23, 14377. [Google Scholar] [CrossRef]
- Fitzgerald, K.N.; Hodges, R.; Hanes, D.; Stack, E.; Cheishvili, D.; Szyf, M.; Henkel, J.; Twedt, M.W.; Giannopoulou, D.; Herdell, J.; et al. Potential Reversal of Epigenetic Age Using a Diet and Lifestyle Intervention: A Pilot Randomized Clinical Trial. Aging 2021, 13, 9419–9432. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Lu, Z.; Jiang, X.; Zhang, S.; Tian, X.; Wang, Q. Obesity-Derived Macrophages Upregulate TNF-α to Induce Apoptosis in Glial Cell via the NF-κB/PHLPP1 Axis. Int. Immunopharmacol. 2024, 141, 112962. [Google Scholar] [CrossRef]
- Hohos, N.M.; Smith, A.K.; Kilaru, V.; Park, H.J.; Hausman, D.B.; Bailey, L.B.; Lewis, R.D.; Phillips, B.G.; Meagher, R.B. CD4+ and CD8+ T-Cell-Specific DNA Cytosine Methylation Differences Associated with Obesity. Obesity 2018, 26, 1312–1321. [Google Scholar] [CrossRef] [PubMed]
- Crujeiras, A.B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F.I.; Navas-Carretero, S.; Carreira, M.C.; Gomez, A.; Hervas, D.; Monteiro, M.P.; Casanueva, F.F.; et al. DNA Methylation Map in Circulating Leukocytes Mirrors Subcutaneous Adipose Tissue Methylation Pattern: A Genome-Wide Analysis from Non-Obese and Obese Patients. Sci. Rep. 2017, 7, 41903. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Q.; Yu, L.; Shi, H.; Xue, B.; Shi, H. Epigenetic Regulation of Macrophage Polarization and Inflammation by DNA Methylation in Obesity. JCI Insight 2016, 1, e87748. [Google Scholar] [CrossRef] [PubMed]
- Cappannini, A.; Ray, A.; Purta, E.; Mukherjee, S.; Boccaletto, P.; Moafinejad, S.N.; Lechner, A.; Barchet, C.; Klaholz, B.P.; Stefaniak, F.; et al. MODOMICS: A Database of RNA Modifications and Related Information. 2023 Update. Nucleic Acids Res. 2024, 52, D239–D244. [Google Scholar] [CrossRef]
- Han, B.; Xi, W.; Hong, Y.; Gu, L.; Chao, Y.; Li, L.; Liu, C.; Yang, L.; Chao, J.; Yao, H. Mutual Regulation of Noncoding RNAs and RNA Modifications in Psychopathology: Potential Therapeutic Targets for Psychiatric Disorders? Pharmacol. Ther. 2022, 237, 108254. [Google Scholar] [CrossRef]
- Wilkinson, E.; Cui, Y.-H.; He, Y.-Y. Roles of RNA Modifications in Diverse Cellular Functions. Front. Cell Dev. Biol. 2022, 10, 828683. [Google Scholar] [CrossRef]
- Zhang, B.; Hao, Y.; Liu, H.; Wu, J.; Lu, L.; Wang, X.; Bajpai, A.K.; Yang, X. Interplay of RNA m6A Modification-Related Geneset in Pan-Cancer. Biomedicines 2024, 12, 2211. [Google Scholar] [CrossRef]
- Bai, Y.; Chang, D.; Ren, H.; Ju, M.; Wang, Y.; Chen, B.; Li, H.; Liu, X.; Li, D.; Huo, X.; et al. Engagement of N6-Methyladenisine Methylation of Gng4 mRNA in Astrocyte Dysfunction Regulated by CircHECW2. Acta Pharm. Sin. B 2024, 14, 1644–1660. [Google Scholar] [CrossRef]
- Liu, H.; Gu, J.; Jin, Y.; Yuan, Q.; Ma, G.; Du, M.; Ge, Y.; Qin, C.; Lv, Q.; Fu, G.; et al. Genetic Variants in N6-Methyladenosine Are Associated with Bladder Cancer Risk in the Chinese Population. Arch. Toxicol. 2021, 95, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Hu, Y.; Zhou, B.; Bao, Y.; Li, Z.; Gong, C.; Yang, H.; Wang, S.; Xiao, Y. The Role of m6A Modification in Physiology and Disease. Cell Death Dis. 2020, 11, 960. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, X.; Xie, J.; Xu, Y.; Li, X.-J.; Lin, L. Emerging Roles for DNA 6mA and RNA m6A Methylation in Mammalian Genome. Int. J. Mol. Sci. 2023, 24, 13897. [Google Scholar] [CrossRef] [PubMed]
- Knuckles, P.; Lence, T.; Haussmann, I.U.; Jacob, D.; Kreim, N.; Carl, S.H.; Masiello, I.; Hares, T.; Villaseñor, R.; Hess, D.; et al. Zc3h13/Flacc Is Required for Adenosine Methylation by Bridging the mRNA-Binding Factor Rbm15/Spenito to the m6A Machinery Component Wtap/Fl(2)d. Genes Dev. 2018, 32, 415–429. [Google Scholar] [CrossRef]
- Wang, X.; Gan, M.; Wang, Y.; Wang, S.; Lei, Y.; Wang, K.; Zhang, X.; Chen, L.; Zhao, Y.; Niu, L.; et al. Comprehensive Review on Lipid Metabolism and RNA Methylation: Biological Mechanisms, Perspectives and Challenges. Int. J. Biol. Macromol. 2024, 270, 132057. [Google Scholar] [CrossRef]
- Liu, J.; Yue, Y.; Han, D.; Wang, X.; Fu, Y.; Zhang, L.; Jia, G.; Yu, M.; Lu, Z.; Deng, X.; et al. A METTL3-METTL14 Complex Mediates Mammalian Nuclear RNA N6-Adenosine Methylation. Nat. Chem. Biol. 2014, 10, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Feng, J.; Xue, Y.; Guan, Z.; Zhang, D.; Liu, Z.; Gong, Z.; Wang, Q.; Huang, J.; Tang, C.; et al. Structural Basis of N(6)-Adenosine Methylation by the METTL3-METTL14 Complex. Nature 2016, 534, 575–578. [Google Scholar] [CrossRef]
- Chen, W.-W.; Qi, J.-W.; Hang, Y.; Wu, J.-X.; Zhou, X.-X.; Chen, J.-Z.; Wang, J.; Wang, H.-H. Simvastatin Is Beneficial to Lung Cancer Progression by Inducing METTL3-Induced m6A Modification on EZH2 mRNA. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4263–4270. [Google Scholar] [CrossRef]
- Corbeski, I.; Vargas-Rosales, P.A.; Bedi, R.K.; Deng, J.; Coelho, D.; Braud, E.; Iannazzo, L.; Li, Y.; Huang, D.; Ethève-Quelquejeu, M.; et al. The Catalytic Mechanism of the RNA Methyltransferase METTL3. eLife 2024, 12, RP92537. [Google Scholar] [CrossRef]
- Su, S.; Li, S.; Deng, T.; Gao, M.; Yin, Y.; Wu, B.; Peng, C.; Liu, J.; Ma, J.; Zhang, K. Cryo-EM Structures of Human m6A Writer Complexes. Cell Res. 2022, 32, 982–994. [Google Scholar] [CrossRef]
- Peng, C.; Xiong, F.; Pu, X.; Hu, Z.; Yang, Y.; Qiao, X.; Jiang, Y.; Han, M.; Wang, D.; Li, X. m6A Methylation Modification and Immune Cell Infiltration: Implications for Targeting the Catalytic Subunit m6A-METTL Complex in Gastrointestinal Cancer Immunotherapy. Front. Immunol. 2023, 14, 1326031. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, C.; Yin, W.; Tao, M.; Niu, Z.; Cui, Y.; Wu, D.; Gao, F. From Bone Marrow Mesenchymal Stem Cells to Diseases: The Crucial Role of m6A Methylation in Orthopedics. Stem Cell Res. Ther. 2025, 16, 228. [Google Scholar] [CrossRef] [PubMed]
- Lence, T.; Paolantoni, C.; Worpenberg, L.; Roignant, J.-Y. Mechanistic Insights into m6A RNA Enzymes. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 222–229. [Google Scholar] [CrossRef]
- Berlivet, S.; Scutenaire, J.; Deragon, J.-M.; Bousquet-Antonelli, C. Readers of the m6A Epitranscriptomic Code. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 329–342. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, L.-H.; Wang, Y.; Xiao, Y.; Liu, J.; Zhang, W.; Yan, N.; Amu, G.; Tang, X.; Zhang, L.; et al. Structural Insights into FTO’s Catalytic Mechanism for the Demethylation of Multiple RNA Substrates. Proc. Natl. Acad. Sci. USA 2019, 116, 2919–2924. [Google Scholar] [CrossRef]
- Mauer, J.; Luo, X.; Blanjoie, A.; Jiao, X.; Grozhik, A.V.; Patil, D.P.; Linder, B.; Pickering, B.F.; Vasseur, J.-J.; Chen, Q.; et al. Reversible Methylation of m6Am in the 5′ Cap Controls mRNA Stability. Nature 2017, 541, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Zhang, L.; Lee, T.; Sun, T. m6A RNA Methylation Controls Neural Development and Is Involved in Human Diseases. Mol. Neurobiol. 2019, 56, 1596–1606. [Google Scholar] [CrossRef]
- Yan, S.; Wen, W.; Mo, Z.; Gu, S.; Chen, Z. Epitranscriptomic Role of m6A in Obesity-Associated Disorders and Cancer Metabolic Reprogramming. Genes 2025, 16, 498. [Google Scholar] [CrossRef]
- Kaur, S.; Tam, N.Y.; McDonough, M.A.; Schofield, C.J.; Aik, W.S. Mechanisms of Substrate Recognition and N6-Methyladenosine Demethylation Revealed by Crystal Structures of ALKBH5–RNA Complexes. Nucleic Acids Res. 2022, 50, 4148–4160. [Google Scholar] [CrossRef]
- Zheng, G.; Dahl, J.A.; Niu, Y.; Fedorcsak, P.; Huang, C.-M.; Li, C.J.; Vågbø, C.B.; Shi, Y.; Wang, W.-L.; Song, S.-H.; et al. ALKBH5 Is a Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility. Mol. Cell 2013, 49, 18–29. [Google Scholar] [CrossRef]
- Zhang, W.; Qian, Y.; Jia, G. The Detection and Functions of RNA Modification m6A Based on m6A Writers and Erasers. J. Biol. Chem. 2021, 297, 100973. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zeng, C.; Liu, J.; Wang, L.; Yuan, X.; Yuan, L.; Xia, X.; Huang, W. The YTH Domain-Containing Protein Family: Emerging Players in Immunomodulation and Tumour Immunotherapy Targets. Clin. Transl. Med. 2024, 14, e1784. [Google Scholar] [CrossRef] [PubMed]
- Zaccara, S.; Jaffrey, S.R. A Unified Model for the Function of YTHDF Proteins in Regulating m6A-Modified mRNA. Cell 2020, 181, 1582–1595.e18. [Google Scholar] [CrossRef]
- Huang, H.; Weng, H.; Sun, W.; Qin, X.; Shi, H.; Wu, H.; Zhao, B.S.; Mesquita, A.; Liu, C.; Yuan, C.L.; et al. Recognition of RNA N6-Methyladenosine by IGF2BP Proteins Enhances mRNA Stability and Translation. Nat. Cell Biol. 2018, 20, 285–295. [Google Scholar] [CrossRef]
- Rønningen, T.; Dahl, M.B.; Valderhaug, T.G.; Cayir, A.; Keller, M.; Tönjes, A.; Blüher, M.; Böttcher, Y. m6A Regulators in Human Adipose Tissue—Depot-Specificity and Correlation with Obesity. Front. Endocrinol. 2021, 12, 778875. [Google Scholar] [CrossRef]
- Onalan, E.; Yakar, B.; Onalan, E.E.; Karakulak, K.; Kaymaz, T.; Donder, E. m6A RNA, FTO, ALKBH5 Expression in Type 2 Diabetic and Obesity Patients. J. Coll. Physicians Surg.--Pak. JCPSP 2022, 32, 1143–1148. [Google Scholar] [CrossRef]
- Czogała, W.; Czogała, M.; Strojny, W.; Wątor, G.; Wołkow, P.; Wójcik, M.; Bik Multanowski, M.; Tomasik, P.; Wędrychowicz, A.; Kowalczyk, W.; et al. Methylation and Expression of FTO and PLAG1 Genes in Childhood Obesity: Insight into Anthropometric Parameters and Glucose-Lipid Metabolism. Nutrients 2021, 13, 1683. [Google Scholar] [CrossRef] [PubMed]
- Croft, A.J.; Kelly, C.; Chen, D.; Haw, T.J.; Balachandran, L.; Murtha, L.A.; Boyle, A.J.; Sverdlov, A.L.; Ngo, D.T.M. Sex-Based Differences in Short- and Longer-Term Diet-Induced Metabolic Heart Disease. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H1219–H1251. [Google Scholar] [CrossRef]
- Chao, M.; Wang, M.; Han, H.; Liu, Y.; Sun, X.; Tian, T.; Pang, W.; Cai, R. Profiling of m6A Methylation in Porcine Intramuscular Adipocytes and Unravelling PHKG1 Represses Porcine Intramuscular Lipid Deposition in an m6A-Dependent Manner. Int. J. Biol. Macromol. 2024, 272, 132728. [Google Scholar] [CrossRef]
- Xie, R.; Yan, S.; Zhou, X.; Gao, Y.; Qian, Y.; Hou, J.; Chen, Z.; Lai, K.; Gao, X.; Wei, S. Activation of METTL3 Promotes White Adipose Tissue Beiging and Combats Obesity. Diabetes 2023, 72, 1083–1094. [Google Scholar] [CrossRef]
- Tao, X.; Du, R.; Guo, S.; Feng, X.; Yu, T.; OuYang, Q.; Chen, Q.; Fan, X.; Wang, X.; Guo, C.; et al. PGE2 -EP3 Axis Promotes Brown Adipose Tissue Formation through Stabilization of WTAP RNA Methyltransferase. EMBO J. 2022, 41, e110439. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Song, C.; Wang, N.; Li, S.; Liu, Q.; Sun, Z.; Wang, K.; Yu, S.-C.; Yang, Q. NADP Modulates RNA m6A Methylation and Adipogenesis via Enhancing FTO Activity. Nat. Chem. Biol. 2020, 16, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhou, X.; Wu, C.; Gao, Y.; Qian, Y.; Hou, J.; Xie, R.; Han, B.; Chen, Z.; Wei, S.; et al. Adipocyte YTH N(6)-Methyladenosine RNA-Binding Protein 1 Protects against Obesity by Promoting White Adipose Tissue Beiging in Male Mice. Nat. Commun. 2023, 14, 1379. [Google Scholar] [CrossRef]
- Wu, R.; Liu, Y.; Yao, Y.; Zhao, Y.; Bi, Z.; Jiang, Q.; Liu, Q.; Cai, M.; Wang, F.; Wang, Y.; et al. FTO Regulates Adipogenesis by Controlling Cell Cycle Progression via m6A-YTHDF2 Dependent Mechanism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 1323–1330. [Google Scholar] [CrossRef]
- Li, J.; Xie, H.; Ying, Y.; Chen, H.; Yan, H.; He, L.; Xu, M.; Xu, X.; Liang, Z.; Liu, B.; et al. YTHDF2 Mediates the mRNA Degradation of the Tumor Suppressors to Induce AKT Phosphorylation in N6-Methyladenosine-Dependent Way in Prostate Cancer. Mol. Cancer 2020, 19, 152. [Google Scholar] [CrossRef]
- Sato, S.; Dacher, M.; Kurumizaka, H. Nucleosome Structures Built from Highly Divergent Histones: Parasites and Giant DNA Viruses. Epigenomes 2022, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Guo, G.; Bi, Z.; Liu, Y.; Zhao, Y.; Chen, N.; Wang, F.; Wang, Y.; Wang, X. m6A Methylation Modulates Adipogenesis through JAK2-STAT3-C/EBPβ Signaling. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 796–806. [Google Scholar] [CrossRef]
- Wang, X.; Wu, R.; Liu, Y.; Zhao, Y.; Bi, Z.; Yao, Y.; Liu, Q.; Shi, H.; Wang, F.; Wang, Y. m6A mRNA Methylation Controls Autophagy and Adipogenesis by Targeting Atg5 and Atg7. Autophagy 2020, 16, 1221–1235. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Wu, R.; Chen, Y.; Chen, W.; Liu, Y.; Luo, Y.; Huang, C.; Zeng, B.; Liao, X.; et al. mRNA m5C Controls Adipogenesis by Promoting CDKN1A mRNA Export and Translation. RNA Biol. 2021, 18, 711–721. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Wu, R.; Gao, C.-C.; Liao, X.; Han, X.; Zeng, B.; Huang, C.; Luo, Y.; Liu, Y.; et al. mRNA m5C Inhibits Adipogenesis and Promotes Myogenesis by Respectively Facilitating YBX2 and SMO mRNA Export in ALYREF-m5C Manner. Cell. Mol. Life Sci. CMLS 2022, 79, 481. [Google Scholar] [CrossRef]
- Wu, R.; Feng, S.; Li, F.; Shu, G.; Wang, L.; Gao, P.; Zhu, X.; Zhu, C.; Wang, S.; Jiang, Q. Transcriptional and Post-Transcriptional Control of Autophagy and Adipogenesis by YBX1. Cell Death Dis. 2023, 14, 29. [Google Scholar] [CrossRef]
- Wu, R.; Cao, S.; Li, F.; Feng, S.; Shu, G.; Wang, L.; Gao, P.; Zhu, X.; Zhu, C.; Wang, S.; et al. RNA-Binding Protein YBX1 Promotes Brown Adipogenesis and Thermogenesis via PINK1/PRKN-Mediated Mitophagy. FASEB J. 2022, 36, e22219. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.; Huang, S.; Li, Y.; Tu, X.; Xia, J.; Zhou, Z.; Chen, W.; Zhang, A.; Lin, J.; Li, Y.; et al. Mettl3-Mediated m6A Modification Plays a Role in Lipid Metabolism Disorders and Progressive Liver Damage in Mice by Regulating Lipid Metabolism-Related Gene Expression. Aging 2023, 15, 5550–5568. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Ma, L.L.; Xu, Y.Q.; Wang, B.H.; Li, S.M. METTL3 Inhibits Hepatic Insulin Sensitivity via N6-Methyladenosine Modification of Fasn mRNA and Promoting Fatty Acid Metabolism. Biochem. Biophys. Res. Commun. 2019, 518, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Gong, Y.; Wang, X.; He, W.; Wu, L.; Zhang, L.; Xiong, L.; Huang, Y.; Su, L.; Shi, P.; et al. METTL3-m6A-Rubicon Axis Inhibits Autophagy in Nonalcoholic Fatty Liver Disease. Mol. Ther. J. Am. Soc. Gene Ther. 2022, 30, 932–946. [Google Scholar] [CrossRef]
- Yue, S.-W.; Liu, H.-L.; Su, H.-F.; Luo, C.; Liang, H.-F.; Zhang, B.-X.; Zhang, W. m6A-Regulated Tumor Glycolysis: New Advances in Epigenetics and Metabolism. Mol. Cancer 2023, 22, 137. [Google Scholar] [CrossRef]
- Liu, W.-W.; Zheng, S.-Q.; Li, T.; Fei, Y.-F.; Wang, C.; Zhang, S.; Wang, F.; Jiang, G.-M.; Wang, H. RNA Modifications in Cellular Metabolism: Implications for Metabolism-Targeted Therapy and Immunotherapy. Signal Transduct. Target. Ther. 2024, 9, 70. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Zhang, T.; Ping, X.; Wang, D.; Chen, Y.; Yu, J.; Liu, C.; Liu, Z.; Zheng, Y.; et al. Rna M6 a Methylation Regulates Glycolysis of Beige Fat and Contributes to Systemic Metabolic Homeostasis. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2023, 10, e2300436. [Google Scholar] [CrossRef]
- D’souza, A.M.; Neumann, U.H.; Glavas, M.M.; Kieffer, T.J. The Glucoregulatory Actions of Leptin. Mol. Metab. 2017, 6, 1052–1065. [Google Scholar] [CrossRef]
- Bravard, A.; Vial, G.; Chauvin, M.-A.; Rouillé, Y.; Bailleul, B.; Vidal, H.; Rieusset, J. FTO Contributes to Hepatic Metabolism Regulation through Regulation of Leptin Action and STAT3 Signalling in Liver. Cell Commun. Signal. CCS 2014, 12, 1–13. [Google Scholar] [CrossRef]
- Ding, K.; Zhang, Z.; Han, Z.; Shi, L.; Li, X.; Liu, Y.; Li, Z.; Zhao, C.; Cui, Y.; Zhou, L.; et al. Liver ALKBH5 Regulates Glucose and Lipid Homeostasis Independently through GCGR and mTORC1 Signaling. Science 2025, 387, eadp4120. [Google Scholar] [CrossRef]
- Petersen, M.C.; Vatner, D.F.; Shulman, G.I. Regulation of Hepatic Glucose Metabolism in Health and Disease. Nat. Rev. Endocrinol. 2017, 13, 572–587. [Google Scholar] [CrossRef]
- He, L.; Sabet, A.; Djedjos, S.; Miller, R.; Sun, X.; Hussain, M.A.; Radovick, S.; Wondisford, F.E. Metformin and Insulin Suppress Hepatic Gluconeogenesis through Phosphorylation of CREB Binding Protein. Cell 2009, 137, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Monshaugen, I.; Wilson, B.; Wang, F.; Klungland, A.; Ougland, R.; Dutta, A. TRMT6/61A-Dependent Base Methylation of tRNA-Derived Fragments Regulates Gene-Silencing Activity and the Unfolded Protein Response in Bladder Cancer. Nat. Commun. 2022, 13, 2165. [Google Scholar] [CrossRef] [PubMed]
- Tomikawa, C. 7-Methylguanosine Modifications in Transfer RNA (tRNA). Int. J. Mol. Sci. 2018, 19, 4080. [Google Scholar] [CrossRef]
- Klinge, C.M.; Piell, K.M.; Petri, B.J.; He, L.; Zhang, X.; Pan, J.; Rai, S.N.; Andreeva, K.; Rouchka, E.C.; Wahlang, B.; et al. Combined Exposure to Polychlorinated Biphenyls and High-Fat Diet Modifies the Global Epitranscriptomic Landscape in Mouse Liver. Environ. Epigenetics 2021, 7, dvab008. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Z.; Xie, G.; Zhang, H.; Wang, Z.; Zhou, J.; Chen, F.; Li, J.; Chen, L.; Niu, H.; et al. RNA m1A Methylation Regulates Glycolysis of Cancer Cells through Modulating ATP5D. Proc. Natl. Acad. Sci. USA 2022, 119, e2119038119. [Google Scholar] [CrossRef]
- Delaunay, S.; Pascual, G.; Feng, B.; Klann, K.; Behm, M.; Hotz-Wagenblatt, A.; Richter, K.; Zaoui, K.; Herpel, E.; Münch, C.; et al. Mitochondrial RNA Modifications Shape Metabolic Plasticity in Metastasis. Nature 2022, 607, 593–603. [Google Scholar] [CrossRef]
- Park, K.-S.; Wiederkehr, A.; Kirkpatrick, C.; Mattenberger, Y.; Martinou, J.-C.; Marchetti, P.; Demaurex, N.; Wollheim, C.B. Selective Actions of Mitochondrial Fission/Fusion Genes on Metabolism-Secretion Coupling in Insulin-Releasing Cells. J. Biol. Chem. 2008, 283, 33347–33356. [Google Scholar] [CrossRef]
- Wang, J.-Z.; Zhu, W.; Han, J.; Yang, X.; Zhou, R.; Lu, H.-C.; Yu, H.; Yuan, W.-B.; Li, P.-C.; Tao, J.; et al. The Role of the HIF-1α/ALYREF/PKM2 Axis in Glycolysis and Tumorigenesis of Bladder Cancer. Cancer Commun. 2021, 41, 560–575. [Google Scholar] [CrossRef]
- Qin, Y.; Li, B.; Arumugam, S.; Lu, Q.; Mankash, S.M.; Li, J.; Sun, B.; Li, J.; Flavell, R.A.; Li, H.-B.; et al. m6A mRNA Methylation-Directed Myeloid Cell Activation Controls Progression of NAFLD and Obesity. Cell Rep. 2021, 37, 109968. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ji, Y.; Feng, P.; Liu, R.; Li, G.; Zheng, J.; Xue, Y.; Wei, Y.; Ji, C.; Chen, D.; et al. The m6A Reader IGF2BP2 Regulates Macrophage Phenotypic Activation and Inflammatory Diseases by Stabilizing TSC1 and PPARγ. Adv. Sci. 2021, 8, 2100209. [Google Scholar] [CrossRef]
- Chen, X.; Lai, J.; Wu, Z.; Chen, J.; Yang, B.; Chen, C.; Ding, C. Fat Mass and Obesity-Mediated N 6 -Methyladenosine Modification Modulates Neuroinflammatory Responses after Traumatic Brain Injury. Neural Regen. Res. 2024, 21, 730–741. [Google Scholar] [CrossRef]
- Harp, J.M.; Hanson, B.L.; Bunick, G.J. The Core Particle of the Nucleosome. In New Comprehensive Biochemistry; Chromatin Structure and Dynamics: State-of-the-Art; Elsevier: Amsterdam, The Netherlands, 2004; Volume 39, pp. 13–44. [Google Scholar]
- Jiang, C.; Pugh, B.F. Nucleosome Positioning and Gene Regulation: Advances through Genomics. Nat. Rev. Genet. 2009, 10, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Stillman, B. Histone Modifications: Insights into Their Influence on Gene Expression. Cell 2018, 175, 6–9. [Google Scholar] [CrossRef]
- Tian, Y.; Feng, T.; Zhang, J.; Meng, Q.; Zhan, W.; Tang, M.; Liu, C.; Li, M.; Tao, W.; Shu, Y.; et al. Histone H1 Deamidation Facilitates Chromatin Relaxation for DNA Repair. Nature 2025, 641, 779–787. [Google Scholar] [CrossRef]
- Marmorstein, R.; Trievel, R.C. Histone Modifying Enzymes: Structures, Mechanisms, and Specificities. Biochim. Biophys. Acta 2009, 1789, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Bannister, A.J.; Kouzarides, T. Regulation of Chromatin by Histone Modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef]
- Morgan, M.A.J.; Shilatifard, A. Reevaluating the Roles of Histone-Modifying Enzymes and Their Associated Chromatin Modifications in Transcriptional Regulation. Nat. Genet. 2020, 52, 1271–1281. [Google Scholar] [CrossRef]
- Allis, C.D.; Jenuwein, T. The Molecular Hallmarks of Epigenetic Control. Nat. Rev. Genet. 2016, 17, 487–500. [Google Scholar] [CrossRef]
- Kouzarides, T. Chromatin Modifications and Their Function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wu, J.; Guo, H.; Yao, W.; Li, S.; Lu, Y.; Jia, Y.; Liang, X.; Tang, J.; Zhang, H. Post-translational Modifications of Histones: Mechanisms, Biological Functions, and Therapeutic Targets. MedComm 2023, 4, e292. [Google Scholar] [CrossRef]
- Castellano-Castillo, D.; Ramos-Molina, B.; Oliva-Olivera, W.; Ocaña-Wilhelmi, L.; Queipo-Ortuño, M.I.; Cardona, F. Genome Profiling of H3k4me3 Histone Modification in Human Adipose Tissue during Obesity and Insulin Resistance. Biomedicines 2021, 9, 1363. [Google Scholar] [CrossRef]
- Wan, Q.-L.; Meng, X.; Wang, C.; Dai, W.; Luo, Z.; Yin, Z.; Ju, Z.; Fu, X.; Yang, J.; Ye, Q.; et al. Histone H3K4me3 Modification Is a Transgenerational Epigenetic Signal for Lipid Metabolism in Caenorhabditis Elegans. Nat. Commun. 2022, 13, 768. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Shuai, L.; Zhu, M.; Liu, P.; Xie, Z.-F.; Jiang, S.; Jiang, H.-W.; Li, J.; Zhao, Y.; Li, J.-Y.; et al. The Landscape of Histone Modifications in a High-Fat Diet-Induced Obese (DIO) Mouse Model. Mol. Cell. Proteom. MCP 2017, 16, 1324–1334. [Google Scholar] [CrossRef]
- Mørkve Knudsen, T.; Rezwan, F.I.; Jiang, Y.; Karmaus, W.; Svanes, C.; Holloway, J.W. Transgenerational and Intergenerational Epigenetic Inheritance in Allergic Diseases. J. Allergy Clin. Immunol. 2018, 142, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.-H.; Zhu, C.-C.; Sun, S.-C. Effects of Obesity and Diabetes on the Epigenetic Modification of Mammalian Gametes. J. Cell. Physiol. 2019, 234, 7847–7855. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-R.; Caviness, P.C.; Zhao, H.; Belcher, B.; Wankhade, U.D.; Shankar, K.; Blackburn, M.L.; Lazarenko, O.P. Maternal High-Fat Diet Modifies Epigenetic Marks H3K27me3 and H3K27ac in Bone to Regulate Offspring Osteoblastogenesis in Mice. Epigenetics 2022, 17, 2209–2222. [Google Scholar] [CrossRef]
- Lefterova, M.I.; Zhang, Y.; Steger, D.J.; Schupp, M.; Schug, J.; Cristancho, A.; Feng, D.; Zhuo, D.; Stoeckert, C.J.; Liu, X.S.; et al. PPARγ and C/EBP Factors Orchestrate Adipocyte Biology via Adjacent Binding on a Genome-Wide Scale. Genes Dev. 2008, 22, 2941–2952. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Liu, J.; Han, F.; Shi, J.; Wu, G.; Wang, K.; Shen, K.; Zhao, M.; Gao, X.; et al. Adiponectin Ameliorates Hypertrophic Scar by Inhibiting Yes-Associated Protein Transcription through SIRT1-Mediated Deacetylation of C/EBPβ and Histone H3. iScience 2022, 25, 105236. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, D.; Liang, F.; Tong, X.; Liang, Z.; Wang, X.; Chen, Y.; Mo, D. Protein Arginine Methyltransferase PRMT1 Promotes Adipogenesis by Modulating Transcription Factors C/EBPβ and PPARγ. J. Biol. Chem. 2022, 298, 102309. [Google Scholar] [CrossRef]
- Madsen, M.S.; Siersbæk, R.; Boergesen, M.; Nielsen, R.; Mandrup, S. Peroxisome Proliferator-Activated Receptor γ and C/EBPα Synergistically Activate Key Metabolic Adipocyte Genes by Assisted Loading. Mol. Cell. Biol. 2014, 34, 939–954. [Google Scholar] [CrossRef]
- Zhuang, L.; Jang, Y.; Park, Y.-K.; Lee, J.-E.; Jain, S.; Froimchuk, E.; Broun, A.; Liu, C.; Gavrilova, O.; Ge, K. Depletion of Nsd2-Mediated Histone H3K36 Methylation Impairs Adipose Tissue Development and Function. Nat. Commun. 2018, 9, 1796. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Camacho, C.V.; Setlem, R.; Ryu, K.W.; Parameswaran, B.; Gupta, R.K.; Kraus, W.L. Functional Interplay between Histone H2B ADP-Ribosylation and Phosphorylation Controls Adipogenesis. Mol. Cell 2020, 79, 934–949.e14. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Ye, L.; Guo, X.; Wang, W.; Zhang, Z.; Wang, Q.; Huang, J.; Xu, J.; Cai, Y.; Shou, X.; et al. Glutamine Production by Glul Promotes Thermogenic Adipocyte Differentiation through Prdm9-Mediated H3K4me3 and Transcriptional Reprogramming. Diabetes 2023, 72, 1574–1596. [Google Scholar] [CrossRef]
- Powers, N.R.; Parvanov, E.D.; Baker, C.L.; Walker, M.; Petkov, P.M.; Paigen, K. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots in Vivo. PLoS Genet. 2016, 12, e1006146. [Google Scholar] [CrossRef] [PubMed]
- Sambeat, A.; Gulyaeva, O.; Dempersmier, J.; Tharp, K.M.; Stahl, A.; Paul, S.M.; Sul, H.S. LSD1 Interacts with Zfp516 to Promote UCP1 Transcription and Brown Fat Program. Cell Rep. 2016, 15, 2536–2549. [Google Scholar] [CrossRef]
- Cui, X.; Cao, Q.; Li, F.; Jing, J.; Liu, Z.; Yang, X.; Schwartz, G.J.; Yu, L.; Shi, H.; Shi, H.; et al. The Histone Methyltransferase SUV420H2 Regulates Brown and Beige Adipocyte Thermogenesis. JCI Insight 2024, 9, e164771. [Google Scholar] [CrossRef]
- Seok, S.; Kim, Y.-C.; Byun, S.; Choi, S.; Xiao, Z.; Iwamori, N.; Zhang, Y.; Wang, C.; Ma, J.; Ge, K.; et al. Fasting-Induced JMJD3 Histone Demethylase Epigenetically Activates Mitochondrial Fatty Acid β-Oxidation. J. Clin. Invest. 2018, 128, 3144–3159. [Google Scholar] [CrossRef]
- Tateishi, K.; Okada, Y.; Kallin, E.M.; Zhang, Y. Role of Jhdm2a in Regulating Metabolic Gene Expression and Obesity Resistance. Nature 2009, 458, 757–761. [Google Scholar] [CrossRef]
- Rea, S.; Xouri, G.; Akhtar, A. Males Absent on the First (MOF): From Flies to Humans. Oncogene 2007, 26, 5385–5394. [Google Scholar] [CrossRef] [PubMed]
- Pessoa Rodrigues, C.; Chatterjee, A.; Wiese, M.; Stehle, T.; Szymanski, W.; Shvedunova, M.; Akhtar, A. Histone H4 Lysine 16 Acetylation Controls Central Carbon Metabolism and Diet-Induced Obesity in Mice. Nat. Commun. 2021, 12, 6212. [Google Scholar] [CrossRef]
- Sun, L.; Marin de Evsikova, C.; Bian, K.; Achille, A.; Telles, E.; Pei, H.; Seto, E. Programming and Regulation of Metabolic Homeostasis by HDAC11. EBioMedicine 2018, 33, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Tao, C.; Pan, J.; Zhang, L.; Liu, L.; Zhao, Y.; Fan, Y.; Cao, C.; Liu, J.; Zhang, J.; et al. Rnf20 Deficiency in Adipocyte Impairs Adipose Tissue Development and Thermogenesis. Protein Cell 2021, 12, 475–492. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, X.; Tang, J.; Cao, C.; Yang, C.; Yang, S.; Zhao, J.; Yuan, J.; Zhang, M.; Wang, Y. Adipocyte RNF20 Knockout Leads to Hyperinsulinemia via the H2Bub-H3K4me3-Slc2a4 Axis. J. Cell. Mol. Med. 2025, 29, e70649. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Perez-Neut, M.; et al. Metabolic Regulation of Gene Expression by Histone Lactylation. Nature 2019, 574, 575–580. [Google Scholar] [CrossRef]
- Galle, E.; Wong, C.-W.; Ghosh, A.; Desgeorges, T.; Melrose, K.; Hinte, L.C.; Castellano-Castillo, D.; Engl, M.; de Sousa, J.A.; Ruiz-Ojeda, F.J.; et al. H3K18 Lactylation Marks Tissue-Specific Active Enhancers. Genome Biol. 2022, 23, 207. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wan, B.; Zhang, H.; Zhang, L.; Zhang, R.; Li, L.; Zhang, Y.; Hu, C. Histone Lactylation Mediated by Fam172a in POMC Neurons Regulates Energy Balance. Nat. Commun. 2024, 15, 10111. [Google Scholar] [CrossRef]
- Jeong, D.-W.; Park, J.-W.; Kim, K.S.; Kim, J.; Huh, J.; Seo, J.; Kim, Y.L.; Cho, J.-Y.; Lee, K.-W.; Fukuda, J.; et al. Palmitoylation-Driven PHF2 Ubiquitination Remodels Lipid Metabolism through the SREBP1c Axis in Hepatocellular Carcinoma. Nat. Commun. 2023, 14, 6370. [Google Scholar] [CrossRef]
- Wilson, J.P.; Raghavan, A.S.; Yang, Y.-Y.; Charron, G.; Hang, H.C. Proteomic Analysis of Fatty-Acylated Proteins in Mammalian Cells with Chemical Reporters Reveals S-Acylation of Histone H3 Variants. Mol. Cell. Proteom. MCP 2011, 10, M110.001198. [Google Scholar] [CrossRef]
- Thompson, H.M. Add Lipidation to Histone Modifications. Sci. Signal. 2011, 4, ec226. [Google Scholar] [CrossRef]
- Mikula, M.; Majewska, A.; Ledwon, J.K.; Dzwonek, A.; Ostrowski, J. Obesity Increases Histone H3 Lysine 9 and 18 Acetylation at Tnfa and Ccl2 Genes in Mouse Liver. Int. J. Mol. Med. 2014, 34, 1647–1654. [Google Scholar] [CrossRef] [PubMed]
- Arab Sadeghabadi, Z.; Nourbakhsh, M.; Pasalar, P.; Emamgholipour, S.; Golestani, A.; Larijani, B.; Razzaghy-Azar, M. Reduced Gene Expression of Sirtuins and Active AMPK Levels in Children and Adolescents with Obesity and Insulin Resistance. Obes. Res. Clin. Pract. 2018, 12, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Lieber, A.D.; Beier, U.H.; Xiao, H.; Wilkins, B.J.; Jiao, J.; Li, X.S.; Schugar, R.C.; Strauch, C.M.; Wang, Z.; Brown, J.M.; et al. Loss of HDAC6 Alters Gut Microbiota and Worsens Obesity. FASEB J. 2019, 33, 1098–1109. [Google Scholar] [CrossRef]
- Uppaluri, K.R.; Challa, H.J.; Gaur, A.; Jain, R.; Krishna Vardhani, K.; Geddam, A.; Natya, K.; Aswini, K.; Palasamudram, K.; K, S.M. Unlocking the Potential of Non-Coding RNAs in Cancer Research and Therapy. Transl. Oncol. 2023, 35, 101730. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, Z.; Song, M.; Huan, H.; Cai, Z.; Wu, B.; Shen, J.; Zhou, Y.L.; Shi, J. CircIQGAP1 Regulates RCAN1 and RCAN2 through the Mechanism of ceRNA and Promotes the Growth of Malignant Glioma. Pharmacol. Res. 2023, 197, 106979. [Google Scholar] [CrossRef]
- Peng, Q.; Deng, Y.; Xu, Z.; Duan, R.; Wang, W.; Wang, S.; Hong, Y.; Wang, Q.; Zhang, Y. Fat Mass and Obesity-Associated Protein Alleviates Cerebral Ischemia/Reperfusion Injury by Inhibiting Ferroptosis via miR-320-3p/SLC7A11 Axis. Biochem. Pharmacol. 2024, 230, 116603. [Google Scholar] [CrossRef]
- Al-Rawaf, H.A. Circulating microRNAs and Adipokines as Markers of Metabolic Syndrome in Adolescents with Obesity. Clin. Nutr. Edinb. Scotl. 2019, 38, 2231–2238. [Google Scholar] [CrossRef]
- Oses, M.; Margareto Sanchez, J.; Portillo, M.P.; Aguilera, C.M.; Labayen, I. Circulating miRNAs as Biomarkers of Obesity and Obesity-Associated Comorbidities in Children and Adolescents: A Systematic Review. Nutrients 2019, 11, 2890. [Google Scholar] [CrossRef]
- Cui, X.; You, L.; Zhu, L.; Wang, X.; Zhou, Y.; Li, Y.; Wen, J.; Xia, Y.; Wang, X.; Ji, C.; et al. Change in Circulating microRNA Profile of Obese Children Indicates Future Risk of Adult Diabetes. Metabolism 2018, 78, 95–105. [Google Scholar] [CrossRef]
- Karbiener, M.; Fischer, C.; Nowitsch, S.; Opriessnig, P.; Papak, C.; Ailhaud, G.; Dani, C.; Amri, E.-Z.; Scheideler, M. microRNA miR-27b Impairs Human Adipocyte Differentiation and Targets PPARgamma. Biochem. Biophys. Res. Commun. 2009, 390, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Ren, Y.; Sundaram, K.; Mu, J.; Sriwastva, M.K.; Dryden, G.W.; Lei, C.; Zhang, L.; Yan, J.; Zhang, X.; et al. miR-375 Prevents High-Fat Diet-Induced Insulin Resistance and Obesity by Targeting the Aryl Hydrocarbon Receptor and Bacterial Tryptophanase (tnaA) Gene. Theranostics 2021, 11, 4061–4077. [Google Scholar] [CrossRef]
- Lou, P.; Bi, X.; Tian, Y.; Li, G.; Kang, Q.; Lv, C.; Song, Y.; Xu, J.; Sheng, X.; Yang, X.; et al. MiR-22 Modulates Brown Adipocyte Thermogenesis by Synergistically Activating the Glycolytic and mTORC1 Signaling Pathways. Theranostics 2021, 11, 3607–3623. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.; Li, Y.; Mao, R.; Yang, H.; Zhang, Y.; Zhang, Y.; Guo, P.; Zhan, D.; Zhang, T. Circular RNA SAMD4A Controls Adipogenesis in Obesity through the miR-138-5p/EZH2 Axis. Theranostics 2020, 10, 4705–4719. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jin, Q.; Lee, J.-E.; Su, I.-h.; Ge, K. Histone H3K27 Methyltransferase EzH2 Represses Wnt Genes to Facilitate Adipogenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 7317–7322. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Q.; Li, Z.; Yang, Q.; Liu, Y.; Du, Z.; Zhang, G.; Song, Y. Circular RNA CDR1as Promotes Adipogenic and Suppresses Osteogenic Differentiation of BMSCs in Steroid-Induced Osteonecrosis of the Femoral Head. Bone 2020, 133, 115258. [Google Scholar] [CrossRef]
- Tang, T.; Jiang, G.; Shao, J.; Wang, M.; Zhang, X.; Xia, S.; Sun, W.; Jia, X.; Wang, J.; Lai, S. lncRNA MSTRG4710 Promotes the Proliferation and Differentiation of Preadipocytes through miR-29b-3p/IGF1 Axis. Int. J. Mol. Sci. 2023, 24, 15715. [Google Scholar] [CrossRef]
- Gao, W.; Liu, J.-L.; Lu, X.; Yang, Q. Epigenetic Regulation of Energy Metabolism in Obesity. J. Mol. Cell Biol. 2021, 13, 480–499. [Google Scholar] [CrossRef]
- Xiong, Y.; Yue, F.; Jia, Z.; Gao, Y.; Jin, W.; Hu, K.; Zhang, Y.; Zhu, D.; Yang, G.; Kuang, S. A Novel Brown Adipocyte-Enriched Long Non-Coding RNA That Is Required for Brown Adipocyte Differentiation and Sufficient to Drive Thermogenic Gene Program in White Adipocytes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 409–419. [Google Scholar] [CrossRef]
- Li, S.; Mi, L.; Yu, L.; Yu, Q.; Liu, T.; Wang, G.-X.; Zhao, X.-Y.; Wu, J.; Lin, J.D. Zbtb7b Engages the Long Noncoding RNA Blnc1 to Drive Brown and Beige Fat Development and Thermogenesis. Proc. Natl. Acad. Sci. USA 2017, 114, E7111–E7120. [Google Scholar] [CrossRef]
- Wu, C.; Fang, S.; Zhang, H.; Li, X.; Du, Y.; Zhang, Y.; Lin, X.; Wang, L.; Ma, X.; Xue, Y.; et al. Long Noncoding RNA XIST Regulates Brown Preadipocytes Differentiation and Combats High-Fat Diet Induced Obesity by Targeting C/EBPα. Mol. Med. Camb. Mass 2022, 28, 6. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, B.; Sha, B.; Gao, D.; Qin, Y.; Li, Z.; Chen, X.; Jin, Y.; Pan, Y.; Zhang, Y.; et al. The Long Noncoding RNA ΒFaar Promotes White Adipose Tissue Browning and Prevents Diet-Induced Obesity. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2025, 12, e05545. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, X.; Li, Z.; Wang, S.; Fan, J. Functions of Circular RNAs in Regulating Adipogenesis of Mesenchymal Stem Cells. Stem Cells Int. 2020, 2020, 3763069. [Google Scholar] [CrossRef]
- Zong, Y.; Wang, X.; Cui, B.; Xiong, X.; Wu, A.; Lin, C.; Zhang, Y. Decoding the Regulatory Roles of Non-Coding RNAs in Cellular Metabolism and Disease. Mol. Ther. J. Am. Soc. Gene Ther. 2023, 31, 1562–1576. [Google Scholar] [CrossRef]
- Paneru, B.D.; Chini, J.; McCright, S.J.; DeMarco, N.; Miller, J.; Joannas, L.D.; Henao-Mejia, J.; Titchenell, P.M.; Merrick, D.M.; Lim, H.-W.; et al. Myeloid-Derived miR-6236 Potentiates Adipocyte Insulin Signaling and Prevents Hyperglycemia during Obesity. Nat. Commun. 2024, 15, 5394. [Google Scholar] [CrossRef]
- Doncheva, A.I.; Romero, S.; Ramirez-Garrastacho, M.; Lee, S.; Kolnes, K.J.; Tangen, D.S.; Olsen, T.; Drevon, C.A.; Llorente, A.; Dalen, K.T.; et al. Extracellular Vesicles and microRNAs Are Altered in Response to Exercise, Insulin Sensitivity and Overweight. Acta Physiol. 2022, 236, e13862. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-J.; Baumert, B.O.; Stratakis, N.; Goodrich, J.A.; Wu, H.-T.; He, J.-X.; Zhao, Y.-Q.; Aung, M.T.; Wang, H.-X.; Eckel, S.P.; et al. Circulating microRNA Expression and Nonalcoholic Fatty Liver Disease in Adolescents with Severe Obesity. World J. Gastroenterol. 2024, 30, 332–345. [Google Scholar] [CrossRef]
- Li, B.; Xiao, Q.; Zhao, H.; Zhang, J.; Yang, C.; Zou, Y.; Zhang, B.; Liu, J.; Sun, H.; Liu, H. Schisanhenol Ameliorates Non-Alcoholic Fatty Liver Disease via Inhibiting miR-802 Activation of AMPK-Mediated Modulation of Hepatic Lipid Metabolism. Acta Pharm. Sin. B 2024, 14, 3949–3963. [Google Scholar] [CrossRef]
- Ying, W.; Gao, H.; Dos Reis, F.C.G.; Bandyopadhyay, G.; Ofrecio, J.M.; Luo, Z.; Ji, Y.; Jin, Z.; Ly, C.; Olefsky, J.M. MiR-690, an Exosomal-Derived miRNA from M2-Polarized Macrophages, Improves Insulin Sensitivity in Obese Mice. Cell Metab. 2021, 33, 781–790.e5. [Google Scholar] [CrossRef]
- Lin, X.; Du, Y.; Lu, W.; Gui, W.; Sun, S.; Zhu, Y.; Wang, G.; Eserberg, D.T.; Zheng, F.; Zhou, J.; et al. CircRNF111 Protects against Insulin Resistance and Lipid Deposition via Regulating miR-143-3p/IGF2R Axis in Metabolic Syndrome. Front. Cell Dev. Biol. 2021, 9, 663148. [Google Scholar] [CrossRef]
- Kuo, F.-C.; Huang, Y.-C.; Yen, M.-R.; Lee, C.-H.; Hsu, K.-F.; Yang, H.-Y.; Wu, L.-W.; Lu, C.-H.; Hsu, Y.-J.; Chen, P.-Y. Aberrant Overexpression of HOTAIR Inhibits Abdominal Adipogenesis through Remodelling of Genome-Wide DNA Methylation and Transcription. Mol. Metab. 2022, 60, 101473. [Google Scholar] [CrossRef]
- Li, M.; Guo, Y.; Wang, X.-J.; Duan, B.-H.; Li, L. HOTAIR Participates in Hepatic Insulin Resistance via Regulating SIRT1. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7883–7890. [Google Scholar] [CrossRef]
- Becker, P.B.; Workman, J.L. Nucleosome Remodeling and Epigenetics. Cold Spring Harb. Perspect. Biol. 2013, 5, a017905. [Google Scholar] [CrossRef]
- Morrison, A.J. Chromatin-Remodeling Links Metabolic Signaling to Gene Expression. Mol. Metab. 2020, 38, 100973. [Google Scholar] [CrossRef]
- Ebot, E.M.; Gerke, T.; Labbé, D.P.; Sinnott, J.A.; Zadra, G.; Rider, J.R.; Tyekucheva, S.; Wilson, K.M.; Kelly, R.S.; Shui, I.M.; et al. Gene Expression Profiling of Prostate Tissue Identifies Chromatin Regulation as a Potential Link between Obesity and Lethal Prostate Cancer. Cancer 2017, 123, 4130–4138. [Google Scholar] [CrossRef]
- So, J.; Taleb, S.; Wann, J.; Strobel, O.; Kim, K.; Roh, H.C. Chronic cAMP Activation Induces Adipocyte Browning through Discordant Biphasic Remodeling of Transcriptome and Chromatin Accessibility. Mol. Metab. 2022, 66, 101619. [Google Scholar] [CrossRef]
- Zhong, J.; Ji, X.; Zhao, Y.; Jia, Y.; Song, C.; Lv, J.; Chen, Y.; Zhou, Y.; Lv, X.; Yang, Z.; et al. Identification of BAF60b as a Chromatin-Remodeling Checkpoint of Diet-Induced Fatty Liver Disease. Diabetes 2024, 73, 1615–1630. [Google Scholar] [CrossRef]
- Kong, Q.; Zou, J.; Zhang, Z.; Pan, R.; Zhang, Z.Y.; Han, S.; Xu, Y.; Gao, Y.; Meng, Z.-X. BAF60a Deficiency in Macrophage Promotes Diet-Induced Obesity and Metabolic Inflammation. Diabetes 2022, 71, 2136–2152. [Google Scholar] [CrossRef]
- Linnemann, A.K.; Baan, M.; Davis, D.B. Pancreatic β-Cell Proliferation in Obesity. Adv. Nutr. 2014, 5, 278–288. [Google Scholar] [CrossRef]
- Inaishi, J.; Saisho, Y. Beta-Cell Mass in Obesity and Type 2 Diabetes, and Its Relation to Pancreas Fat: A Mini-Review. Nutrients 2020, 12, 3846. [Google Scholar] [CrossRef]
- Spaeth, J.M.; Liu, J.-H.; Peters, D.; Guo, M.; Osipovich, A.B.; Mohammadi, F.; Roy, N.; Bhushan, A.; Magnuson, M.A.; Hebrok, M.; et al. The Pdx1-Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet β-Cell Function. Diabetes 2019, 68, 1806–1818. [Google Scholar] [CrossRef]
- Davidson, R.K.; Kanojia, S.; Wu, W.; Kono, T.; Xu, J.; Osmulski, M.; Bone, R.N.; Casey, N.; Evans-Molina, C.; Sims, E.K.; et al. The Chd4 Helicase Regulates Chromatin Accessibility and Gene Expression Critical for β-Cell Function in Vivo. Diabetes 2023, 72, 746–757. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Liu, X.; Gu, H.; Li, Y.; Sun, C. Protein Acetylation: A Novel Modus of Obesity Regulation. J. Mol. Med. 2021, 99, 1221–1235. [Google Scholar] [CrossRef]
- Zhong, Q.; Xiao, X.; Qiu, Y.; Xu, Z.; Chen, C.; Chong, B.; Zhao, X.; Hai, S.; Li, S.; An, Z.; et al. Protein Posttranslational Modifications in Health and Diseases: Functions, Regulatory Mechanisms, and Therapeutic Implications. MedComm 2023, 4, e261. [Google Scholar] [CrossRef]
- Ma, Q.-X.; Zhu, W.-Y.; Lu, X.-C.; Jiang, D.; Xu, F.; Li, J.-T.; Zhang, L.; Wu, Y.-L.; Chen, Z.-J.; Yin, M.; et al. BCAA-BCKA Axis Regulates WAT Browning through Acetylation of PRDM16. Nat. Metab. 2022, 4, 106–122. [Google Scholar] [CrossRef]
- Qian, H.; Chen, Y.; Nian, Z.; Su, L.; Yu, H.; Chen, F.-J.; Zhang, X.; Xu, W.; Zhou, L.; Liu, J.; et al. HDAC6-Mediated Acetylation of Lipid Droplet-Binding Protein CIDEC Regulates Fat-Induced Lipid Storage. J. Clin. Invest. 2017, 127, 1353–1369. [Google Scholar] [CrossRef]
- Kim, M.-K.; Kim, E.J.; Kim, J.E.; Lee, D.H.; Chung, J.H. Anacardic Acid Reduces Lipogenesis in Human Differentiated Adipocytes via Inhibition of Histone Acetylation. J. Dermatol. Sci. 2018, 89, 94–97. [Google Scholar] [CrossRef]
- Hall, J.A.; Ramachandran, D.; Roh, H.C.; DiSpirito, J.R.; Belchior, T.; Zushin, P.-J.H.; Palmer, C.; Hong, S.; Mina, A.I.; Liu, B.; et al. Obesity-Linked PPARγ S273 Phosphorylation Promotes Insulin Resistance through Growth Differentiation Factor 3. Cell Metab. 2020, 32, 665–675.e6. [Google Scholar] [CrossRef]
- Pearah, A.; Ramatchandirin, B.; Liu, T.; Wolf, R.M.; Ikeda, A.; Radovick, S.; Sesaki, H.; Wondisford, F.E.; O’Rourke, B.; He, L. Blocking AMPKαS496 Phosphorylation Improves Mitochondrial Dynamics and Hyperglycemia in Aging and Obesity. Cell Chem. Biol. 2023, 30, 1585–1600.e6. [Google Scholar] [CrossRef]
- Kim, M.S.; Baek, J.-H.; Lee, J.; Sivaraman, A.; Lee, K.; Chun, K.-H. Deubiquitinase USP1 Enhances CCAAT/Enhancer-Binding Protein Beta (C/EBPβ) Stability and Accelerates Adipogenesis and Lipid Accumulation. Cell Death Dis. 2023, 14, 776. [Google Scholar] [CrossRef]
- Liu, B.; Wang, T.; Mei, W.; Li, D.; Cai, R.; Zuo, Y.; Cheng, J. Small Ubiquitin-like Modifier (SUMO) Protein-Specific Protease 1 de-SUMOylates Sharp-1 Protein and Controls Adipocyte Differentiation. J. Biol. Chem. 2014, 289, 22358–22364. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, B.; Wang, M. SENP1 Is Required for the Growth, Migration, and Survival of Human Adipose-Derived Stem Cells. Adipocyte 2021, 10, 38–47. [Google Scholar] [CrossRef]
- Lee, J.S.; Chae, S.; Nan, J.; Koo, Y.D.; Lee, S.-A.; Park, Y.J.; Hwang, D.; Han, W.; Lee, D.-S.; Kim, Y.-B.; et al. SENP2 Suppresses Browning of White Adipose Tissues by De-Conjugating SUMO from C/EBPβ. Cell Rep. 2022, 38, 110408. [Google Scholar] [CrossRef]
- Bjune, J.-I.; Laber, S.; Lawrence-Archer, L.; Zhao, X.; Yamada, S.; Al-Sharabi, N.; Mustafa, K.; Njølstad, P.R.; Claussnitzer, M.; Cox, R.D.; et al. Mechanisms of the FTO Locus Association with Obesity: Irx3 Controls a Sumoylation-Dependent Switch between Adipogenesis and Osteogenesis. bioRxiv 2023. [Google Scholar] [CrossRef]
- Cossec, J.-C.; Theurillat, I.; Chica, C.; Búa Aguín, S.; Gaume, X.; Andrieux, A.; Iturbide, A.; Jouvion, G.; Li, H.; Bossis, G.; et al. SUMO Safeguards Somatic and Pluripotent Cell Identities by Enforcing Distinct Chromatin States. Cell Stem Cell 2018, 23, 742–757.e8. [Google Scholar] [CrossRef]
- Theurillat, I.; Hendriks, I.A.; Cossec, J.-C.; Andrieux, A.; Nielsen, M.L.; Dejean, A. Extensive SUMO Modification of Repressive Chromatin Factors Distinguishes Pluripotent from Somatic Cells. Cell Rep. 2020, 33, 108251. [Google Scholar] [CrossRef]
- Zhao, X.; Hendriks, I.A.; Le Gras, S.; Ye, T.; Ramos-Alonso, L.; Nguéa P, A.; Lien, G.F.; Ghasemi, F.; Klungland, A.; Jost, B.; et al. Waves of Sumoylation Support Transcription Dynamics during Adipocyte Differentiation. Nucleic Acids Res. 2022, 50, 1351–1369. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Wen, R.; Yang, N.; Zhang, T.-N.; Liu, C.-F. Roles of Protein Post-Translational Modifications in Glucose and Lipid Metabolism: Mechanisms and Perspectives. Mol. Med. Camb. Mass 2023, 29, 93. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, F.; Li, M.; Zhang, Y.; Li, N.; Shao, L. MiR-34a-5p Promotes Hepatic Gluconeogenesis by Suppressing SIRT1 Expression. Exp. Cell Res. 2022, 420, 113336. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, S.; Xiao, M.; Lin, Y.; Zhou, L.; Lei, Q.; Xiong, Y.; Guan, K.-L.; Zhao, S. Acetylation Regulates Gluconeogenesis by Promoting PEPCK1 Degradation via Recruiting the UBR5 Ubiquitin Ligase. Mol. Cell 2011, 43, 33–44. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Sarma, P.; Barge, S.R.; Swargiary, D.; Devi, G.S.; Borah, J.C. Xanthosine, a Purine Glycoside Mediates Hepatic Glucose Homeostasis through Inhibition of Gluconeogenesis and Activation of Glycogenesis via Regulating the AMPK/ FoxO1/AKT/GSK3β Signaling Cascade. Chem. Biol. Interact. 2023, 371, 110347. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Li, E.; Chen, L.; Zhang, Y.; Wei, F.; Liu, J.; Deng, H.; Wang, Y. The CREB Coactivator CRTC2 Controls Hepatic Lipid Metabolism by Regulating SREBP1. Nature 2015, 524, 243–246. [Google Scholar] [CrossRef]
- Li, N.; Luo, X.; Yu, Q.; Yang, P.; Chen, Z.; Wang, X.; Jiang, J.; Xu, J.; Gong, Q.; Eizirik, D.L.; et al. SUMOylation of Pdia3 Exacerbates Proinsulin Misfolding and ER Stress in Pancreatic Beta Cells. J. Mol. Med. Berl. Ger. 2020, 98, 1795–1807. [Google Scholar] [CrossRef]
- Xie, H.; Wang, Y.-H.; Liu, X.; Gao, J.; Yang, C.; Huang, T.; Zhang, L.; Luo, X.; Gao, Z.; Wang, T.; et al. SUMOylation of ERp44 Enhances Ero1α ER Retention Contributing to the Pathogenesis of Obesity and Insulin Resistance. Metabolism 2023, 139, 155351. [Google Scholar] [CrossRef]
- Liu, Y.; Dou, X.; Zhou, W.-Y.; Ding, M.; Liu, L.; Du, R.-Q.; Guo, L.; Qian, S.-W.; Tang, Y.; Yang, Q.-Q.; et al. Hepatic Small Ubiquitin-Related Modifier (SUMO)-Specific Protease 2 Controls Systemic Metabolism through SUMOylation-Dependent Regulation of Liver-Adipose Tissue Crosstalk. Hepatology 2021, 74, 1864–1883. [Google Scholar] [CrossRef]
- Maschari, D.; Saxena, G.; Law, T.D.; Walsh, E.; Campbell, M.C.; Consitt, L.A. Lactate-Induced Lactylation in Skeletal Muscle Is Associated with Insulin Resistance in Humans. Front. Physiol. 2022, 13, 951390. [Google Scholar] [CrossRef]
- Gao, R.; Li, Y.; Xu, Z.; Zhang, F.; Xu, J.; Hu, Y.; Yin, J.; Yang, K.; Sun, L.; Wang, Q.; et al. Mitochondrial Pyruvate Carrier 1 Regulates Fatty Acid Synthase Lactylation and Mediates Treatment of Nonalcoholic Fatty Liver Disease. Hepatology 2023, 78, 1800–1815. [Google Scholar] [CrossRef]
- Li, F.; Jing, J.; Movahed, M.; Cui, X.; Cao, Q.; Wu, R.; Chen, Z.; Yu, L.; Pan, Y.; Shi, H.; et al. Epigenetic Interaction between UTX and DNMT1 Regulates Diet-Induced Myogenic Remodeling in Brown Fat. Nat. Commun. 2021, 12, 6838. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Meng, X.; Wang, W.; Duan, F.; Chen, S.; Zhang, Y.; Sheng, Z.; Gao, Y.; Zhou, L. METTL16 Inhibits Papillary Thyroid Cancer Tumorigenicity through m6A/YTHDC2/SCD1-Regulated Lipid Metabolism. Cell. Mol. Life Sci. CMLS 2024, 81, 81. [Google Scholar] [CrossRef]
- Zhang, T.; Ren, Z.; Mao, R.; Yi, W.; Wang, B.; Yang, H.; Wang, H.; Liu, Y. LINC00278 and BRG1: A Key Regulatory Axis in Male Obesity and Preadipocyte Adipogenesis. Metabolism 2025, 168, 156194. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, G.-L.; Zhu, X.; Peng, T.-H.; Lv, Y.-C. Critical Roles of FTO-Mediated mRNA m6A Demethylation in Regulating Adipogenesis and Lipid Metabolism: Implications in Lipid Metabolic Disorders. Genes Dis. 2022, 9, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Song, M.; Hong, Z.; Chen, W.; Zhang, Q.; Zhou, J.; Yang, C.; He, Z.; Yu, J.; Peng, X.; et al. The N6-Methyladenosine METTL3 Regulates Tumorigenesis and Glycolysis by Mediating m6A Methylation of the Tumor Suppressor LATS1 in Breast Cancer. J. Exp. Clin. Cancer Res. CR 2023, 42, 10. [Google Scholar] [CrossRef] [PubMed]
- Hinte, L.C.; Castellano-Castillo, D.; Ghosh, A.; Melrose, K.; Gasser, E.; Noé, F.; Massier, L.; Dong, H.; Sun, W.; Hoffmann, A.; et al. Adipose Tissue Retains an Epigenetic Memory of Obesity after Weight Loss. Nature 2024, 636, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.; Lu, J.; Li, L.-J.; Guo, H.-Y.; Xu, K.; Wang, N.; Zhao, S.-X.; Jin, X.-W.; Wang, S.-G.; Yin, S.; et al. Maternal Obesity May Disrupt Offspring Metabolism by Inducing Oocyte Genome Hyper-Methylation via Increased DNMTs. eLife 2024, 13, RP97507. [Google Scholar] [CrossRef]
Tissue | Subjects | Demographics | Affected Gene | Result | References |
---|---|---|---|---|---|
Peripheral blood | Individuals with obesity (n = 67; BMI > 25) | Japanese, Male and Female | Fgf21 (CpG sites) | At least 5 obesity-related CpG sites are identified on the Fgf21 | [31] |
Placenta and umbilical cord | Mother–infant pairs (n = 114) | Spanish, Female | Hadha (CpG sites), Slc2a8 (CpG sites;) | CpG sites associated with pre-pregnancy BMI: 1031 in placenta; 369 in umbilical cord | [32] |
Peripheral blood | Obese group (n = 41) Normal group (n = 31) | Chinese, Male and Female | Tfam (cg05831083), Piezo1 (cg14926485) | CpG sites cg05831083 and cg14926485 are linked to childhood obesity | [33] |
Adipocytes in subcutaneous and visceral adipose tissue | Patients with severe obesity and healthy controls (n = 190) | Multi-ethnic, Male and Female | Prrc2a (CpG sites in intronic enhancer regions), Limd2 (CpG sites in proximal enhancer and exons) | 5mC sites associated with obesity: 691 in subcutaneous; 173 in visceral | [21] |
Liver | Individuals with obesity (n = 51) | Finnish, Male and Female | Prkca (CpG sites), Tspo (CpG sites) | 3169 CpG sites linked to liver saturated fat content in obesity. | [34] |
Blood | Obese group (n = 4; BMI > 30) Normal group (n = 4; BMI < 25) | Chinese, Male and Female | Inhbb, Hoxa9, Tnnt3, Crtc1, Zbtb7b (all CpG sites) | 5 key methylated genes and 5 related signaling pathways identified in obese patients | [20] |
Blood | Female with obesity (n = 13) | Brazilian, Female | Pik3r1 (CpG sites in promoter and 5′UTR regions) | 6 differentially methylated CpG sites in Pik3r1 | [23] |
Peripheral blood leukocyte | Female with obesity (n = 11) | Multi-ethnic, Female | Genes in MAPK, cAMP, and PI3K-Akt pathways | 16,064 CpG (9236 genes) sites changed | [22] |
Peripheral blood | Lean group (n = 60; BMI < 25) and obese group (n = 60; BMI > 30) | Norwegian, Female | Genes in obesity-related pathways (Sbno2, Rps6ka2, Dmap1, Socs3, Setbp1) | 10 differentially methylated CpG sites linked to 8 gene loci and an enhancer locus at chromosome 2 were found | [35] |
Peripheral blood | Adolescents (n = 263) | Multi-ethnic, Male and Female | Sim1 (CpG sites) | 5669 CpG sites associated with BMI percentile, 28 within obesity-related genes | [36] |
Peripheral blood | Adults (n = 474) | Multi-ethnic, Male and Female | Genes involved in longevity-regulating pathways (Mtor, Ulk1, Adcy6, Igf1r, Creb5, Rela) | 6 of these CpG sites, located at Mtor (cg08862778), Ulk1 (cg07199894), Adcy6 (cg11658986), Igf1r (cg01284192), Creb5 (cg11301281), and Rela (cg08128650), were common to the metabolic traits | [37] |
Sperm | Obese group (n = 20) Normal group (n = 47) | Multi-ethnic, Male | Tp53aip1, Spata21, Soga1, Adam15 (all CpG sites) | 3264 CpG sites associated with BMI were enriched in genes involved in key regulatory pathways | [38] |
Saliva | Children (n = 75) | Hispanic, Male and Female | Nrf1 (cg01307483) | Nrf1 is associated with obesity in 36-month-old children | [39] |
Blood | Female with obesity (n = 18) | Japanese, Female | Fto (CpG1, CpG3, total CpG) | Weight loss reduces visceral fat and increases CpG3 methylation | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, W.; Gu, S.; Guo, F.; Chen, Z.; Yan, S.; Mo, Z. Dynamic Rendition of Adipose Genes Under Epigenetic Regulation: Revealing New Mechanisms of Obesity Occurrence. Curr. Issues Mol. Biol. 2025, 47, 540. https://doi.org/10.3390/cimb47070540
Wen W, Gu S, Guo F, Chen Z, Yan S, Mo Z. Dynamic Rendition of Adipose Genes Under Epigenetic Regulation: Revealing New Mechanisms of Obesity Occurrence. Current Issues in Molecular Biology. 2025; 47(7):540. https://doi.org/10.3390/cimb47070540
Chicago/Turabian StyleWen, Weijing, Simeng Gu, Fanjia Guo, Zhijian Chen, Sujun Yan, and Zhe Mo. 2025. "Dynamic Rendition of Adipose Genes Under Epigenetic Regulation: Revealing New Mechanisms of Obesity Occurrence" Current Issues in Molecular Biology 47, no. 7: 540. https://doi.org/10.3390/cimb47070540
APA StyleWen, W., Gu, S., Guo, F., Chen, Z., Yan, S., & Mo, Z. (2025). Dynamic Rendition of Adipose Genes Under Epigenetic Regulation: Revealing New Mechanisms of Obesity Occurrence. Current Issues in Molecular Biology, 47(7), 540. https://doi.org/10.3390/cimb47070540