Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (223)

Search Parameters:
Keywords = enteric polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4459 KB  
Review
Prospects and Challenges for Achieving Superlubricity in Porous Framework Materials (MOFs/POFs): A Review
by Ruishen Wang, Xunyi Liu, Sifan Huo, Mingming Liu, Jiasen Zhang, Yuhong Liu, Yanhong Cheng and Caixia Zhang
Lubricants 2026, 14(1), 42; https://doi.org/10.3390/lubricants14010042 - 15 Jan 2026
Viewed by 174
Abstract
Metal–organic frameworks (MOFs) and porous organic frameworks (POFs) have been extensively explored in recent years as lubricant additives for various systems due to their structural designability, pore storage capacity, and tunable surface chemistry. These materials are utilized to construct low-friction, low-wear interfaces and [...] Read more.
Metal–organic frameworks (MOFs) and porous organic frameworks (POFs) have been extensively explored in recent years as lubricant additives for various systems due to their structural designability, pore storage capacity, and tunable surface chemistry. These materials are utilized to construct low-friction, low-wear interfaces and investigate the potential for superlubricity. This paper systematically reviews the tribological behavior and key mechanisms of MOFs/POFs in oil-based, water-based, and solid coating systems. In oil-based systems, MOFs/POFs primarily achieve friction reduction and wear resistance through third-body particles, layer slip, and synergistic friction-induced chemical/physical transfer films. However, limitations in achieving superlubricity stem from the multi-component heterogeneity of boundary films and the dynamic evolution of shear planes. In water-based systems, MOFs/POFs leverage hydrophilic functional groups to induce hydration layers, promote polymer thickening, and soften gels through interfacial anchoring. Under specific conditions, a few cases exhibit superlubricity with coefficients of friction entering the 10−3 range. In solid coating systems, two-dimensional MOFs/COFs with controllable orientation leverage interlayer weak interactions and incommensurate interfaces to reduce potential barriers, achieving structural superlubricity at the 10−3–10−4 level on the micro- and nano-scales. However, at the engineering scale, factors such as roughness, contamination, and discontinuities in the lubricating film still constrain performance, leading to amplified energy dissipation and degradation. Finally, this paper discusses key challenges in achieving superlubricity with MOFs/POFs and proposes future research directions, including the design of shear-plane structures. Full article
(This article belongs to the Special Issue Superlubricity Mechanisms and Applications)
Show Figures

Figure 1

16 pages, 6944 KB  
Article
Water Shutoff with Polymer Gels in a High-Temperature Gas Reservoir in China: A Success Story
by Tao Song, Hongjun Wu, Pingde Liu, Junyi Wu, Chunlei Wang, Hualing Zhang, Song Zhang, Mantian Li, Junlei Wang, Bin Ding, Weidong Liu, Jianyun Peng, Yingting Zhu and Falin Wei
Energies 2025, 18(24), 6554; https://doi.org/10.3390/en18246554 - 15 Dec 2025
Viewed by 377
Abstract
Gel treatments have been widely applied to control water production in oil and gas reservoirs. However, for water shutoff in dense gas reservoirs, most gel-based treatments focus on individual wells rather than the entire reservoir, exhibiting limited treatment depth, poor durability, and inadequate [...] Read more.
Gel treatments have been widely applied to control water production in oil and gas reservoirs. However, for water shutoff in dense gas reservoirs, most gel-based treatments focus on individual wells rather than the entire reservoir, exhibiting limited treatment depth, poor durability, and inadequate repeatability Notably, formation damage is a primary consideration in treatment design—most dense gas reservoirs have a permeability of less than 1 mD, making them highly susceptible to damage by formation water, let alone viscous polymer gels. Constrained by well completion methods, gelant can only be bullheaded into deep gas wells in most scenarios. Due to the poor gas/water selective plugging capability of conventional gels, the injected gelant tends to enter both gas and water zones, simultaneously plugging fluid flow in both. Although several techniques have been developed to re-establish gas flow paths post-treatment, treating gas-producing zones remains risky when no effective barrier exists between water and gas strata. Additionally, most water/gas selective plugging materials lack sufficient thermal stability under high-temperature and high-salinity (HTHS) gas reservoir conditions, and their injectivity and field feasibility still require further optimization. To address these challenges, treatment design should be optimized using non-selective gel materials, shifting the focus from directly preventing formation water invasion into individual wells to mitigating or slowing water invasion across the entire gas reservoir. This approach can be achieved by placing large-volume gels along major water flow paths via fully watered-out wells located at structurally lower positions. Furthermore, the drainage capacity of these wells can be preserved by displacing the gel slug to the far-wellbore region, thereby dissipating water-driven energy. This study evaluates the viability of placing gels in fully watered-out wells at structurally lower positions in an edge-water drive gas reservoir to slow water invasion into structurally higher production wells interconnected via numerous microfractures and high-permeability streaks. The gel system primarily comprises polyethyleneimine (PEI), a terpolymer, and nanofibers. Key properties of the gel system are as follows: Static gelation time: 6 h; Elastic modulus of fully crosslinked gel: 8.6 Pa; Thermal stability: Stable in formation water at 130 °C for over 3 months; Injectivity: Easily placed in a 219 mD rock matrix with an injection pressure gradient of 0.8 MPa/m at an injection rate of 1 mL/min; and Plugging performance: Excellent sealing effect on microfractures, with a water breakthrough pressure gradient of 2.25 MPa/m in 0.1 mm fractures. During field implementation, cyclic gelant injections combined with over-displacement techniques were employed to push the gel slug deep into the reservoir while maintaining well drainage capacity. The total volumes of injected fluid and gelant were 2865 m3 and 1400 m3, respectively. Production data and tracer test results from adjacent wells confirmed that the water invasion rate was successfully reduced from 59 m/d to 35 m/d. The pilot test results validate that placing gels in fully watered-out wells at structurally lower positions is a viable strategy to protect the production of gas wells at structurally higher positions. Full article
(This article belongs to the Special Issue New Advances in Oil, Gas and Geothermal Reservoirs—3rd Edition)
Show Figures

Figure 1

29 pages, 2541 KB  
Review
Recent Advances in pH-Responsive Coatings for Orthopedic and Dental Implants: Tackling Infection and Inflammation and Enhancing Bone Regeneration
by Reyhaneh Gholami, Naser Valipour Motlagh, Zahra Yousefi, Fahimeh Gholami, Joseph J. Richardson, Behnam Akhavan, Vahid Adibnia and Vi Khanh Truong
Coatings 2025, 15(12), 1471; https://doi.org/10.3390/coatings15121471 - 12 Dec 2025
Viewed by 903
Abstract
Bone is a structurally complex and dynamic tissue that plays a crucial role in mobility and skeletal stability. However, conditions such as osteoporosis, osteoarthritis, trauma-induced fractures, infections, and malignancies often necessitate the use of orthopedic and dental implants. Despite significant progress in implant [...] Read more.
Bone is a structurally complex and dynamic tissue that plays a crucial role in mobility and skeletal stability. However, conditions such as osteoporosis, osteoarthritis, trauma-induced fractures, infections, and malignancies often necessitate the use of orthopedic and dental implants. Despite significant progress in implant biomaterials, challenges such as bacterial infection, inflammation, and loosening continue to compromise implant longevity, frequently leading to revision surgeries and extended recovery times. Smart coatings have emerged as a next-generation solution to these problems by providing on-demand, localized therapeutic responses to microenvironmental changes around implants and promoting bone regeneration. Such coatings can minimize antibiotic resistance by enabling controlled, stimulus-triggered drug release. Although the idea of using pH-sensitivity as a tool to make smart coatings is not a new thought, there are no options currently good enough to enter clinical studies. This review provides a comprehensive overview of recent advances in pH-sensitive polymers, hybrid composites, porous architectures, and bioactive linkers designed to dynamically respond to pathological pH variations at implant sites. By investigating the mechanisms of action, antibacterial and anti-inflammatory effects, and roles in bone regeneration, it is shown that the ability to provide time-dependent drug release for both short-term and long-term infections, as well as keeping the environment welcoming to the bone cell growth and replacement, is not an easy goal to reach, even with a fully biocompatable, non-toxic, and semi-biodegradable (one that releases the drug, but does not fade away) coating material compound. Reviewing all available options, including their functions and failures, finally, emerging trends, translational barriers, and future opportunities for clinical implementation are highlighted, underscoring the transformative potential of bioresponsive coatings in orthopedic and dental implant technologies. Full article
(This article belongs to the Special Issue Surface Engineering of Bone Implants)
Show Figures

Figure 1

15 pages, 4576 KB  
Article
Impedance-Matched Iron-Added Polymeric Composite Film Incorporated with Iron Nanowire for Electromagnetic Absorption Application
by Yuh-Jing Chiou, Pei-Jung Chang, Pei-Ru Su, Sheng-Jung Tsou and Chung-Kwei Lin
Polymers 2025, 17(21), 2965; https://doi.org/10.3390/polym17212965 - 6 Nov 2025
Viewed by 760
Abstract
Salisbury screen-type radar absorption structures (RASs) consisting of a resistance sheet, a spacer, and a conductive base provide an efficient method for microwave absorption. An impedance-matched resistance sheet allows microwaves to enter, whereas superior microwave absorbers enhance their performance further. In the present [...] Read more.
Salisbury screen-type radar absorption structures (RASs) consisting of a resistance sheet, a spacer, and a conductive base provide an efficient method for microwave absorption. An impedance-matched resistance sheet allows microwaves to enter, whereas superior microwave absorbers enhance their performance further. In the present work, an impedance matching composite film was prepared by using polymer/iron/iron nanowires. By varying the polymer, poly (methyl methacrylate) (PMMA), poly (vinylidene fluoride) (PVDF), and poly (vinyl alcohol) (PVA), to iron powder ratios (1:1, 2:1, and 4:1), composite films were synthesized and examined by scanning electron microscopy, X-ray diffraction, and the four-point probe method to determine the materials’ characteristics. An impedance-matched composite film was prepared based on the selected composition with 1–10 wt.% iron nanowire additions. Experimental results showed that the polymeric composite film prepared by a ratio of iron-PVA of 4:1 exhibited a sheet resistance of 49 ± 9.7 Ω/sq due to well dispersion of iron powder in PVA. With 1 wt.% Fe nanowire addition, the optimal composite sheet resistance was 329.7 ± 45.3 Ω/sq, which corresponded to an impedance matching degree (i.e., |Zin/Z0| value) of 0.88 ± 0.12 and can be used as a resistance sheet for a Salisbury screen-type absorber in RAS applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

17 pages, 3129 KB  
Article
Microplastic Pollution in Typical Subtropical Rivers in Eastern China: A Case Study of the Feiyun River Basin
by Tingyun Tan, Aqiu Liu, Yahan Yang, Ruizhang Yu, Nansheng Lin, Qiang Ke and Qi Wang
Water 2025, 17(21), 3170; https://doi.org/10.3390/w17213170 - 5 Nov 2025
Viewed by 893
Abstract
The widespread and excessive use of plastic in our daily life has led to serious microplastic pollution in the atmosphere, water, and soil. These microplastics can enter freshwater systems and pose significant risks to the ecosystem and human health via the food chain. [...] Read more.
The widespread and excessive use of plastic in our daily life has led to serious microplastic pollution in the atmosphere, water, and soil. These microplastics can enter freshwater systems and pose significant risks to the ecosystem and human health via the food chain. This environmental problem deserves proper investigation and mitigation strategies. In this study, the abundance, morphology, color, size and polymer composition of microplastics in surface water of Feiyun River Basin were systematically studied by means of field sampling, microscopy and laser micro-Raman spectroscopy. The result showed that microplastic abundance ranged from 3.7 to 36.4 items/L, with an average of 11.0 ± 2.39 items/L. These microplastics were mainly particles, followed by fragments and fibers, with white, black, and blue being the most common colors. Most of the particles were smaller than 0.1 mm (57%), and a laser micro-Raman spectrometer was used to identify the polymer types of the microplastics. The results showed that the main polymer types identified were PET, PP, and PS. Risk assessment based on PLI, PHI, and PERI indices indicated a low ecological risk of microplastics in the study area. These findings provide further insight into the sources and distribution of microplastics in local watersheds and support future assessments of riverine transport of microplastics to estuarine and marine environments. Full article
(This article belongs to the Special Issue Research on Microplastic Pollution in Water Environment)
Show Figures

Figure 1

48 pages, 3047 KB  
Review
From Prescription to Pollution: Assessing the Ecological Impact and Treatment Technologies for Antidepressant Contaminants
by Jordana Georgin, Jivago Schumacher de Oliveira, Younes Dehmani, Noureddine El Messaoudi, Matheus de Albuquerque Carvalho, Lucas Meili, Claudete Gindri Ramos and Dison S. P. Franco
Sustainability 2025, 17(21), 9752; https://doi.org/10.3390/su17219752 - 1 Nov 2025
Viewed by 1785
Abstract
Depression is becoming more common in the face of modern life’s obstacles. Antidepressants are a fast-expanding pharmaceutical category. Antidepressant residues in water must be closely monitored and kept at levels that do not endanger human health, just like those of other psychotropic medications. [...] Read more.
Depression is becoming more common in the face of modern life’s obstacles. Antidepressants are a fast-expanding pharmaceutical category. Antidepressant residues in water must be closely monitored and kept at levels that do not endanger human health, just like those of other psychotropic medications. Additionally, research has shown that these pollutants severely hinder aquatic life’s ability to migrate, reproduce, and interact with one another when they enter natural ecosystems. Antidepressants released into the natural environment can therefore be expected to have an impact on exposed fish and other aquatic species. There is a lot of information available about how exposure affects fish, but much of it is for exposure levels higher than those seen in their natural habitats. Antidepressants can bioaccumulate in fish tissues, and some behavioral effects have been documented for exposures that are relevant to the environment. As a result, antidepressant residue removal methods must be incorporated into contemporary wastewater treatment plant technology. In addition to covering a wide range of suggested treatment options and their ecotoxicological consequences on non-target organisms, this study discusses recent efforts to accomplish this goal. First, a thorough analysis of the harmful impacts on non-target people is provided. This work describes a variety of adsorptive methods that can make use of modern materials like molecularly imprinted polymers or ion-exchange resins or can rely on well-known and efficient adsorbents like silicates or activated carbon. Although extractive methods are also taken into consideration, they are now impractical due to the lack of reasonably priced and ecologically suitable solvents. Lastly, sophisticated oxidation methods are discussed, such as electrochemical alternatives, UV and gamma radiation, and ozone therapy. Notably, some of these techniques could totally mineralize antidepressant toxicants, either alone or in combination. Lastly, the topic of biological treatment with microorganisms is covered. This method can be very specific, but it usually prevents full mineralization. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

22 pages, 4279 KB  
Article
Development and Mechanism of the Graded Polymer Profile-Control Agent for Heterogeneous Heavy Oil Reservoirs Under Water Flooding
by Tiantian Yu, Wangang Zheng, Xueqian Guan, Aifen Li, Dechun Chen, Wei Chu and Xin Xia
Gels 2025, 11(11), 856; https://doi.org/10.3390/gels11110856 - 26 Oct 2025
Viewed by 524
Abstract
During water flooding processes, the high viscosity of heavy oil and significant reservoir heterogeneity often lead to severe water channeling and low sweep efficiency. Addressing the limitations of traditional hydrophobically associating polymer-based profile-control agents—such as significant adsorption loss, mechanical degradation during reservoir migration, [...] Read more.
During water flooding processes, the high viscosity of heavy oil and significant reservoir heterogeneity often lead to severe water channeling and low sweep efficiency. Addressing the limitations of traditional hydrophobically associating polymer-based profile-control agents—such as significant adsorption loss, mechanical degradation during reservoir migration, resulting in a limited effective radius and short functional duration—this study developed a polymeric graded profile-control agent suitable for highly heterogeneous conditions. The physicochemical properties of the system were comprehensively evaluated through systematic testing of its apparent viscosity, salt tolerance, and anti-aging performance. The microscopic oil displacement mechanisms in porous media were elucidated by combining CT scanning and microfluidic visual displacement experiments. Experimental results indicate that the agent exhibits significant hydrophobic association behavior, with a critical association concentration of 1370 mg·L−1, and demonstrates a “low viscosity at low temperature, high viscosity at high temperature” rheological characteristic. At a concentration of 3000 mg·L−1, the apparent viscosity of the solution is 348 mPa·s at 30 °C, rising significantly to 1221 mPa·s at 70 °C. It possesses a salinity tolerance of up to 50,000 mg·L−1, and a viscosity retention rate of 95.4% after 90 days of high-temperature aging, indicating good injectivity, reservoir compatibility, and thermal stability. Furthermore, within a concentration range of 500–3000 mg·L−1, the agent can effectively emulsify Gudao heavy oil, forming O/W emulsion droplets with sizes ranging from 40 to 80 μm, enabling effective plugging of pore throats of corresponding sizes. CT scanning and microfluidic displacement experiments further reveal that the agent possesses a graded control function: in the near-wellbore high-concentration zone, it primarily relies on its aqueous phase viscosity-increasing capability to control the mobility ratio; upon entering the deep reservoir low-concentration zone, it utilizes “emulsion plugging” to achieve fluid diversion, thereby expanding the sweep volume and extending the effective treatment period. This research outcome provides a new technical pathway for the efficient development of highly heterogeneous heavy oil reservoirs. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

13 pages, 2333 KB  
Article
Molten Pressure of Polyvinyl Chloride Under Processing Parameters in Counter-Rotating Twin-Screw Extrusion
by Jen-Sheng Weng, Hsi-Hsun Tsai and Jia-Wei Liu
Polymers 2025, 17(21), 2809; https://doi.org/10.3390/polym17212809 - 22 Oct 2025
Viewed by 595
Abstract
Thermal properties significantly affect extrusion energy efficiency and polymer processing. Relevant parameters include melt temperature, viscosity, and specific heat impact energy consumption, while thermal degradation limits processing temperatures within the screw and barrel. Traditional empirical methods used in polymer extrusion are often hindered [...] Read more.
Thermal properties significantly affect extrusion energy efficiency and polymer processing. Relevant parameters include melt temperature, viscosity, and specific heat impact energy consumption, while thermal degradation limits processing temperatures within the screw and barrel. Traditional empirical methods used in polymer extrusion are often hindered by the complex relationship between screw speed and energy efficiency. Numerical simulations, particularly those using ANSYS Polyflow, offer a more precise approach for visualizing temperature, pressure, and shear rate distributions in the molten polymer, enabling better control of extrusion conditions. The screw’s geometric configuration, which includes sections for conveying, compressing, kneading, and mixing, plays a key role in determining flow behavior and performance. Studies on polymers using various screw configurations have revealed that screw designs with lower compression ratios enhance throughput and reduce melt temperature. Additionally, barrier screw designs improve the polymer melting efficiency. In this study, ANSYS Polyflow simulations were applied to analyze the flow behavior of molten PVC in a counter-rotating twin-screw extruder, focusing on the effects of screw speed and inlet flow rate on pressure, temperature, and velocity distributions. The results indicated optimal extrusion conditions for preventing degradation, with an ideal outlet rate of 439 kg/h at a screw rotational speed of 43 rpm. The pumping pressure of molten PVC by a twin-screw approach would be enough for entering the extrusion die. Full article
Show Figures

Figure 1

22 pages, 3799 KB  
Article
Protein Corona Stability and Removal from PET Microplastics: Analytical and Spectroscopic Evaluation in Simulated Intestinal Conditions
by Tamara Lujic, Tamara Mutic, Ana Simovic, Tamara Vasovic, Stefan Ivanovic, Maja Krstic Ristivojevic, Vesna Jovanovic and Tanja Cirkovic Velickovic
Foods 2025, 14(20), 3454; https://doi.org/10.3390/foods14203454 - 10 Oct 2025
Cited by 1 | Viewed by 1494
Abstract
Microplastics entering the gastrointestinal environment rapidly acquire protein coronas that alter their surface chemistry and analytical detectability. We investigated the physicochemical interactions between fluorescently labeled bovine serum albumin (BSA) and polyethylene terephthalate (PET) microplastics during simulated intestinal exposure and evaluated the stability of [...] Read more.
Microplastics entering the gastrointestinal environment rapidly acquire protein coronas that alter their surface chemistry and analytical detectability. We investigated the physicochemical interactions between fluorescently labeled bovine serum albumin (BSA) and polyethylene terephthalate (PET) microplastics during simulated intestinal exposure and evaluated the stability of the resulting hard corona. Using fluorescence tracking, SDS-PAGE, and FTIR spectroscopy, we showed that BSA forms a persistent corona that resists oxidative-only treatments. Only a combination of oxidation with an alkaline (KOH) or surfactant step (SDS) effectively removed the corona. None of the protocols applied affected polymer integrity. Residual protein in less effective protocols did not show changes on PET spectra in ATR FTIR. To validate the protocol under physiologically relevant complexity, we extended it to PET incubated with single digestive enzymes. FTIR spectra confirmed the removal of protein-specific signals in both systems, with no degradation of PET ester or aromatic functional groups nor signals of protein–polymer interactions. Our results highlight the robustness of protein–PET interactions in biological conditions and provide a variety of protocols for protein corona removal, suitable for diverse applications of microplastic analysis and toxicological studies. Full article
Show Figures

Figure 1

19 pages, 3800 KB  
Article
The Size Effects of Modified Nano-Silica on the Physical Properties of Resorcinol-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Gels in Harsh Reservoir Conditions
by Xun Zhong, Yuxuan Yang, Jiating Chen, Yudan Dong, Sheng Lei, Hui Zhao, Hong He and Lifeng Chen
Gels 2025, 11(10), 769; https://doi.org/10.3390/gels11100769 - 24 Sep 2025
Viewed by 603
Abstract
Nano-silica is widely used to enhance gel properties, but its size, concentrations, and aggregation behaviors all matter. The influencing rules of these factors remain unclear especially in harsh reservoir conditions. This study presented a comprehensive investigation into the gelation, rheological, and plugging properties [...] Read more.
Nano-silica is widely used to enhance gel properties, but its size, concentrations, and aggregation behaviors all matter. The influencing rules of these factors remain unclear especially in harsh reservoir conditions. This study presented a comprehensive investigation into the gelation, rheological, and plugging properties of phenolic polymer gels reinforced by modified nano-silica (GSNP) of different sizes and concentrations in harsh reservoir conditions. Specifically, the nano-silica was modified with a highly soluble silane, and gel properties were evaluated through rheological, differential scanning calorimetry (DSC), and sandpack flooding tests. The results showed that the incorporation of GSNP prolonged the gelation time, enhanced gel strength, and improved stability, allowing the gelation solution to enter deeper into the formation while maintaining long-time effectiveness. The optimal gel system was obtained with 0.4 wt.% GSNP-30, under which condition the storage modulus increased by approximately 14 times, and the content of non-freezable bound water more than doubled. This system exhibited plugging efficiency exceeding 80% in formations with permeabilities ranging from 1000 to 6000 millidarcy and enhanced the oil recovery factor by over 25%. The reinforcement mechanisms were attributed to the adsorption of GSNP onto polymer chains and its role in filling the gel matrix, which enhanced polymer hydrophilicity, suppressed polymer aggregation/curling, prevented ion penetration, and promoted the formation of a more uniform gel network. Careful optimization of nanoparticle size and concentration was essential to avoid the detrimental effects due to nanoparticle overfilling and aggregation. The novelty of this study lies in the practicable formulation of thermal and salt-tolerant gel systems with facile modified nano-silica of varying sizes and the systematic study of size and concentration effects. These findings offer practical guidance for tailoring nanoparticle parameters to cater for high-temperature and high-salinity reservoir conditions. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

21 pages, 11297 KB  
Article
The Contamination of Microplastic Debris in Blue Swimming Crab Portunus pelagicus (Linnaeus, 1758) from Artisanal Fisheries in the Eastern Gulf of Thailand
by Poratape Jendanklang, Chakhrit Ruengsorn, Shettapong Meksumpun and Pattira Kasamesiri
Toxics 2025, 13(10), 813; https://doi.org/10.3390/toxics13100813 - 24 Sep 2025
Viewed by 1683
Abstract
Microplastics have become a significant concern for human health, primarily because aquatic animals can ingest these particles, which then enter the human food chain. Crabs (Portunus pelagicus) were collected along the coastline of Rayong Province in January, April, and August 2024. [...] Read more.
Microplastics have become a significant concern for human health, primarily because aquatic animals can ingest these particles, which then enter the human food chain. Crabs (Portunus pelagicus) were collected along the coastline of Rayong Province in January, April, and August 2024. Crabs were then examined for MP contamination. Our results revealed that MPs were present at all sampling sites, with a detection rate of 62.5% in external body parts and 72.2% in internal body parts. The gut was the most contaminated tissue, followed by the gills, while no MPs were found in the hepatopancreas or muscle tissues. Although overall MP detection and contamination levels were similar across sites, significant differences in abundance were observed between seasons (p < 0.05), with August showing the highest contamination levels. Polyethylene terephthalate glycol was the most common polymer detected, followed by nylon, polypropylene, polyethylene, polystyrene, and polyester. Anthropogenic and fishing activities contribute significantly to MP pollution in these crabs. Fibers from household laundry, followed by damaged fishing gear, are major sources of MP pollution. Enhancing the quality and durability of fishing equipment is crucial to reducing the amount of abandoned fishing gear that may be ingested by marine organisms, while the proper collection and management of discarded gear in the ocean should also be emphasized. Full article
Show Figures

Graphical abstract

12 pages, 1863 KB  
Protocol
Expansion Microscopy of the Enteric Nervous System: A Feasibility Study
by Xin Xu, Wenchuan Zhang and Menachem Hanani
Cells 2025, 14(18), 1463; https://doi.org/10.3390/cells14181463 - 18 Sep 2025
Viewed by 1014
Abstract
Expansion microscopy (ExM) enables conventional light microscopes to achieve nanoscale resolution by physically enlarging biological specimens. While ExM has been widely applied in neurobiology, it has not been adapted for the enteric nervous system (ENS). Here, we provide a detailed and reproducible protocol [...] Read more.
Expansion microscopy (ExM) enables conventional light microscopes to achieve nanoscale resolution by physically enlarging biological specimens. While ExM has been widely applied in neurobiology, it has not been adapted for the enteric nervous system (ENS). Here, we provide a detailed and reproducible protocol for applying ExM to mouse colonic ENS tissue. The procedure includes preparation of the external muscle layers with the myenteric plexus, histochemical staining for NADPH-diaphorase, immunostaining for glial fibrillary acidic protein (GFAP), anchoring of biomolecules, gelation, proteinase K digestion, and isotropic expansion in a swellable polymer matrix. Step-by-step instructions, required reagents, and critical parameters are described to ensure robustness and reproducibility. Using this protocol, tissues expand 3–5-fold, allowing neuronal somata, fibers, and glial cell processes to be clearly visualized by standard brightfield or fluorescence microscopy. The tissue architecture is preserved, with distortion in the X–Y plane of about 7%. This protocol provides a reliable framework for high-resolution structural analysis of the ENS and can be readily adapted to other peripheral tissues. Full article
(This article belongs to the Section Cell Methods)
Show Figures

Graphical abstract

22 pages, 4928 KB  
Article
Study on a Rheological Constitutive Model with Yield and Aging Effects for Polyethylene Gas Pipes
by Rui-Hua Yin, Si-Xi Zha, Jun-Qiang Wang and Hui-Qing Lan
Polymers 2025, 17(16), 2177; https://doi.org/10.3390/polym17162177 - 8 Aug 2025
Viewed by 731
Abstract
Constitutive models and deformation behaviors for polymer materials have long been complex and are always a hot research focus. As a typical semi-crystalline polymer, polyethylene (PE) gas pipes exhibit pronounced nonlinearity, strain dependence, and time dependence during long-term service. Simple material models fail [...] Read more.
Constitutive models and deformation behaviors for polymer materials have long been complex and are always a hot research focus. As a typical semi-crystalline polymer, polyethylene (PE) gas pipes exhibit pronounced nonlinearity, strain dependence, and time dependence during long-term service. Simple material models fail to capture the scale-dependent characteristics of the PE pipes, resulting in difficulties in accurately describing and simulating their deformation and damage behavior. Currently, some PE gas pipes have entered the mid-to-late stages of service life, so it is necessary to propose a constitutive model representing their complex mechanical behavior for simulation and performance evaluation purposes. Based on results from aging tests, tensile tests, differential scanning calorimetry, and Fourier-transform infrared spectroscopy, this study proposes a method to select a rheological framework and a constitutive model that couples thermo-oxidative aging effects in PE gas pipes. The model is developed within the widely recognized rheological framework and is grounded in continuum mechanics, continuum damage mechanics, and the aging behavior of polymer materials. This method and model are suitable for characterizing the mechanical dependency of PE pipes and demonstrate strong fitting performance. According to the calculation results, the goodness of fit of this constitutive model for the uniaxial tensile test results at the different aging times ranges from 0.982 to 0.999. The findings provide theoretical support for the simulation and service life prediction for PE pipelines. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

11 pages, 861 KB  
Article
Synergistic Optimization of Polymer–Surfactant Binary Flooding for EOR: Core-Scale Experimental Analysis of Formulation, Slug Design, and Salinity Effect
by Wenjie Tang, Patiguli Maimaiti, Hongzhi Shao, Tingli Que, Jiahui Liu and Shixun Bai
Polymers 2025, 17(16), 2166; https://doi.org/10.3390/polym17162166 - 8 Aug 2025
Cited by 2 | Viewed by 843
Abstract
As conventional waterflooding enters mid-to-late stages, chemical enhanced oil recovery (EOR) technologies such as polymer–surfactant binary flooding have emerged to address declining recovery rates. This study systematically investigates the synergistic effects of polymer–surfactant binary formulations through core-flooding experiments under varying concentrations, injection volumes, [...] Read more.
As conventional waterflooding enters mid-to-late stages, chemical enhanced oil recovery (EOR) technologies such as polymer–surfactant binary flooding have emerged to address declining recovery rates. This study systematically investigates the synergistic effects of polymer–surfactant binary formulations through core-flooding experiments under varying concentrations, injection volumes, and salinity conditions. The optimal formulation, identified as 0.5% surfactant and 0.15% polymer, achieves a maximum incremental oil recovery of 42.19% with an interfacial tension (IFT) reduction to 0.007 mN/m. A 0.5 pore volume (PV) injection volume balances sweep efficiency and economic viability, while sequential slug design with surfactant concentration gradients demonstrates superior displacement efficacy compared with fixed-concentration injection. Salinity sensitivity analysis reveals that high total dissolved solids (TDS) significantly degrade viscosity, whereas low TDS leads to higher viscosity but only marginally enhances the recovery. These findings provide experimental evidence for optimizing polymer–surfactant flooding strategies in field applications, offering insights into balancing viscosity control, interfacial tension reduction, and operational feasibility. Full article
(This article belongs to the Special Issue Advanced Polymer-Surfactant Systems for Petroleum Applications)
Show Figures

Figure 1

23 pages, 2594 KB  
Article
Formation and Characterization of Xylitol-Modified Glycidyl Methacrylate-co-Ethyl Methacrylate Matrices for Controlled Release of Antimicrobial Compounds
by Adam Chyzy, Przemysław Gnatowski, Edyta Piłat, Maciej Sienkiewicz, Katarzyna Wozniak, Marta Wojnicka, Krzysztof Brzezinski and Marta E. Plonska-Brzezinska
Molecules 2025, 30(15), 3083; https://doi.org/10.3390/molecules30153083 - 23 Jul 2025
Cited by 1 | Viewed by 914
Abstract
Wounds are undeniably important gateways for pathogens to enter the body. In addition to their detrimental local effects, they can also cause adverse systemic effects. For this reason, developing methods for eradicating pathogens from wounds is a challenging medical issue. Polymers, particularly hydrogels, [...] Read more.
Wounds are undeniably important gateways for pathogens to enter the body. In addition to their detrimental local effects, they can also cause adverse systemic effects. For this reason, developing methods for eradicating pathogens from wounds is a challenging medical issue. Polymers, particularly hydrogels, are one of the more essential materials for designing novel drug-delivery systems, thanks to the ease of tuning their structures. This work exploits this property by utilizing copolymerization, microwave modification, and drug-loading processes to obtain antibacterial gels. Synthesized xylitol-modified glycidyl methacrylate-co-ethyl methacrylate ([P(EMA)-co-(GMA)]-Xyl]) matrices were loaded with bacitracin, gentian violet, furazidine, and brilliant green, used as active pharmaceutical ingredients (APIs). The hydrophilic properties, API release mechanism, and antibacterial properties of the obtained hydrogels against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis containing [P(EMA)-co-(GMA)]-Xyl] were studied. The hydrogels with the APIs efficiently inhibit bacteria growth with low doses of drugs, and our findings are statistically significant, confirmed with ANOVA analysis at p = 0.05. The results confirmed that the proposed system is hydrophilic and has extended the drug-release capabilities of APIs with a controlled burst effect based on [P(EMA)-co-(GMA)]-Xyl] content in the hydrogel. Hydrogels are characterized by the prolonged release of APIs in a very short time (a few minutes). Although the amount of released APIs is about 10%, it still exceeds the minimum inhibitory concentrations of drugs. Several kinetic models (first-order, second-order, Baker–Lonsdale, and Korsmeyer–Peppas) were applied to fit the API release data from the [P(EMA)-co-(GMA)]-Xyl-based hydrogel. The best fit of the Korsmeyer–Peppas kinetic model to the experimental data was determined, and it was confirmed that a diffusion-controlled release mechanism of the APIs from the studied hydrogels is dominant, which is desirable for applications requiring a consistent, controlled release of therapeutic agents. A statistical analysis of API release using Linear Mixed Model was performed, examining the relationship between % mass of API, sample (hydrogels and control), time, sample–time interaction, and variability between individuals. The model fits the data well, as evidenced by the determination coefficients close to 1. The analyzed interactions in the data are reliable and statistically significant (p < 0.001). The outcome of this study suggests that the presented acrylate-based gel is a promising candidate for developing wound dressings. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Their Applications)
Show Figures

Figure 1

Back to TopTop