The Size Effects of Modified Nano-Silica on the Physical Properties of Resorcinol-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Gels in Harsh Reservoir Conditions
Abstract
1. Introduction
2. Results and Discussions
2.1. Dispersity of GSNP
2.2. Effects of GSNP on Gelation Properties
2.2.1. Gelation Time
2.2.2. Gel Strength
2.2.3. Gel Stability
2.3. Effects of GSNP on Rheological Properties
2.3.1. Storage Modulus
2.3.2. Loss Factor
2.4. Effects of GSNP on Plugging Efficiency and EOR Performance
2.4.1. Plugging Efficiency
2.4.2. EOR Performance
2.5. Mechanism Analysis
2.5.1. Gel Strength Improvement
2.5.2. Water-Holding Capacity Improvement
3. Conclusions
- (1)
- The strengthening effect of GSNP is highly dependent on particle size and concentration. The optimal gel system suitable for harsh reservoir conditions is obtained with the incorporation 0.4 wt.% GSNP-30 into a base formulation containing 0.5 wt.% PAM-AMPS-35, 0.35 wt.% HMTA, and 0.25 wt.% resorcinol.
- (2)
- With the addition of 0.4 wt.% GSNP-30, the storage modulus of the gel increases by approximately 14 times, and the content of non-freezable bound water more than doubled. The plugging efficiency in formations with permeability of 1000~6000 millidarcy remains above 80%, and the oil recovery factor enhances by over 25% in heterogeneous formations.
- (3)
- The strengthening mechanisms of GSNP are attributed to its adsorption onto polymer chains and its role in filling the skeletal network, thus increasing the oxidation resistance of polymers, suppressing polymer aggregation and ion penetration, and facilitating the formation of a more uniform gel structure.
- (4)
- GSNP increases polymer hydrophilicity and relieves polymer entanglement, resulting in a more homogeneous gel network. Through the strong interactions among polymers, rigid GSNP, and water molecules, some freezable water is converted into non-freezable bound water.
- (5)
- A proper amount of GSNP is beneficial to gel properties, while an excessive dosage can be detrimental due to reduced crosslinking density and increased particle aggregation. Careful optimization of nanoparticle size and concentration is essential to mitigate the adverse impacts of nanoparticle overfilling and aggregation.
4. Materials and Methods
4.1. Materials
4.2. Nanoparticle Modification
4.3. Preparation of Gelation Solution
4.4. Microscopic Morphology Study
4.5. Differential Scanning Calorimetry (DSC) Tests
4.6. Rheological Tests
4.7. Sandpack Flooding Tests
4.7.1. Single Sandpack Flooding Tests
4.7.2. Parallel Sandpack Flooding Tests
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Babagbemi, A.S.; Mofunlewi, S.; Sote, O.K.; Onobrakpor, O. Polymeric Gel Treatment for Water Shutoff—A Case Study. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 31 July–2 August 2023; p. D031S021R005. [Google Scholar]
- Kang, C.; Guo, J.; Fei, D.; Xue, P.; Li, J. A Novel Polymer Gel System with Low Density Property for Preferential Flow Control to Enhanced Oil Recovery. Phys. Fluids 2025, 37, 043125. [Google Scholar] [CrossRef]
- Rajabi, M.S.; Moradi, R.; Andrade, L.O. Chemically Crosslinked Polyvinyl Alcohol for Water Shut-Off and Conformance Control Treatments During Oil Production: The Effect of Silica Nanoparticles. J. Appl. Polym. Sci. 2023, 140, e53382. [Google Scholar] [CrossRef]
- Chen, L.; Xue, M.; Bai, Y.; Antonio, P.; Lv, W.; Hou, B. Self-Healing Movable Gel for Enhanced Heavy Oil Recovery in Harsh Fractured Reservoirs. Phys. Fluids 2025, 37, 083116. [Google Scholar] [CrossRef]
- Wu, Q.-H.; Ge, J.-J.; Ding, L.; Zhang, G.-C. Unlocking the Potentials of Gel Conformance for Water Shutoff in Fractured Reservoirs: Favorable Attributes of the Double Network Gel for Enhancing Oil Recovery. Pet. Sci. 2023, 20, 1005–1017. [Google Scholar] [CrossRef]
- Zhi, J.; Liu, Y.; Chen, J.; Bo, L.; Qu, G.; Jiang, N.; He, W. Preparation and Performance Evaluation of a Temperature and Salt Resistant Hydrophobic Associative Weak Polymer Gel System. Molecules 2023, 28, 3125. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Hu, J.; Liu, P.; Sun, Y. Synthesis and Performance Evaluation of Alginate-Coated Temperature-Sensitive Polymer Gel Microspheres. Gels Basel Switz. 2023, 9, 480. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Wei, F.; Li, W.; Liu, P.; Wu, Y.; Dai, M.; Chen, J. Mechanism of Polyacrylamide Hydrogel Instability on High-Temperature Conditions. ACS Omega 2018, 3, 10716–10724. [Google Scholar] [CrossRef]
- Seright, R.; Brattekas, B. Water Shutoff and Conformance Improvement: An Introduction. Pet. Sci. 2021, 18, 450–478. [Google Scholar] [CrossRef]
- Li, J. Study on Gel Water Plug Agent with Amino Resin as Crosslinking Agent. Master’s Thesis, China University of Petroleum, Qingdao, China, 2022. [Google Scholar]
- Sun, J.; Zhang, X.; Lv, K.; Liu, J.; Xiu, Z.; Wang, Z.; Huang, X.; Bai, Y.; Wang, J.; Jin, J. Synthesis of Hydrophobic Associative Polymers to Improve the Rheological and Filtration Performance of Drilling Fluids under High Temperature and High Salinity Conditions. J. Pet. Sci. Eng. 2022, 209, 109808. [Google Scholar] [CrossRef]
- Chen, S.; Lai, X.; Di, Y.; Wu, Z.; Li, H.; Wang, L.; Wen, X. Preparation of Heat-Resistant and Salt-Resistant Hydrophobically Associating Polymer by Inverse Emulsion Polymerization and Its Rheological Properties. Polym. Mater. Sci. Eng. 2024, 41, 34–43. [Google Scholar] [CrossRef]
- Almoshin, A.M.; Alsharaeh, E.; Fathima, A.; Bataweel, M. A Novel Polymer Nanocomposite Graphene Based Gel for High Temperature Water Shutoff Applications. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 23–26 April 2018; p. SPE-192358-MS. [Google Scholar]
- Du, J.; Wang, Q.; Liu, P.; Xiong, G.; Chen, P.; Chen, X.; Liu, J. Nanocomposite Gels for Water Shut-Off and Temporary Plugging in the Petroleum Industry: A Review. Pet. Sci. Technol. 2023, 41, 2204–2239. [Google Scholar] [CrossRef]
- Pereira, K.A.B.; Oliveira, P.F.; Chaves, I.; Pedroni, L.G.; Oliveira, L.A.; Mansur, C.R.E. Rheological Properties of Nanocomposite Hydrogels Containing Aluminum and Zinc Oxides with Potential Application for Conformance Control. Colloid Polym. Sci. 2022, 300, 609–624. [Google Scholar] [CrossRef]
- Casalini, A.; Lima, R. Water Shut—Off Treatments in Oilfield by Micro and Nano Technology: A Good Way to get More Oil and Less Water. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 13–16 November 2017; p. D011S017R005. [Google Scholar]
- Chen, L.; Zhang, Z.; Zeng, H.; Huang, F.; Lu, X.; Sheng, W. Preparation and Performance of High-Temperature-Resistant, Degradable Inorganic Gel for Steam Applications. SPE J. 2024, 29, 4266–4281. [Google Scholar] [CrossRef]
- Almeida, A.I.A.D.R.; Carvalho, L.D.O.; Lopes, R.C.F.G.; Sena, L.E.B.; Do Amparo, S.Z.S.; De Oliveira, C.P.M.; Calado, H.D.R.; Silva, G.G.; De Vasconcelos, C.K.B.; Viana, M.M. Enhanced Polyacrylamide Polymer Hydrogels Using Nanomaterials for Water Shutoff: Morphology, Thermal and Rheological Investigations at High Temperatures and Salinity. J. Mol. Liq. 2024, 405, 125041. [Google Scholar] [CrossRef]
- Xu, B.; Li, H.; Wang, Y.; Zhang, G.; Zhang, Q. Nanocomposite Hydrogels with High Strength Cross-Linked by Titania. RSC Adv. 2013, 3, 7233. [Google Scholar] [CrossRef]
- Li, X.; Fu, M.; Hu, J. Preparation and Performance Evaluation of Temperature-Resistant and Salt-Resistant Gels. Gels 2024, 10, 337. [Google Scholar] [CrossRef]
- Shi, B.; Zhang, G.; Zhang, L.; Wang, C.; Li, Z.; Chen, F. Study on a Strong Polymer Gel by the Addition of Micron Graphite Oxide Powder and Its Plugging of Fracture. Gels 2024, 10, 304. [Google Scholar] [CrossRef]
- Ilavya, A.; Rathwa, P.; Paine, S.; Makwana, M.; Bera, A. Gelation Studies of Nanographene Oxide-Augmented Nanocomposite Polymer Gel Systems for Water Shutoff Technique in Oil Reservoirs. J. Mol. Liq. 2025, 421, 126928. [Google Scholar] [CrossRef]
- Lyu, Y. Preparation and Stability Mechanism of Temperature and Salt Resistant Modified-Graphite Hybrid Polymer Gel. Master’s Thesis, China University of Petroleum, Qingdao, China, 2023. [Google Scholar]
- Hu, X.; Zhao, X.; Ke, Y. Effects of Silica Nanoparticle on the Solution Properties of Hydrophobically Associating Polymer Based on Acrylamide and β-Cyclodextrin. J. Mol. Liq. 2019, 296, 111885. [Google Scholar] [CrossRef]
- Giraldo, L.J.; Giraldo, M.A.; Llanos, S.; Maya, G.; Zabala, R.D.; Nassar, N.N.; Franco, C.A.; Alvarado, V.; Cortés, F.B. The Effects of SiO2 Nanoparticles on the Thermal Stability and Rheological Behavior of Hydrolyzed Polyacrylamide Based Polymeric Solutions. J. Pet. Sci. Eng. 2017, 159, 841–852. [Google Scholar] [CrossRef]
- Shamlooh, M.; Hamza, A.; Hussein, I.A.; Nasser, M.S.; Magzoub, M.; Salehi, S. Investigation of the Rheological Properties of Nanosilica-Reinforced Polyacrylamide/Polyethyleneimine Gels for Wellbore Strengthening at High Reservoir Temperatures. Energy Fuels 2019, 33, 6829–6836. [Google Scholar] [CrossRef]
- Azimi Dijvejin, Z.; Ghaffarkhah, A.; Sadeghnejad, S.; Vafaie Sefti, M. Effect of Silica Nanoparticle Size on the Mechanical Strength and Wellbore Plugging Performance of SPAM/Chromium (III) Acetate Nanocomposite Gels. Polym. J. 2019, 51, 693–707. [Google Scholar] [CrossRef]
- Telin, A.; Safarov, F.; Yakubov, R.; Gusarova, E.; Pavlik, A.; Lenchenkova, L.; Dokichev, V. Thermal Degradation Study of Hydrogel Nanocomposites Based on Polyacrylamide and Nanosilica Used for Conformance Control and Water Shutoff. Gels 2024, 10, 846. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dai, C.; Wang, K.; Zou, C.; Gao, M.; Fang, Y.; Zhao, M.; Wu, Y.; You, Q. Study on a Novel Cross-Linked Polymer Gel Strengthened with Silica Nanoparticles. Energy Fuels 2017, 31, 9152–9161. [Google Scholar] [CrossRef]
- Amir, Z.; Mohd Saaid, I.; Mohamed Jan, B. An Optimization Study of Polyacrylamide-Polyethylenimine-Based Polymer Gel for High Temperature Reservoir Conformance Control. Int. J. Polym. Sci. 2018, 2018, 2510132. [Google Scholar] [CrossRef]
- Amir, Z.; Saaid, I.M.; Mohd Junaidi, M.U.; Wan Bakar, W.Z. Weakened PAM/PEI Polymer Gel for Oilfield Water Control: Remedy with Silica Nanoparticles. Gels 2022, 8, 265. [Google Scholar] [CrossRef]
- Cordoba, A.; Rivera-Muñoz, E.M.; Velázquez-Castillo, R.; Esquivel, K. PDMS/TiO2 and PDMS/SiO2 Nanocomposites: Mechanical Properties’ Evaluation for Improved Insulating Coatings. Nanomaterials 2023, 13, 1699. [Google Scholar] [CrossRef]
- Zare, Y. The Roles of Nanoparticles Accumulation and Interphase Properties in Properties of Polymer Particulate Nanocomposites by a Multi-Step Methodology. Compos. Part Appl. Sci. Manuf. 2016, 91, 127–132. [Google Scholar] [CrossRef]
- Maleki-Khalan, S.; Hosseini-Nasab, S.M. Study on Mechanisms of Novel Nano-Composite Polymer Gels with Silica and Alpha-Alumina Nanoparticles for Water Shut-Off in Hydrocarbon Reservoirs. Results Eng. 2025, 26, 105274. [Google Scholar] [CrossRef]
- Xu, P.; Shang, Z.; Yao, M.; Li, X. Mechanistic Insight into Improving Strength and Stability of Hydrogels via Nano-Silica. J. Mol. Liq. 2022, 357, 119094. [Google Scholar] [CrossRef]
- Lv, D.; Li, J.; Bo, Q.; Xie, Z.; Dai, C.; Zhao, G. A Novel Profile Control Agent in High-Temperature and High-Salinity Reservoirs: Dispersed Particle Gel Prepared from Modified Nanographite-Strengthened Bulk Gel. Energy Fuels 2023, 37, 19487–19498. [Google Scholar] [CrossRef]
- Wang, W.; Ge, J.; Guo, H.; Lyu, Q.; Xu, Y.; Wu, Q. Strengthening Phenolic Gel by Nano-SiO2 Under High Temperature and High Salinity Conditions. Polym. Mater. Sci. Eng. 2022, 38, 19–28. [Google Scholar] [CrossRef]
- Mandal, M.; Prasanth Kumar, R.; Ojha, K. Impact Assessment of Polymer, Cross-Linker, and Nanoparticles on Gelation Kinetics and Properties of Silica Nanocomposite Hydrogel for Water Shut-Off Treatment in Harsh Reservoir Conditions. J. Mol. Liq. 2024, 411, 125746. [Google Scholar] [CrossRef]
- Zareie, C.; Bahramian, A.R.; Sefti, M.V.; Salehi, M.B. Network-Gel Strength Relationship and Performance Improvement of Polyacrylamide Hydrogel Using Nano-Silica; with Regards to Application in Oil Wells Conditions. J. Mol. Liq. 2019, 278, 512–520. [Google Scholar] [CrossRef]
- Huang, F.; Bai, Y.; Gu, X.; Kang, S.; Yang, Y.; Wang, K. A Novel Fracturing Fluid Based on Functionally Modified Nano-Silica-Enhanced Hydroxypropyl Guar Gel. Gels 2024, 10, 369. [Google Scholar] [CrossRef]
- Qian, Z.; Li, J.; Lyu, D.; Zhang, W.; Zhen, E.; Qu, B.; Li, Z.; Zhao, G. Water Control and Oil Increasing Effect of Organic-inorganic Nano-hybrid Gel in Deep Fractured Reservoirs. Oilfield Chem. 2025, 42, 98–107. [Google Scholar] [CrossRef]
- MalekiKhalan, S.; HosseiniNasab, S.M. Enhancing Water Shut-Off in Oil Reservoirs Using Silica Nanoparticle-Reinforced Polymer Gels: A Lab Study. Iran. J. Chem. Eng. 2025, 22, 65–85. [Google Scholar] [CrossRef]
- Qiao, W.; Zhang, G.; Jiang, P.; Pei, H. Investigation of Polymer Gel Reinforced by Oxygen Scavengers and Nano-SiO2 for Flue Gas Flooding Reservoir. Gels 2023, 9, 268. [Google Scholar] [CrossRef]
- Soliman, A.A.; El-hoshoudy, A.N.; Attia, A.M. Assessment of Xanthan Gum and Xanthan-G-Silica Derivatives as Chemical Flooding Agents and Rock Wettability Modifiers. Oil Gas Sci. Technol.—Rev. D’IFP Energ. Nouv. 2020, 75, 12. [Google Scholar] [CrossRef]
- Liang, T.; Hou, J.; Qu, M.; Zhao, M.; Raj, I. High-Viscosity α-Starch Nanogel Particles to Enhance Oil Recovery. RSC Adv. 2020, 10, 8275–8285. [Google Scholar] [CrossRef]
- Guo, H.; Ge, J.; Li, L.; Zhang, G.; Li, Z.; Wang, W.; Liu, M. New Insights and Experimental Investigation of High-Temperature Gel Reinforced by Nano-SiO2. Gels 2022, 8, 362. [Google Scholar] [CrossRef] [PubMed]
- Bila, A.; Torsæter, O. Experimental Investigation of Polymer-Coated Silica Nanoparticles for EOR under Harsh Reservoir Conditions of High Temperature and Salinity. Nanomaterials 2021, 11, 765. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ge, J.; Zhang, G.; Wang, M.; Chen, D.; Jiang, P.; Pei, H.; Chen, W.; Li, J. Preparation and Temperature Resistance Mechanism of Nanoparticle-Enhanced Polymer Gel. Colloid Polym. Sci. 2024, 302, 1097–1108. [Google Scholar] [CrossRef]
- Bijani, M.; Khamehchi, E.; Shabani, M. Comprehensive Experimental Investigation of the Effective Parameters on Stability of Silica Nanoparticles During Low Salinity Water Flooding with Minimum Scale Deposition into Sandstone Reservoirs. Sci. Rep. 2022, 12, 16472. [Google Scholar] [CrossRef]
- Li, S.; Ng, Y.H.; Lau, H.C.; Torsæter, O.; Stubbs, L.P. Experimental Investigation of Stability of Silica Nanoparticles at Reservoir Conditions for Enhanced Oil-Recovery Applications. Nanomaterials 2020, 10, 1522. [Google Scholar] [CrossRef]
- Saleh, S.; Neubauer, E.; Borovina, A.; Hincapie, R.E.; Clemens, T.; Ness, D. Wettability Changes Due to Nanomaterials and Alkali—A Proposed Formulation for EOR. Nanomaterials 2021, 11, 2351. [Google Scholar] [CrossRef]
- Worthen, A.J.; Tran, V.; Cornell, K.A.; Truskett, T.M.; Johnston, K.P. Steric Stabilization of Nanoparticles with Grafted Low Molecular Weight Ligands in Highly Concentrated Brines Including Divalent Ions. Soft Matter 2016, 12, 2025–2039. [Google Scholar] [CrossRef]
- Sydansk, R.D. A Newly Developed Chromium(Lll) Gel Technology. SPE Reserv. Eng. 1990, 5, 346–352. [Google Scholar] [CrossRef]
- Li, W.; Xue, F.; Cheng, R. States of Water in Partially Swollen Poly(Vinyl Alcohol) Hydrogels. Polymer 2005, 46, 12026–12031. [Google Scholar] [CrossRef]
- Wu, Q.; Ge, J. Experimental Investigation of the Entanglement Network and Nonlinear Viscoelastic Behavior of a Nano-SiO2 Strengthened Polymer Gel. J. Mol. Liq. 2021, 339, 117288. [Google Scholar] [CrossRef]
- Zhong, X.; Li, C.; Li, Y.; Pu, H.; Zhou, Y.; Zhao, J.X. Enhanced Oil Recovery in High Salinity and Elevated Temperature Conditions with a Zwitterionic Surfactant and Silica Nanoparticles Acting in Synergy. Energy Fuels 2020, 34, 2893–2902. [Google Scholar] [CrossRef]
- Zhong, X.; Chen, J.; Xu, F.; Chen, X. Experimental Investigation of Zwitterionic Surfactant-Based Silica Nanofluid Spontaneous Imbibition at High Salinity and Elevated Temperature Conditions. J. Mol. Liq. 2022, 364, 119995. [Google Scholar] [CrossRef]
- Griffith, C.; Daigle, H. Manipulation of Pickering Emulsion Rheology Using Hydrophilically Modified Silica Nanoparticles in Brine. J. Colloid Interface Sci. 2018, 509, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Seid Mohammadi, M.; Sahraei, E.; Bayati, B. Gelation Studies of High Molecular Weight Polymeric Nanoparticles for Application in Fractured Oil Reservoirs with Harsh Conditions. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 11058–11072. [Google Scholar] [CrossRef]
- Aliabadian, E.; Kamkar, M.; Chen, Z.; Sundararaj, U. Prevention of Network Destruction of Partially Hydrolyzed Polyacrylamide (HPAM): Effects of Salt, Temperature, and Fumed Silica Nanoparticles. Phys. Fluids 2019, 31, 013104. [Google Scholar] [CrossRef]
- Sydansk, R.D. Acrylamide-Polymer/Chromium(III)-Carboxylate Gels for Near Wellbore Matrix Treatments. SPE Adv. Technol. Ser. 1993, 1, 146–152. [Google Scholar] [CrossRef]
Authors, Year, and References | Polymer/Crosslinker | Silica Size, nm | Functions of Nano-Silica/Performance |
---|---|---|---|
Maleki-Khalan et al. (2025), [42] | Sulfonated polyacrylamide (SPAM)/Chromium acetate | 85~95 | Enhance gel strength and swelling capacity/Oil factors increase to 57.21% in heterogeneous micromodels |
Qiao, W. et al. (2023), [43] | Partially hydrolyzed polyacrylamide (HPAM)/Chromium acetate | 20 | Suppress polymer degradation, increase gel strength, improve network homogeneity/Plugging rate > 93% |
Ashraf Soliman, A et al. (2020), [44] | Xanthan gum/Silica | <50 | Increases shear resistance, thermal and salt resistance/Displacement efficiency > 80% |
Amir, Z. et al. (2022), [31] | Polyacrylamide (PAM)/Polyethylenimine (PEI) | 5 | Increase gel strength and thermal stability/Storage modulus > 100 Pa |
Liang, T. et al. (2020), [45] | α-starch/N,N’-methylene bisacrylamide | 30 | Increase viscosity/Oil recovery around 30% |
Guo, H. et al. (2022), [46] | Partially hydrolyzed polyacrylamide (HPAM)/Water-soluble phenolic resin (WSPR) | 7 | Improve structure homogeneity and gel strength, inhibit polymer degradation/Storage modulus > 10 Pa, dehydration ratio < 10% |
Bila, A. et al. (2021), [47] | Poly (methacrylate) based/None | 32~218 | Reduce IFT, emulsify oil, induce wettability alteration/Oil recovery increases by 1.51–6.13% |
Telin, A. (2024), [28] | Partially hydrolyzed polyacrylamide (HPAM)/Resorcinol and paraform | 7.2~69.9 | Increase structural and mechanical characteristics/Residual resistance factor > 90 |
Mandal, M. et al. (2024), [38] | PHPA-LM and PHPA-HM/Hydroquinone (HQ) and Hexamethylenetetramine (HX) | 30 | Compact gel network structure/Temperature tolerance increases by over 50 °C |
Liu, M. et al. (2024), [48] | Partially hydrolyzed polyacrylamide (HPAM)/Water-soluble phenolic resin (WSPR) | 7 | Improve the yield stress and long-term thermal stability, produce high-density cavities/Dehydration rate < 5 wt.%, plugging rate > 90% |
Size, nm | GSNP Concentration, wt.% | ||||
---|---|---|---|---|---|
0.2 | 0.4 | 0.6 | 0.8 | 1.0 | |
10 | D | E | E | D | C |
30 | E | F | F | D | D |
50 | E | F | F | D | D |
100 | D | E | E | D | C |
Ions | Na+/K+ | Ca2+ | Mg2+ | Cl− | HCO3− | SO42− |
---|---|---|---|---|---|---|
Concentration (mg/L) | 18,327 | 6896 | 282 | 39,560 | 351 | 2040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, X.; Yang, Y.; Chen, J.; Dong, Y.; Lei, S.; Zhao, H.; He, H.; Chen, L. The Size Effects of Modified Nano-Silica on the Physical Properties of Resorcinol-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Gels in Harsh Reservoir Conditions. Gels 2025, 11, 769. https://doi.org/10.3390/gels11100769
Zhong X, Yang Y, Chen J, Dong Y, Lei S, Zhao H, He H, Chen L. The Size Effects of Modified Nano-Silica on the Physical Properties of Resorcinol-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Gels in Harsh Reservoir Conditions. Gels. 2025; 11(10):769. https://doi.org/10.3390/gels11100769
Chicago/Turabian StyleZhong, Xun, Yuxuan Yang, Jiating Chen, Yudan Dong, Sheng Lei, Hui Zhao, Hong He, and Lifeng Chen. 2025. "The Size Effects of Modified Nano-Silica on the Physical Properties of Resorcinol-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Gels in Harsh Reservoir Conditions" Gels 11, no. 10: 769. https://doi.org/10.3390/gels11100769
APA StyleZhong, X., Yang, Y., Chen, J., Dong, Y., Lei, S., Zhao, H., He, H., & Chen, L. (2025). The Size Effects of Modified Nano-Silica on the Physical Properties of Resorcinol-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Gels in Harsh Reservoir Conditions. Gels, 11(10), 769. https://doi.org/10.3390/gels11100769