Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (37,580)

Search Parameters:
Keywords = energy optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2649 KB  
Article
Stepwise Single-Axis Tracking of Flat-Plate Solar Collectors: Optimal Rotation Step Size in a Continental Climate
by Robert Kowalik and Aleksandar Nešović
Energies 2025, 18(21), 5776; https://doi.org/10.3390/en18215776 (registering DOI) - 1 Nov 2025
Abstract
This study investigates the effect of rotation step size on the performance of flat-plate solar collectors (FPSC) equipped with single-axis tracking. Numerical simulations were carried out in EnergyPlus, coupled with a custom Python interface enabling dynamic control of collector orientation. The analysis was [...] Read more.
This study investigates the effect of rotation step size on the performance of flat-plate solar collectors (FPSC) equipped with single-axis tracking. Numerical simulations were carried out in EnergyPlus, coupled with a custom Python interface enabling dynamic control of collector orientation. The analysis was carried out for the city of Kragujevac in Serbia, located in a temperate continental climate zone, based on five representative summer days (3 July–29 September) to account for seasonal variability. Three collector types with different efficiency parameters were considered, and inlet water temperatures of 20 °C, 30 °C, and 40 °C were applied to represent typical operating conditions. The results show that single-axis tracking increased the incident irradiance by up to 28% and the useful seasonal heat gain by up to 25% compared to the fixed configuration. Continuous tracking (ψ = 1°) achieved the highest energy yield but required 181 daily movements, which makes it mechanically demanding. Stepwise tracking with ψ = 10–15° retained more than 90–95% of the energy benefit of continuous tracking while reducing the number of daily movements to 13–19. For larger steps (ψ = 45–90°), the advantage of tracking decreased sharply, with thermal output only 5–10% higher than the fixed case. Increasing the inlet temperature from 20 °C to 40 °C reduced seasonal heat gain by approximately 30% across all scenarios. Overall, the findings indicate that relative single-axis tracking with ψ between 10° and 15° provides the most practical balance between energy efficiency, reliability, and economic viability, making it well-suited for residential-scale solar thermal systems. This is the first study to quantify how discrete rotation steps in single-axis tracking affect both thermal and economic performance of flat-plate collectors. The proposed EnergyPlus–Python model demonstrates that a 10–15° step offers 90–95% of the continuous-tracking energy gain while reducing actuator motion by ~85%. The results provide practical guidance for optimizing low-cost solar-thermal tracking in continental climates. Full article
Show Figures

Figure 1

31 pages, 2232 KB  
Article
How Does DSS Work Between LTE and NR Systems?—Requirements, Techniques, and Lessons Learned
by Rony Kumer Saha
Technologies 2025, 13(11), 502; https://doi.org/10.3390/technologies13110502 (registering DOI) - 1 Nov 2025
Abstract
Dynamic Spectrum Sharing (DSS) enables spectrum sharing between Long-Term Evolution (LTE) and New Radio (NR) systems, addressing spectrum scarcity in NR. To avoid interference when supporting NR traffic within LTE spectrum, key factors must be compatible. Effective DSS techniques are essential for coexistence. [...] Read more.
Dynamic Spectrum Sharing (DSS) enables spectrum sharing between Long-Term Evolution (LTE) and New Radio (NR) systems, addressing spectrum scarcity in NR. To avoid interference when supporting NR traffic within LTE spectrum, key factors must be compatible. Effective DSS techniques are essential for coexistence. This paper discusses these issues in two parts. Part I covers LTE and NR coexistence using DSS, introducing resource grids, control signals, and channels, and explores DSS approaches for NR data traffic, including NR Synchronization Signal/Physical Broadcast Channels (SSB) transmission via LTE Multicast-Broadcast Single-Frequency Network (MBSFN) and non-MBSFN subframes with associated challenges and standardization efforts for DSS improvement. Part II presents a DSS technique using MBSFN subframes in a heterogeneous network with a macrocell and picocells running on LTE, and in-building small cells running on NR, sharing LTE spectrum via DSS. An optimization problem is formulated to manage traffic through MBSFN allocation, determining the optimal number of MBSFN subframes per LTE frame. System simulations indicate DSS improves Spectral and Energy Efficiency in small cells. The paper concludes with key lessons for LTE and NR coexistence. Full article
(This article belongs to the Special Issue Microwave/Millimeter-Wave Future Trends and Technologies)
Show Figures

Figure 1

33 pages, 4280 KB  
Review
Advances in Through-Hole Anodic Aluminum Oxide (AAO) Membrane and Its Applications: A Review
by Chin-An Ku and Chen-Kuei Chung
Nanomaterials 2025, 15(21), 1665; https://doi.org/10.3390/nano15211665 (registering DOI) - 1 Nov 2025
Abstract
Anodic aluminum oxide (AAO) is a well-known nanomaterial template formed under specific electrochemical conditions. By adjusting voltage, temperature, electrolyte type, and concentration, various microstructural modifications of AAO can be achieved within its hexagonally arranged pore array. To enable broader applications or enhance performance, [...] Read more.
Anodic aluminum oxide (AAO) is a well-known nanomaterial template formed under specific electrochemical conditions. By adjusting voltage, temperature, electrolyte type, and concentration, various microstructural modifications of AAO can be achieved within its hexagonally arranged pore array. To enable broader applications or enhance performance, post-treatment is often employed to further modify its nanostructure after anodization. Among these post-treatment techniques, AAO membrane detachment methods have been widely studied and can be categorized into traditional etching methods, voltage reduction methods, reverse bias voltage detachment methods, pulse voltage detachment methods, and further anodization techniques. Among various delamination processes, the mechanism is highly related to the selectivity of wet etching, as well as the Joule heating and stress generated during the process. Each of these detachment methods has its own advantages and drawbacks, including processing time, complexity, film integrity, and the toxicity of the solutions used. Consequently, researchers have devoted significant effort to optimizing and improving these techniques. Furthermore, through-hole AAO membranes have been applied in various fields, such as humidity sensors, nanomaterial synthesis, filtration, surface-enhanced Raman scattering (SERS), and tribo-electrical nano-generators (TENG). In particular, the rough and porous structures formed at the bottom of AAO films significantly enhance sensor performance. Depending on specific application requirements, selecting or refining the appropriate processing method is crucial to achieving optimal results. As a versatile nanomaterial template, AAO itself is expected to play a key role in future advancements in environmental safety, bio-applications, energy technologies, and food safety. Full article
Show Figures

Graphical abstract

61 pages, 15525 KB  
Review
Transesterification/Esterification Reaction Catalysed by Functional Hybrid MOFs for Efficient Biodiesel Production
by Luis P. Amador-Gómez, Delia Hernández-Romero, José M. Rivera-Villanueva, Sharon Rosete-Luna, Carlos A. Cruz-Cruz, Enrique Méndez-Bolaina, Elena de la C. Herrera-Cogco, Rafael Melo-González, Agileo Hernández-Gordillo and Raúl Colorado-Peralta
Reactions 2025, 6(4), 58; https://doi.org/10.3390/reactions6040058 (registering DOI) - 1 Nov 2025
Abstract
Biodiesel is an alternative, sustainable, renewable, and environmentally friendly energy source, which has generated interest from the scientific community due to its low toxicity, rapid biodegradability, and zero carbon footprint. Biodiesel is a biofuel produced by the transesterification of triglycerides or the esterification [...] Read more.
Biodiesel is an alternative, sustainable, renewable, and environmentally friendly energy source, which has generated interest from the scientific community due to its low toxicity, rapid biodegradability, and zero carbon footprint. Biodiesel is a biofuel produced by the transesterification of triglycerides or the esterification of free fatty acids (FFA). Both reactions require catalysts with numerous active sites (basic, acidic, bifunctional, or enzymatic) for efficient biodiesel production. On the other hand, since the late 1990s, metal–organic frameworks (MOFs) have emerged as a new class of porous materials and have been successfully used in various fields due to their multiple properties. For this reason, MOFs have been used as heterogeneous catalysts or as a platform for designing active sites, thus improving stability and reusability. This literature review presents a comprehensive analysis of using MOFs as heterogeneous catalysts or supports for biodiesel production. The optimal parameters for transesterification/esterification are detailed, such as the alcohol/feedstock molar ratio, catalyst amount, reaction time and temperature, conversion percentage, biodiesel yield, fatty acid and water content, etc. Additionally, novel methodologies such as ultrasound and microwave irradiation for obtaining MOF-based catalysts are described. It is important to note that most studies have shown biodiesel yields >90% and multiple reuse cycles with minimal activity loss. The bibliographic analysis was conducted using the American Chemical Society (ACS) Scifinder® database, the Elsevier B.V. Scopus® database, and the Clarivate Analytics Web of Science® database, under the institutional license of the Universidad Veracruzana. Keywords were searched for each section, generally limiting the document type to “reviews” and “journals,” and the language to English, and published between 2000 and 2025. Full article
Show Figures

Figure 1

26 pages, 4887 KB  
Article
Quantitative Assessment of CFD-Based Micro-Scale Renovation of Existing Building Component Envelopes
by Yan Pan, Lin Zhong and Jin Xu
Biomimetics 2025, 10(11), 733; https://doi.org/10.3390/biomimetics10110733 (registering DOI) - 1 Nov 2025
Abstract
With the acceleration of urbanization, environmental degradation is increasingly restricting the improvement of residents’ quality of life, and promoting the transformation of old communities has become a key path for sustainable urban development. However, existing buildings generally face challenges, such as the deterioration [...] Read more.
With the acceleration of urbanization, environmental degradation is increasingly restricting the improvement of residents’ quality of life, and promoting the transformation of old communities has become a key path for sustainable urban development. However, existing buildings generally face challenges, such as the deterioration of the performance of the envelope structure and the rising energy consumption of the air conditioning system, which pose a serious test for the realization of green renovation. Inspired by the application of bionics in the field of architecture, this study innovatively designed five types of bionic envelope structures for outdoor air conditioning units, namely scales, honeycombs, spider webs, leaves, and bird nests, based on the aerodynamic characteristics of biological prototypes. The ventilation performance of these structures was evaluated at three scales—namely, single building, townhouse, and community—under natural ventilation conditions, using a CFD simulation system. The study shows the following: (1) the spider web structure has the best comprehensive performance among all types of enclosures, which can significantly improve the uniformity of the flow field and effectively eliminate the low-speed stagnation area on the windward side; (2) the structure reorganizes the flow structure of the near-wall area through the cutting and diversion of the porous grid, reduces the wake range, and weakens the negative pressure intensity, making the pressure distribution around the building more balanced; (3) in the height range of 1.5–27 m, the spider web structure performs particularly well at the townhouse and community scales, with an average wind speed increase of 1.1–1.4%; and (4) the design takes into account both the safety of the enclosure and the comfort of the pedestrian area, achieving a synergistic optimization of function and performance. This study provides new ideas for the micro-renewal of buildings, based on bionic principles, and has theoretical and practical value for improving the wind environment quality of old communities and promoting low-carbon urban development. Full article
(This article belongs to the Special Issue Biologically-Inspired Product Development)
Show Figures

Figure 1

17 pages, 3296 KB  
Article
Reaction Behavior of Ultrafine Ferric Oxide Powder with Hydrogen–Carbon Monoxide Gas Mixture
by Xudong Mao
Materials 2025, 18(21), 5002; https://doi.org/10.3390/ma18215002 (registering DOI) - 1 Nov 2025
Abstract
This study aims to enhance fundamental research on the reaction behavior between ferric oxide and H2–CO gas mixtures and to provide theoretical support for optimizing the injection of hydrogen-containing materials in the ironmaking process. In this study, the ultrafine ferric oxide [...] Read more.
This study aims to enhance fundamental research on the reaction behavior between ferric oxide and H2–CO gas mixtures and to provide theoretical support for optimizing the injection of hydrogen-containing materials in the ironmaking process. In this study, the ultrafine ferric oxide powder was isothermally reduced with H2–CO gas mixture at 1023 K–1373 K. The results indicated that when H2 content is less than 30% at 1023 K, the ferric oxide sample reduced by the H2–CO gas mixture exhibits a pronounced carbon deposition phenomenon during the reduction stage. The gas reactant composition had a relatively large influence on the reaction rate at the third stage of the reduction reaction (FeO → Fe). Assuming the single-step nucleation assumption theory together with kinetic experimental data, the relationship between the average reaction rate and the gas composition of the H2–CO gas mixture was established for the FeO reduction stage. In addition, the apparent activation energy of the reduction reaction was generally in the range of 20–45 kJ/mol, indicating that the possible rate-controlling step was combined gas diffusion and interfacial gas–solid chemical reaction. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 5461 KB  
Article
Numerical Investigation of Crack Suppression Strategies in Ultra-Thin Glass Substrates for Advanced Packaging
by Xuan-Bach Le, Kee-Youn Yoo and Sung-Hoon Choa
Micromachines 2025, 16(11), 1256; https://doi.org/10.3390/mi16111256 (registering DOI) - 1 Nov 2025
Abstract
The mechanical reliability of glass substrates is a key challenge for their adoption in advanced semiconductor packaging. This study employs finite element analysis to systematically evaluate the risk of edge crack propagation in large glass panels during redistribution layer (RDL) fabrication. The influence [...] Read more.
The mechanical reliability of glass substrates is a key challenge for their adoption in advanced semiconductor packaging. This study employs finite element analysis to systematically evaluate the risk of edge crack propagation in large glass panels during redistribution layer (RDL) fabrication. The influence of critical factors—including crack location, number of RDLs, glass material and thickness, dielectric ABF properties, Cu content, and edge clearance—was examined. Results revealed that top-edge crack near the RDL/glass interface pose the highest failure risk due to elevated peeling stress and increased energy release rate (ERR). The risk of propagation intensifies with more RDLs and thinner glass, while high CTE (coefficients of thermal expansion) glasses such as D263, Gorilla, and ceramic glass markedly suppress crack growth compared with borofloat 33 and fused silica. Among ABF dielectrics, GZ-41 demonstrated superior crack resistance owing to its low CTE and moderate stiffness. Although higher Cu content slightly reduced ERR, its effect remained limited. Edge clearance strongly affects reliability, with ≥300 µm providing effective suppression of crack propagation. These findings provide quantitative design guidelines for glass interposer structures, emphasizing the optimization of dielectric material selection, glass substrate and thickness, and layout constraints such as edge clearance. The proposed methodology and results will contribute to establishing reliable strategies for deploying ultra-thin glass panels in advanced semiconductor packaging. Full article
(This article belongs to the Special Issue Advanced Interconnect and Packaging, 3rd Edition)
Show Figures

Figure 1

13 pages, 1282 KB  
Article
Multi-Objective Optimization for PTO Damping of Floating Offshore Wind–Wave Hybrid Systems Under Extreme Conditions
by Suchun Yang, Shuo Zhang, Fan Zhang, Xianzhi Wang and Dongsheng Qiao
J. Mar. Sci. Eng. 2025, 13(11), 2084; https://doi.org/10.3390/jmse13112084 (registering DOI) - 1 Nov 2025
Abstract
Floating offshore wind–wave hybrid systems, as a novel structural form integrating floating wind turbine foundations and WECs, can effectively enhance the efficiency of renewable energy utilization when properly designed. A numerical model is established to investigate the dynamic responses of a wind–wave hybrid [...] Read more.
Floating offshore wind–wave hybrid systems, as a novel structural form integrating floating wind turbine foundations and WECs, can effectively enhance the efficiency of renewable energy utilization when properly designed. A numerical model is established to investigate the dynamic responses of a wind–wave hybrid system comprising a semi-submersible FOWT and PA wave energy converters. The optimal damping values of the PTO system for the wind–wave hybrid system are determined based on an NSGA-II. Subsequently, a comparative analysis of dynamic responses is carried out for the PTO system with different states: latching, fully released, and optimal damping. Under the same extreme irregular wave conditions, the pitch motion of the FOWT with optimal damping is reduced to 71% and 50% compared to the latching and fully released states, respectively. The maximum mooring line tension in the optimal damping state is similar to that in the fully released state, but nearly 40% lower than in the latching state. This optimal control strategy not only sustains power generation but also enhances structural stability and efficiency compared to traditional survival strategies, offering a promising approach for cost-effective offshore wind and wave energy utilization. Full article
(This article belongs to the Special Issue Optimized Design of Offshore Wind Turbines)
Show Figures

Figure 1

25 pages, 7154 KB  
Article
Performance Optimization of Expanded Polystyrene Lightweight Concrete Using a Multi-Objective Physically Interpretable Algorithm with Random Forest
by Sen Li, Di Hu, Fei Yu, Qiang Jin and Zihua Li
Buildings 2025, 15(21), 3944; https://doi.org/10.3390/buildings15213944 (registering DOI) - 1 Nov 2025
Abstract
Expanded polystyrene (EPS) concrete has broad application potential in energy-efficient buildings due to its low density and excellent thermal insulation performance. However, a significant nonlinear trade-off exists between its compressive strength and thermal conductivity. Existing studies are mainly based on empirical mix design [...] Read more.
Expanded polystyrene (EPS) concrete has broad application potential in energy-efficient buildings due to its low density and excellent thermal insulation performance. However, a significant nonlinear trade-off exists between its compressive strength and thermal conductivity. Existing studies are mainly based on empirical mix design or single-objective optimization, and the employed modeling methods generally lack interpretability. To address this challenge, this study proposes a multi-objective optimization model (MOPIA-RA) based on physics-informed constraints and an intelligent evolutionary algorithm, aiming to solve the nonlinear contradiction among compressive strength, thermal conductivity, and production cost encountered in practical engineering. A comprehensive dataset covering different cementitious materials, EPS contents, and particle sizes was established based on experimental data, and a surrogate model (PIA-RA) was developed using this dataset. Finally, the Shapley additive explanation (SHAP) method was used to quantitatively evaluate the effects of key materials on compressive strength and thermal conductivity. The results show that the proposed PIA-RA model achieved coefficients of determination (R2) of 0.95 and 0.98 for predicting compressive strength and thermal conductivity, respectively; EPS particle size was the main factor affecting performance, with a contribution rate of 69%, while EPS content also played an important regulatory role, with a contribution rate of 29%. Based on the constructed MOPIA-RA model, it is possible to effectively resolve the multi-objective trade-offs among strength, thermal performance, and cost in EPS concrete and achieve precise mix design. The proposed MOPIA-RA model not only realizes multi-objective optimization among compressive strength, thermal performance, and cost, but also establishes a physics-informed and interpretable methodology for concrete material design. This model provides a scientific basis for the mix-design optimization of EPS concrete. Full article
Show Figures

Figure 1

18 pages, 4314 KB  
Article
Condition-Dependent Rate Capability of Laser-Structured Hard Carbon Anodes in Sodium-Based Batteries
by Viktoria Falkowski and Wilhelm Pfleging
Batteries 2025, 11(11), 403; https://doi.org/10.3390/batteries11110403 (registering DOI) - 1 Nov 2025
Abstract
Changing the topography of electrodes by ultrafast laser ablation has shown great potential in enhancing electrochemical performance in lithium-ion batteries. The generation of microstructured channels within the electrodes creates shorter pathways for lithium-ion diffusion and mitigates strain from volume expansion during electrochemical cycling. [...] Read more.
Changing the topography of electrodes by ultrafast laser ablation has shown great potential in enhancing electrochemical performance in lithium-ion batteries. The generation of microstructured channels within the electrodes creates shorter pathways for lithium-ion diffusion and mitigates strain from volume expansion during electrochemical cycling. The topography modification enables faster charging, improved rate capability, and the potential to combine high-power and high-energy properties. In this study, we present a preliminary exploration of this approach for sodium-ion battery technology, focusing on the impact of laser-generated channels on hard carbon electrodes in sodium-metal half-cells. The performance was analyzed by employing different conditions, including different electrolytes, separators, and electrodes with varying compaction degrees. To identify key factors contributing to rate capability improvements, we conducted a comparative analysis of laser-structured and unstructured electrodes using methods including scanning electron microscopy, laser-induced breakdown spectroscopy, and electrochemical cycling. Despite being based on a limited sample size, the data reveal promising trends and serve as a basis for further optimization. Our findings suggest that laser structuring can enhance rate capability, particularly under conditions of limited electrolyte wetting or increased electrode density. This highlights the potential of laser structuring to optimize electrode design for next-generation sodium-ion batteries and other post-lithium technologies. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Figure 1

16 pages, 6323 KB  
Article
Characterization and Antibacterial Properties of Centrifugally Spun Polyvinylpyrrolidone/Copper(II) Acetate Composite Fibers
by Batool Ibrahim, Roberto Curiel, Sara Ibrahim, Luis Materon, Oleg Ermolinsky, Helia Morales, Jason G. Parsons and Mataz Alcoutlabi
J. Compos. Sci. 2025, 9(11), 590; https://doi.org/10.3390/jcs9110590 (registering DOI) - 1 Nov 2025
Abstract
The demand for effective antibacterial materials is growing rapidly in today’s world. Both metallic and metal oxide nanoparticles have been widely used as antibacterial agents against various bacterial species due to their unique mechanisms of destroying bacterial membrane cells. The current study explores [...] Read more.
The demand for effective antibacterial materials is growing rapidly in today’s world. Both metallic and metal oxide nanoparticles have been widely used as antibacterial agents against various bacterial species due to their unique mechanisms of destroying bacterial membrane cells. The current study explores the antibacterial activity of centrifugally spun fibers prepared from copper acetate polyvinylpyrrolidone (PVP) ethanol precursor solutions against both Gram-negative and Gram-positive bacteria. During the synthesis of the composite fibers, the physical and chemical conditions were optimized. The structure and morphology of the PVP/Cu-Ac fibers were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The antibacterial activity of PVP/copper acetate fibers was tested against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The PVP/Copper acetate fibers demonstrated bactericidal activity against both bacterial strains, making the PVP/copper acetate composite fibers an effective material for biomedical applications. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

15 pages, 1927 KB  
Article
Enhanced Elution of Residual Ammonium from Weathered Crust Elution-Deposited Rare Earth Ore Tailings by Ferric Chloride
by Xiaoyan Wu, Jian Feng, Xianping Luo, Fang Zhou and Ruan Chi
Separations 2025, 12(11), 301; https://doi.org/10.3390/separations12110301 (registering DOI) - 1 Nov 2025
Abstract
The existence of residual ammonium in weathered crust elution-deposited rare earth ore (WREO) tailings will cause serious environmental pollution, and it is necessary to remove it from the ore body. In this work, ferric chloride was applied as the eluent, and the effects [...] Read more.
The existence of residual ammonium in weathered crust elution-deposited rare earth ore (WREO) tailings will cause serious environmental pollution, and it is necessary to remove it from the ore body. In this work, ferric chloride was applied as the eluent, and the effects of the ferric salt concentration, liquid/solid ratio, and the eluting temperature on the ammonium removal process were investigated. The results indicated that ferric chloride demonstrated a significant capability to eliminate residual ammonium (RA) from rare earth (RE) tailings. The optimal conditions identified for this process included a ferric salt concentration of 0.06 mol/L, a liquid/solid ratio of 2:1, and a temperature of 25 °C. Under optimal conditions, the removal efficiency of RA by ferric chloride was measured at 97.47%. The NH4+ concentration in the final stage leachate was determined to be 1.85 mg/L, which satisfies the environmental standards. Kinetic analysis revealed an internal diffusion-controlled elution mechanism for RA in the RE ore tailings, with a reaction order of 0.28 and an activation energy of 13.36 kJ/mol. FT-IR characterization results showed that most of the RA salts were effectively removed. This study establishes a feasible approach to remove RA from RE ore tailings, thereby laying a theoretical foundation for this process. Full article
Show Figures

Figure 1

20 pages, 12870 KB  
Article
Modified Metal-Doped Fe-Al Catalysts for H2-Rich Syngas Production from Microwave-Assisted Gasification of HDPE Plastic
by Jingmo Zhou, Chaoyue Liu, Wenke Zhao, Faizan Ahmad and Yaning Zhang
Catalysts 2025, 15(11), 1032; https://doi.org/10.3390/catal15111032 (registering DOI) - 1 Nov 2025
Abstract
This study pioneers the application of metal-doped Fe-Al as multifunctional redox catalysts for tunable syngas production from plastics via a microwave-assisted process (CLG). We rationally designed a series of redox catalysts (Ni, Ca, Ce, Sr, Co) to unlock efficient H2-rich syngas [...] Read more.
This study pioneers the application of metal-doped Fe-Al as multifunctional redox catalysts for tunable syngas production from plastics via a microwave-assisted process (CLG). We rationally designed a series of redox catalysts (Ni, Ca, Ce, Sr, Co) to unlock efficient H2-rich syngas production from (high-density polyethylene) HDPE. A class of metal-doping (Ni, Ca, Ce, Sr, and Co) Fe-Al redox catalysts was engineered, with Ni-doped Fe-Al (Ni-Fe-Al) exhibiting the excellent H2-rich syngas production (75.32 mmol/gHDPE syngas, 47.09 mmol/gHDPE H2). This is attributed to the improved redox activity, which facilitates efficient lattice oxygen transfer and catalytic reforming reactions, alongside improved microwave absorption and a porous structure that promotes reactant access. This strategic material design, coupled with process parameter optimization (800 W, redox catalyst/plastic = 2.0), developed a highly efficient HDPE-to-syngas conversion system. The process produced a high-quality syngas (90.03% H2 + CO, H2/CO ratio = 2.27) with a rapid heating rate (233.0 °C/min) and minimal energy input (3.52 kWh/molgas). This work provides not just an effective upcycling route for plastics, but a fundamental blueprint for designing advanced redox catalysts to unlock the full potential of microwave-CLG. Full article
Show Figures

Graphical abstract

16 pages, 2200 KB  
Article
Coupling Dynamics and Regulation Mechanisms of Natural Wind, Traffic Wind, and Mechanical Wind in Extra-Long Tunnels
by Yongli Yin, Xiang Lei, Changbin Guo, Kai Kang, Hongbi Li, Jian Wang, Wei Xiang, Bo Guang and Jiaxing Lu
Processes 2025, 13(11), 3512; https://doi.org/10.3390/pr13113512 (registering DOI) - 1 Nov 2025
Abstract
This study systematically investigates the velocity characteristics and coupling mechanisms of tunnel flow fields under the interactions of natural wind, traffic wind, mechanical ventilation, and structural factors (such as transverse passages and relative positions between vehicles and fans). Using CFD simulations combined with [...] Read more.
This study systematically investigates the velocity characteristics and coupling mechanisms of tunnel flow fields under the interactions of natural wind, traffic wind, mechanical ventilation, and structural factors (such as transverse passages and relative positions between vehicles and fans). Using CFD simulations combined with turbulence model analyses, the flow behaviors under different coupling scenarios are explored. The results show that: (1) Under natural wind conditions, transverse passages act as key pressure boundaries, reshaping the longitudinal wind speed distribution into a segmented structure of “disturbance zones (near passages) and stable zones (mid-regions)”, with disturbances near passages showing “amplitude enhancement and range contraction” as natural wind speed increases. (2) The coupling of natural wind and traffic wind (induced by moving vehicles) generates complex turbulent structures; vehicle motion forms typical flow patterns including stagnation zones, high-speed bypass flows, and wake vortices, while natural wind modulates the wake structure through momentum exchange, affecting pollutant dispersion. (3) When natural wind, traffic wind, and mechanical ventilation are coupled, the flow field is dominated by momentum superposition and competition; adjusting fan output can regulate coupling ranges and turbulence intensity, balancing energy efficiency and safety. (4) The relative positions of vehicles and fans significantly affect flow stability: forward positioning leads to synergistic momentum superposition with high stability, while reverse positioning induces strong turbulence, compressing jet effectiveness and increasing energy dissipation. This study reveals the intrinsic laws of tunnel flow field evolution under multi-factor coupling, providing theoretical support for optimizing tunnel ventilation system design and dynamic operation strategies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 1654 KB  
Article
Computational Fluid Dynamic Modeling and Parametric Optimization of Hydrogen Adsorption in Stationary Hydrogen Tanks
by A. Ousegui and B. Marcos
Hydrogen 2025, 6(4), 95; https://doi.org/10.3390/hydrogen6040095 (registering DOI) - 1 Nov 2025
Abstract
This study investigates hydrogen storage enhancement through adsorption in porous materials by coupling the Dubinin–Astakhov (D-A) adsorption model with H2 conservation equations (mass, momentum, and energy). The resulting system of partial differential equations (PDEs) was solved numerically using the finite element method [...] Read more.
This study investigates hydrogen storage enhancement through adsorption in porous materials by coupling the Dubinin–Astakhov (D-A) adsorption model with H2 conservation equations (mass, momentum, and energy). The resulting system of partial differential equations (PDEs) was solved numerically using the finite element method (FEM). Experimental work using activated carbon as an adsorbent was carried out to validate the model. The comparison showed good agreement in terms of temperature distribution, average pressure of the system, and the amount of adsorbed hydrogen (H2). Further simulations with different adsorbents indicated that compact metal–organic framework 5 (MOF-5) is the most effective material in terms of H2 adsorption. Additionally, the pair (273 K, 800 s) remains the optimal combination of injection temperature and time. The findings underscore the prospective advantages of optimized MOF-5-based systems for enhanced hydrogen storage. These systems offer increased capacity and safety compared to traditional adsorbents. Subsequent research should investigate multi-objective optimization of material properties and system geometry, along with evaluating dynamic cycling performance in practical operating conditions. Additionally, experimental validation on MOF-5-based storage prototypes would further reinforce the model’s predictive capabilities for industrial applications. Full article
Show Figures

Figure 1

Back to TopTop