Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,804)

Search Parameters:
Keywords = energy demand assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

24 pages, 2539 KiB  
Article
Classification Framework for Hydrological Resources for Sustainable Hydrogen Production with a Predictive Algorithm for Optimization
by Mónica Álvarez-Manso, Gabriel Búrdalo-Salcedo and María Fernández-Raga
Hydrogen 2025, 6(3), 54; https://doi.org/10.3390/hydrogen6030054 - 6 Aug 2025
Abstract
Given the urgent need to decarbonize the global energy system, green hydrogen has emerged as a key alternative in the transition to renewables. However, its production via electrolysis demands high water quality and raises environmental concerns, particularly regarding reject water discharge. This study [...] Read more.
Given the urgent need to decarbonize the global energy system, green hydrogen has emerged as a key alternative in the transition to renewables. However, its production via electrolysis demands high water quality and raises environmental concerns, particularly regarding reject water discharge. This study employs an experimental and analytical approach to define optimal water characteristics for electrolysis, focusing on conductivity as a key parameter. A pilot water treatment plant with reverse osmosis and electrodeionization (EDI) was designed to simulate industrial-scale pretreatment. Twenty water samples from diverse natural sources (surface and groundwater) were tested, selected for geographical and geological variability. A predictive algorithm was developed and validated to estimate useful versus reject water based on input quality. Three conductivity-based categories were defined: optimal (0–410 µS/cm), moderate (411–900 µS/cm), and restricted (>900 µS/cm). Results show that water quality significantly affects process efficiency, energy use, waste generation, and operating costs. This work offers a technical and regulatory framework for assessing potential sites for green hydrogen plants, recommending avoidance of high-conductivity sources. It also underscores the current regulatory gap regarding reject water treatment, stressing the need for clear environmental guidelines to ensure project sustainability. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

31 pages, 1803 KiB  
Article
A Hybrid Machine Learning Approach for High-Accuracy Energy Consumption Prediction Using Indoor Environmental Quality Sensors
by Bibars Amangeldy, Nurdaulet Tasmurzayev, Timur Imankulov, Baglan Imanbek, Waldemar Wójcik and Yedil Nurakhov
Energies 2025, 18(15), 4164; https://doi.org/10.3390/en18154164 - 6 Aug 2025
Abstract
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance [...] Read more.
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance of hybrid machine learning ensembles for predicting hourly energy demand in a smart office environment using high-frequency IEQ sensor data. Environmental variables including carbon dioxide concentration (CO2), particulate matter (PM2.5), total volatile organic compounds (TVOCs), noise levels, humidity, and temperature were recorded over a four-month period. We evaluated two ensemble configurations combining support vector regression (SVR) with either Random Forest or LightGBM as base learners and Ridge regression as a meta-learner, alongside single-model baselines such as SVR and artificial neural networks (ANN). The SVR combined with Random Forest and Ridge regression demonstrated the highest predictive performance, achieving a mean absolute error (MAE) of 1.20, a mean absolute percentage error (MAPE) of 8.92%, and a coefficient of determination (R2) of 0.82. Feature importance analysis using SHAP values, together with non-parametric statistical testing, identified TVOCs, humidity, and PM2.5 as the most influential predictors of energy use. These findings highlight the value of integrating high-resolution IEQ data into predictive frameworks and demonstrate that such data can significantly improve forecasting accuracy. This effect is attributed to the direct link between these IEQ variables and the activation of energy-intensive systems; fluctuations in humidity drive HVAC energy use for dehumidification, while elevated pollutant levels (TVOCs, PM2.5) trigger increased ventilation to maintain indoor air quality, thus raising the total energy load. Full article
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

35 pages, 6795 KiB  
Article
Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates
by Khushbu Mankani, Mutasim Nour and Hassam Nasarullah Chaudhry
Energies 2025, 18(15), 4155; https://doi.org/10.3390/en18154155 - 5 Aug 2025
Abstract
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green [...] Read more.
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Graphical abstract

28 pages, 2340 KiB  
Article
Determining the Operating Performance of an Isolated, High-Power, Photovoltaic Pumping System Through Sensor Measurements
by Florin Dragan, Dorin Bordeasu and Ioan Filip
Appl. Sci. 2025, 15(15), 8639; https://doi.org/10.3390/app15158639 (registering DOI) - 4 Aug 2025
Abstract
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically [...] Read more.
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically aligns with peak irrigation periods. Despite this potential, photovoltaic pumping systems (PVPSs) often face reliability issues due to fluctuations in solar irradiance, resulting in frequent start/stop cycles and premature equipment wear. The IEC 62253 standard establishes procedures for evaluating PVPS performance but primarily addresses steady-state conditions, neglecting transient regimes. As the main contribution, the current paper proposes a non-intrusive, high-resolution monitoring system and a methodology to assess the performance of an isolated, high-power PVPS, considering also transient regimes. The system records critical electrical, hydraulic and environmental parameters every second, enabling in-depth analysis under various weather conditions. Two performance indicators, pumped volume efficiency and equivalent operating time, were used to evaluate the system’s performance. The results indicate that near-optimal performance is only achievable under clear sky conditions. Under the appearance of clouds, control strategies designed to protect the system reduce overall efficiency. The proposed methodology enables detailed performance diagnostics and supports the development of more robust PVPSs. Full article
(This article belongs to the Special Issue New Trends in Renewable Energy and Power Systems)
Show Figures

Figure 1

19 pages, 10990 KiB  
Article
Geospatial Assessment and Economic Analysis of Rooftop Solar Photovoltaic Potential in Thailand
by Linux Farungsang, Alvin Christopher G. Varquez and Koji Tokimatsu
Sustainability 2025, 17(15), 7052; https://doi.org/10.3390/su17157052 - 4 Aug 2025
Viewed by 58
Abstract
Evaluating the renewable energy potential, such as that of solar photovoltaics (PV), is important for developing renewable energy policies. This study investigated rooftop solar PV potential in Thailand based on open-source geographic information system (GIS) building footprints, solar PV power output, and the [...] Read more.
Evaluating the renewable energy potential, such as that of solar photovoltaics (PV), is important for developing renewable energy policies. This study investigated rooftop solar PV potential in Thailand based on open-source geographic information system (GIS) building footprints, solar PV power output, and the most recent land use data (2022). GIS-based overlay analysis, buffering, fishnet modeling, and spatial join operations were applied to assess rooftop availability across various building types, taking into account PV module installation parameters and optimal panel orientation. Economic feasibility and sensitivity analyses were conducted using standard economic metrics, including net present value (NPV), internal rate of return (IRR), payback period, and benefit–cost ratio (BCR). The findings showed a total rooftop solar PV power generation potential of 50.32 TWh/year, equivalent to 25.5% of Thailand’s total electricity demand in 2022. The Central region contributed the highest potential (19.59 TWh/year, 38.94%), followed by the Northeastern (10.49 TWh/year, 20.84%), Eastern (8.16 TWh/year, 16.22%), Northern (8.09 TWh/year, 16.09%), and Southern regions (3.99 TWh/year, 7.92%). Both commercial and industrial sectors reflect the financial viability of rooftop PV installations and significantly contribute to the overall energy output. These results demonstrate the importance of incorporating rooftop solar PV in renewable energy policy development in regions with similar data infrastructure, particularly the availability of detailed and standardized land use data for building type classification. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

26 pages, 1085 KiB  
Article
Evaluating Sustainable Battery Recycling Technologies Using a Fuzzy Multi-Criteria Decision-Making Approach
by Chia-Nan Wang, Nhat-Luong Nhieu and Yen-Hui Wang
Batteries 2025, 11(8), 294; https://doi.org/10.3390/batteries11080294 - 4 Aug 2025
Viewed by 128
Abstract
The exponential growth of lithium-ion battery consumption has amplified the urgency of identifying sustainable and economically viable recycling solutions. This study proposes an integrated decision-making framework based on the T-Spherical Fuzzy Einstein Interaction Aggregator DEMATEL-CoCoSo approach to comprehensively evaluate and rank battery recycling [...] Read more.
The exponential growth of lithium-ion battery consumption has amplified the urgency of identifying sustainable and economically viable recycling solutions. This study proposes an integrated decision-making framework based on the T-Spherical Fuzzy Einstein Interaction Aggregator DEMATEL-CoCoSo approach to comprehensively evaluate and rank battery recycling technologies under uncertainty. Ten key evaluation criteria—encompassing environmental, economic, and technological dimensions—were identified through expert consultation and literature synthesis. The T-Spherical Fuzzy DEMATEL method was first applied to analyze the causal interdependencies among criteria and determine their relative weights, revealing that environmental drivers such as energy consumption, greenhouse gas emissions, and waste generation exert the most systemic influence. Subsequently, six recycling alternatives were assessed and ranked using the CoCoSo method enhanced by Einstein-based aggregation, which captured the complex interactions present in the experts’ evaluations and assessments. Results indicate that Direct Recycling is the most favorable option, followed by the Hydrometallurgical and Bioleaching methods, while Pyrometallurgical Recycling ranked lowest due to its high energy demands and environmental burden. The proposed hybrid model effectively handles linguistic uncertainty, expert variability, and interdependent evaluation structures, offering a robust decision-support tool for sustainable technology selection in the circular battery economy. The framework is adaptable to other domains requiring structured expert-based evaluations under fuzzy environments. Full article
Show Figures

Figure 1

20 pages, 9591 KiB  
Article
A Channel Centerline-Based Method for Modeling Turbidity Currents Morphodynamics: Case Study of the Baco–Malaylay Submarine Canyon System
by Alessandro Frascati, Michele Bolla Pittaluga, Octavio E. Sequeiros, Carlos Pirmez and Alessandro Cantelli
J. Mar. Sci. Eng. 2025, 13(8), 1495; https://doi.org/10.3390/jmse13081495 - 3 Aug 2025
Viewed by 171
Abstract
Turbidity currents pose significant threats to offshore seabed infrastructures, including subsea hydrocarbon production facilities and submarine communication cables. These powerful underwater flows can damage pipelines, potentially causing hydrocarbon spills that endanger local communities, the environment, and negatively impact energy production infrastructures. Therefore, a [...] Read more.
Turbidity currents pose significant threats to offshore seabed infrastructures, including subsea hydrocarbon production facilities and submarine communication cables. These powerful underwater flows can damage pipelines, potentially causing hydrocarbon spills that endanger local communities, the environment, and negatively impact energy production infrastructures. Therefore, a comprehensive understanding of the spatio-temporal development and destructive force of turbidity currents is essential. While numerical computation of 3D flow, sediment transport, and substrate exchange is possible, field-scale simulations are computationally intensive. In this study, we develop a simplified morphodynamic approach to model the flow properties of channelized turbidity currents and the associated trends of sediment accretion and erosion. This model is applied to the Baco–Malaylay submarine system to investigate the dynamics of a significant turbidity current event that impacted a submarine pipeline offshore the Philippines. The modeling results align with available seabed assessments and observed erosion trends of the protective rock berm. Our simplified modeling approach shows good agreement with simulations from a fully 3D numerical model, demonstrating its effectiveness in providing valuable insights while reducing computational demands. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

17 pages, 2085 KiB  
Article
Identification Method of Weak Nodes in Distributed Photovoltaic Distribution Networks for Electric Vehicle Charging Station Planning
by Xiaoxing Lu, Xiaolong Xiao, Jian Liu, Ning Guo, Lu Liang and Jiacheng Li
World Electr. Veh. J. 2025, 16(8), 433; https://doi.org/10.3390/wevj16080433 - 2 Aug 2025
Viewed by 219
Abstract
With the large-scale integration of high-penetration distributed photovoltaic (DPV) into distribution networks, its output volatility and reverse power flow characteristics are prone to causing voltage violations, necessitating the accurate identification of weak nodes to enhance operational reliability. This paper investigates the definition, quantification [...] Read more.
With the large-scale integration of high-penetration distributed photovoltaic (DPV) into distribution networks, its output volatility and reverse power flow characteristics are prone to causing voltage violations, necessitating the accurate identification of weak nodes to enhance operational reliability. This paper investigates the definition, quantification criteria, and multi-indicator comprehensive determination methods for weak nodes in distribution networks. A multi-criteria assessment method integrating voltage deviation rate, sensitivity analysis, and power margin has been proposed. This method quantifies the node disturbance resistance and comprehensively evaluates the vulnerability of voltage stability. Simulation validation based on the IEEE 33-node system demonstrates that the proposed method can effectively identify the distribution patterns of weak nodes under different penetration levels (20~80%) and varying numbers of DPV access points (single-point to multi-point distributed access scenarios). The study reveals the impact of increased penetration and dispersed access locations on the migration characteristics of weak nodes. The research findings provide a theoretical basis for the planning of distribution networks with high-penetration DPV, offering valuable insights for optimizing the siting of volatile loads such as electric vehicle (EV) charging stations while considering both grid safety and the demand for distributed energy accommodation. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

23 pages, 2663 KiB  
Article
How Nanofluids May Enhance Energy Efficiency and Carbon Footprint in Buildings?
by Sylwia Wciślik
Sustainability 2025, 17(15), 7035; https://doi.org/10.3390/su17157035 - 2 Aug 2025
Viewed by 257
Abstract
Nanofluids are an innovative working medium in solar hot water installations (DHWs), thanks to their increased thermal conductivity and heat transfer coefficient. The aim of this work was to assess the effect of Al2O3 nanofluids in a water–ethylene glycol base [...] Read more.
Nanofluids are an innovative working medium in solar hot water installations (DHWs), thanks to their increased thermal conductivity and heat transfer coefficient. The aim of this work was to assess the effect of Al2O3 nanofluids in a water–ethylene glycol base (40:60%) and with the addition of Tween 80 surfactant (0.2 wt%) on thermal efficiency (ε) and exergy (ηex) in a plate heat exchanger at DHW flows of 3 and 12 L/min. The numerical NTU–ε model was used with dynamic updating of thermophysical properties of nanofluids and the solution of the ODE system using the ode45 method, and the validation was carried out against the literature data. The results showed that the nanofluids achieved ε ≈ 0.85 (vs. ε ≈ 0.87 for the base fluid) and ηex ≈ 0.72 (vs. ηex ≈ 0.74), with higher entropy generation. The addition of Tween 80 reduced the viscosity by about 10–15%, resulting in a slight increase of Re and h-factor; however, the impact on ε and ηex was marginal. The environmental analysis with an annual demand of Q = 3000 kWh/year and an emission factor of 0.2 kg CO2/kWh showed that for ε < 0.87 the nanofluids increased the emissions by ≈16 kg CO2/year, while at ε ≈ 0.92, a reduction of ≈5% was possible. This paper highlights the need to optimize nanofluid viscosity and exchanger geometry to maximize energy and environmental benefits. Nowadays, due to the growing problems of global warming, the analysis of energy efficiency and carbon footprint related to the functioning of a building seems to be crucial. Full article
Show Figures

Figure 1

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 200
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

21 pages, 1353 KiB  
Article
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
by Dario Atzori, Claudia Bassano, Edoardo Rossi, Simone Tiozzo, Sandra Corasaniti and Angelo Spena
Energies 2025, 18(15), 4105; https://doi.org/10.3390/en18154105 - 2 Aug 2025
Viewed by 173
Abstract
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated [...] Read more.
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances, enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment, including both on-grid and off-grid configurations. Subsequently, the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally, potential barriers to large-scale implementation are discussed, along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Figure 1

34 pages, 7297 KiB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 - 2 Aug 2025
Viewed by 279
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

33 pages, 1166 KiB  
Article
Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions
by Hamad Ahmed Al-Ali and Koji Tokimatsu
Energies 2025, 18(15), 4085; https://doi.org/10.3390/en18154085 - 1 Aug 2025
Viewed by 113
Abstract
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment [...] Read more.
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment (LCA) approach to evaluate three water supply strategies for hydrogen production: (1) seawater desalination without brine treatment (BT), (2) desalination with partial BT, and (3) freshwater purification. Scenarios are modeled for the United Arab Emirates (UAE), Australia, and Spain, representing diverse electricity mixes and water stress conditions. Both electrolysis and steam methane reforming (SMR) are evaluated as hydrogen production methods. Results show that desalination scenarios contribute substantially to human health and ecosystem impacts due to high energy use and brine discharge. Although partial BT aims to reduce direct marine discharge impacts, its substantial energy demand can offset these benefits by increasing other environmental burdens, such as marine eutrophication, especially in regions reliant on carbon-intensive electricity grids. Freshwater scenarios offer lower environmental impact overall but raise water availability concerns. Across all regions, feedwater for SMR shows nearly 50% lower impacts than for electrolysis. This study focuses solely on the environmental impacts associated with water sourcing and treatment for hydrogen production, excluding the downstream impacts of the hydrogen generation process itself. This study highlights the trade-offs between water sourcing, brine treatment, and freshwater purification for hydrogen production, offering insights for optimizing sustainable hydrogen systems in water-stressed regions. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production in Renewable Energy Systems)
Show Figures

Figure 1

Back to TopTop