A Channel Centerline-Based Method for Modeling Turbidity Currents Morphodynamics: Case Study of the Baco–Malaylay Submarine Canyon System
Abstract
1. Introduction
2. The Morphodynamic Model
2.1. Governing Equations
2.2. Closure Relationships
3. Application
3.1. Study Area
3.2. Turbidity Currents Activity
3.3. Morphological Data Analysis
4. Results
4.1. Comparison with Seabed Assessments
4.2. Comparison with Observed ROCK Berm Erosion
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | Computational Fluid Dynamics |
VIP | Verde Island Passage |
GEP | Gas Export Pipeline |
KP | Kilometer Point |
SBP | Sub-Bottom Profile |
References
- Pirmez, C.; Beaubouef, R.; Friedmann, S.; Mohrig, D. Equilibrium profile and base level in submarine channels: Examples from late Pleistocene systems and implications for the architecture of deepwater reservoirs. In Global Deep-Water Reservoirs: Gulf Coast Section SEPM Foundation 20th Annual, Proceedings of the Perkins Research Conference, Houston, TX, USA, 3–6 December; Bob, F., Ed.; SEPM: Palm Harbor, FL, USA, 2000; pp. 782–805. [Google Scholar]
- Beaubouef, R.T.; Friedmann, S.J. High Resolution Seismic/Sequence Stratigraphic Framework for the Evolution of Pleistocene Intra Slope Basins, Western Gulf of Mexico: Depositional Models and Reservoir Analogs; Deep-Water Reservoirs of the World, Paul Weimer SEPM Society for Sedimentary Geology: Claremore, OK, USA, 2000. [Google Scholar] [CrossRef]
- Paull, C.K.; Ussler, W., III; Caress, D.W.; Lundstein, E.; Barry, J.; Covault, J.A.; Maier, K.L.; Xu, J.; Augenstein, S. Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon. Geosphere 2010, 6, 755–774. [Google Scholar] [CrossRef]
- Meiburg, E.; Kneller, B. Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 2010, 42, 135–156. [Google Scholar] [CrossRef]
- Bouma, A.H.; Normark, W.R.; Barnes, N.E. Submarine Fans and Related Turbidite Systems; Springer: New York, NY, USA, 1985. [Google Scholar]
- Deptuck, M.E.; Piper, D.J.W.; Savoye, B.; Gervais, A. Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology 2008, 55, 869–898. [Google Scholar] [CrossRef]
- Talling, P.J.; Masson, D.G.; Sumner, E.J.; Malgesini, G. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology 2012, 59, 1937–2003. [Google Scholar] [CrossRef]
- Piper, D.J.W.; Cochonat, P.; Morrison, M.L. The sequence of events around the epicentre of the 1929 Grand Banks earthquake: Initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentology 1999, 46, 79–97. [Google Scholar] [CrossRef]
- Liu, J.T.; Wang, Y.-H.; Yang, R.J.; Hsu, R.T.; Kao, S.-J.; Lin, H.-L.; Kuo, F.H. Cyclone-induced hyperpycnal turbidity currents in a submarine canyon. J. Hydraul. Res. 2012, 117, C04033. [Google Scholar] [CrossRef]
- Azpiroz-Zabala, M.; Cartigny, M.J.B.; Talling, P.J.; Parsons, D.R.; Sumner, E.J.; Clare, M.A.; Simmons, S.M.; Cooper, C.; Pope, E.L. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons. Sci. Adv. 2017, 3, e1700200. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.L.; Talling, P.J.; Burnett, R.; Pope, E.L.; Ruffell, S.C.; Urlaub, M.; Clare, M.A.; Jenkins, J.; Dietze, M.; Neasham, J.; et al. Seabed seismographs reveal duration and structure of longest runout sediment flows on Earth. Geophys. Res. Lett. 2024, 51, e2024GL111078. [Google Scholar] [CrossRef]
- Abd El-Gawad, S.; Cantelli, A.; Pirmez, C.; Minisini, D.; Sylvester, Z.; Imran, J. Three-dimensional numerical simulation of turbidity currents in a submarine channel on the seafloor of the Niger Delta slope. J. Geophys. Res. 2012, 117, C05026. [Google Scholar] [CrossRef]
- Abd El-Gawad, S.; Cantelli, A.; Pirmez, C.; Minisini, D.; Sylvester, Z.; Imran, J. 3-D numerical simulation of turbidity currents in submarine canyons off the Niger Delta. Mar. Geol. 2012, 326, 55–66. [Google Scholar] [CrossRef]
- Sequeiros, O.E.; Pittaluga, M.B.; Frascati, A.; Pirmez, C.; Masson, D.G.; Weaver, P.; Crosby, A.R.; Lazzaro, G.; Botter, G.; Rimmer, J.G. How typhoons trigger turbidity currents in submarine canyons. Sci. Rep. 2019, 9, 9220. [Google Scholar] [CrossRef]
- Porcile, G.; Pittaluga, M.B.; Frascati, A.; Sequeiros, O.E. Typhoon-induced megarips as triggers of turbidity currents offshore tropical river deltas. Commun. Earth Environ. 2020, 1, 2. [Google Scholar] [CrossRef]
- Georgoulas, A.N.; Angelidis, P.B.; Panagiotidis, T.G.; Kotsovinos, N.E. 3D numerical modelling of turbidity currents. Environ. Fluid Mech. 2010, 10, 603–635. [Google Scholar] [CrossRef]
- Meiburg, E.; Radhakrishnan, S.; Nasr-Azadani, M. Modeling Gravity and Turbidity Currents: Computational Approaches and Challenges. Appl. Mech. Rev. 2015, 67, 040802. [Google Scholar] [CrossRef]
- Van den Berg, J.H.; Van Gelder, A.; Mastbergen, D.R. The importance of breaching as a mechanism of subaqueous slope failure in fine sand. Sedimentology 2002, 49, 81–95. [Google Scholar] [CrossRef]
- Mulder, T.; Syvitski, J.P.; Migeon, S.; Faugères, J.-C.; Savoye, B. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review. Mar. Pet. Geol. 2003, 20, 861–882. [Google Scholar] [CrossRef]
- Garcia, M.; Parker, G. Experiments on the entrainment of sediment into suspension by a dense bottom current. J. Geophys. Res. 1993, 98, 4793–4807. [Google Scholar] [CrossRef]
- Traer, M.; Fildani, A.; McHargue, T.; Hilley, G. Simulating depth-averaged, one-dimensional turbidity current dynamics using natural topographies. J. Geophys. Res. 2015, 120, 1485–1500. [Google Scholar] [CrossRef]
- Felix, M. Flow structure of turbidity currents. Sedimentology 2002, 49, 397–419. [Google Scholar] [CrossRef]
- Ma, H.; Parker, G.; Cartigny, M.; Viparelli, E.; Balachandar, S.; Fu, X.; Luchi, R. Two-layer formulation for long-runout turbidity currents: Theory and bypass flow case. J. Fluid Mech. 2025, 1009, A19. [Google Scholar] [CrossRef]
- Traer, M.M.; Fildani, A.; Fringer, O.; McHargue, T.; Hilley, G.E. Turbidity current dynamics: 1. Model formulation and identification of flow equilibrium conditions resulting from flow stripping and overspill. J. Geophys. Res. Earth Surf. 2018, 123, 501–519. [Google Scholar] [CrossRef]
- Traer, M.M.; Fildani, A.; Fringer, O.; McHargue, T.; Hilley, G.E. Turbidity current dynamics: 2. Simulating flow evolution toward equilibrium in idealized channels. J. Geophys. Res. Earth Surf. 2018, 123, 520–534. [Google Scholar] [CrossRef]
- Bolla Pittaluga, M.; Frascati, A.; Falivene, O. A gradually varied approach to model turbidity currents in submarine channels. J. Geophys. Res. 2018, 123, 80–96. [Google Scholar] [CrossRef]
- Parker, G.; Fukushima, Y.; Pantin, H.M. Self-accelerating turbidity currents. J. Fluid Mech. 1986, 171, 145–181. [Google Scholar] [CrossRef]
- Parker, G.; Garcia, M.; Fukushima, Y.; Yu, W. Experiments on turbidity currents over an erodible bed. J. Hydraul. Res. 1987, 25, 123–147. [Google Scholar] [CrossRef]
- García, M.; Parker, G. Entrainment of bed sediment into suspension. J. Hydraul. Eng. 1991, 117, 414–435. [Google Scholar] [CrossRef]
- Böttner, C.; Stevenson, C.J.; Englert, R.; Schönke, M.; Pandolpho, B.T.; Geersen, J.; Feldens, P.; Krastel, S. Extreme erosion and bulking in a giant submarine gravity flow. Sci. Adv. 2024, 10, eadp2584. [Google Scholar] [CrossRef]
- Smith, J.D.; McLean, S.R. Spatially averaged flow over a wavy surface. J. Geophys. Res. 1977, 82, 1735–1746. [Google Scholar] [CrossRef]
- Partheniades, E. Erosion and deposition of cohesive soils. J. Hydraul. Div. 1965, 91, 105–139. [Google Scholar] [CrossRef]
- Garcia, M. Depositional turbidity currents laden with poorly sorted sediment. J. Hydraul. Eng. 1994, 120, 1240–1263. [Google Scholar] [CrossRef]
- Seminara, G.; Tubino, M. Sand bars in tidal channels. Part 1. Free bars. J. Fluid Mech. 2001, 440, 49–74. [Google Scholar] [CrossRef]
- Parker, G. Self–formed rivers with stable banks and mobile bed: Part I, The sand–silt river. J. Fluid Mech. 1978, 89, 109–126. [Google Scholar] [CrossRef]
- Meyer-Peter, E.; Mueller, R. Formulas for bed-load transport. In Proceedings of the 2nd Meeting of the International Association for Hydraulic Structure Research, Stockholm, Sweden, 7–9 June 1948; pp. 39–64. [Google Scholar]
- van Rijn, L.C. Sediment transport, part I: Bed load transport. J. Hydraul. Eng. 1984, 110, 1431–1456. [Google Scholar] [CrossRef]
- Bolla Pittaluga, M.; Imran, J. A simple model for vertical profiles of velocity and suspended sediment concentration in straight and curved submarine channels. J. Geophys. Res. 2014, 119, 483–503. [Google Scholar] [CrossRef]
- de Leeuw, J.; Eggenhuisen, J.T.; Cartigny, M.J.B. Linking submarine channel–levee facies and architecture to flow structure of turbidity currents: Insights from flume tank experiments. Sedimentology 2018, 65, 931–951. [Google Scholar] [CrossRef]
- Sequeiros, O.E. Estimating turbidity current conditions from channel morphology: A Froude number approach. J. Geophys. Res. 2012, 117, C04003. [Google Scholar] [CrossRef]
- van Rijn, L.C.; Walstra, D.J.R.; van Ormondt, M. Description of TRANSPOR2004 and Implementation in Delft3D-Online; Final Report (Prepared for: DG Rijkswaterstaat, Rijksinstituut voor Kust en Zee|RIKZ, by WL Delft Hydraulics. Report Z3748.10, 2004); Delft hydraulics: Delft, The Netherlands, 2004. [Google Scholar]
- Wilkerson, G.V.; Parker, G. Physical basis for quasi-universal relationships describing bankfull hydraulic geometry of sand-bed rivers. J. Hydraul. Eng. 2011, 137, 739–753. [Google Scholar] [CrossRef]
- Li, C.; Czapiga, M.J.; Eke, E.C.; Viparelli, E.; Parker, G. Variable Shields number model for river bankfull geometry: Bankfull shear velocity is viscosity-dependent but grain size-independent. J. Hydraul. Research 2014, 53, 36–48. [Google Scholar] [CrossRef]
- Brownlie, W.R. Prediction of Flow Depth and Sediment Discharge in Open Channels; Report No. KH-R-43A; California Institute of Technology, W.M. Keck Laboratory: Pasedena, CA, USA, 1981. [Google Scholar]
- Huang, H.; Imran, J.; Pirmez, C. Numerical model of turbidity currents with a deforming bottom boundary. J. Hydraul. Eng. 2005, 131, 283–293. [Google Scholar] [CrossRef]
- Ezz, H.; Cantelli, A.; Imran, J. Experimental modeling of depositional turbidity currents in a sinuous submarine channel. Sediment. Geol. 2013, 290, 175–187. [Google Scholar] [CrossRef]
- Ezz, H.; Imran, J. Curvature-induced secondary flow in submarine channels. Environ. Fluid Mech. 2014, 14, 343–370. [Google Scholar] [CrossRef]
- Paola, C.; Voller, V. A generalized Exner equation for sediment mass balance. J. Geophys. Res. 2005, 110, F04014. [Google Scholar] [CrossRef]
Number of Sediment Classes | 2 (mud and sand) |
Sediment Grain Size | 20 μm, 150 μm |
Initial Seabed Composition | 1% mud, 99% sand |
Inlet Flow Velocity (Upstream) | 0.62 m/s |
Inlet Flow Thickness (Upstream) | 2.8 m |
Total Inlet Suspended Sediment Concentration (Upstream) | 0.00169 |
Inlet Suspended Sediment Partition (Upstream) | 97% mud, 3% sand |
Seabed Roughness (Conductance CZ) | 13.5 |
Sediment Entrainment Relation | Partheniades = (0.1, 8.7) 10−3 kg m−2 s−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frascati, A.; Bolla Pittaluga, M.; Sequeiros, O.E.; Pirmez, C.; Cantelli, A. A Channel Centerline-Based Method for Modeling Turbidity Currents Morphodynamics: Case Study of the Baco–Malaylay Submarine Canyon System. J. Mar. Sci. Eng. 2025, 13, 1495. https://doi.org/10.3390/jmse13081495
Frascati A, Bolla Pittaluga M, Sequeiros OE, Pirmez C, Cantelli A. A Channel Centerline-Based Method for Modeling Turbidity Currents Morphodynamics: Case Study of the Baco–Malaylay Submarine Canyon System. Journal of Marine Science and Engineering. 2025; 13(8):1495. https://doi.org/10.3390/jmse13081495
Chicago/Turabian StyleFrascati, Alessandro, Michele Bolla Pittaluga, Octavio E. Sequeiros, Carlos Pirmez, and Alessandro Cantelli. 2025. "A Channel Centerline-Based Method for Modeling Turbidity Currents Morphodynamics: Case Study of the Baco–Malaylay Submarine Canyon System" Journal of Marine Science and Engineering 13, no. 8: 1495. https://doi.org/10.3390/jmse13081495
APA StyleFrascati, A., Bolla Pittaluga, M., Sequeiros, O. E., Pirmez, C., & Cantelli, A. (2025). A Channel Centerline-Based Method for Modeling Turbidity Currents Morphodynamics: Case Study of the Baco–Malaylay Submarine Canyon System. Journal of Marine Science and Engineering, 13(8), 1495. https://doi.org/10.3390/jmse13081495