Classification Framework for Hydrological Resources for Sustainable Hydrogen Production with a Predictive Algorithm for Optimization
Abstract
1. Introduction
- A pilot water treatment plant will be designed and built to achieve the conditions required for the electrolyzer of a green hydrogen generation plant.
- A series of experiments will be carried out using this plant to purify water from different natural sources with varying conductivity and hardness values and different origins (groundwater or surface water) to classify water from different sources according to its potential for renewable hydrogen production.
- The characteristics of the reject water produced when using each type of water will be evaluated to assess whether it could be discharged directly into the natural environment or will require previous treatment, which would drastically reduce the profitability of such a plant.
- On the basis of all these results, we aim to establish the water quality limits corresponding to the feasible production of renewable hydrogen on an industrial scale.
2. Materials and Methods
2.1. Construction of a Test Plant to Evaluate Different Types of Water for the Production of Green Hydrogen
2.1.1. Plant Description and Water Requirements
2.1.2. Electrolyzer Requirements
2.1.3. Preparation of Water for Entry into the Electrolyzer
2.1.4. Construction of the Pilot Water Treatment Plant In-House
2.2. Water Performance Analysis Phase
2.2.1. Selection of Different Natural Water Sources for the Production of Green Hydrogen
Water Characteristics | Köppen–Geiger Climate Classification * [32] | Soil Types | Presence of Clay | Input Water Conductivity (µs/Cm) | |
---|---|---|---|---|---|
01 | Cervera de Pisuerga (Palencia) | Csb | Chalky/rocky | Low | 32.00 |
02 | Bembibre (León) | Csb | Slate/clays | None | 39.00 |
03 | Santibáñez de Vidriales (Zamora) | Csb | Slate | Low | 55.00 |
04 | Villadangos del Páramo (León) | Cfb | Clay–loam | None | 83.00 |
05 | Altazar (Madrid) | Csb | Entisols and Inceptisols over shales and sandstones | Low | 94.00 |
06 | Villamayor (Salamanca) | Csb | Sandy and sandy loam soils | None | 116.00 |
07 | Onzonilla (León) | Csb | Alluvial soils (Fluvisols) and sandy loam | Moderate | 153.50 |
08 | Almanza (León) | Csb | Brown chalky and clayey soils | Low | 156.00 |
09 | Panticosa (Huesca) | Cfb | Leptosols and poorly evolved mountain soils | None | 183.00 |
10 | Lugo (Lugo) | Csb | Umbrisols and Cambisols | None | 214.00 |
11 | Almazán (Soria) | Cfb | Fluvisols and Cambisols over alluvial terraces | Moderate | 228.00 |
12 | Alcántara (Cáceres) | Csa | Leptosols and Regosols over slate and quartzite | Low | 260.00 |
13 | Arroyo de la Encomienda (Valladolid) | Csb | Fluvisols and chalky Cambisols | Moderate | 266.00 |
14 | As Pontes (A Coruña) | Csb | Metamorphic soils with the presence of alluvium | None | 275.00 |
15 | Muñoveros (Segovia) | Csb | Sandy soils and sandy loam | Low | 288.00 |
16 | Manganeses de la Lampreana (Zamora) | Csb | Sandy and silty | Low | 302.00 |
17 | Sabiñanigo (Huesca) | Cfb | Alluvial and Quaternary terraces | None | 303.00 |
18 | Orense (Orense) | Csb | Acid soils (Umbrisols and Cambisols) and sandy loam. | None | 304.00 |
19 | Llanera (Asturias) | Cfb | Deep soils, loamy to clayey loam in texture | Low or moderate | 314.00 |
20 | Pineda Trasmonte (Burgos) | Cfb | Brown limestone and clayey soils | None or low | 357.00 |
21 | Salvatirra (Álava) | Csb | Soils over alluvial deposits | Low | 375.00 |
22 | Palos de la Frontera (Huelva) | sa | Sandy and sandy loam, with alluvial deposits | High | 375.00 |
23 | Bercero (Valladolid) | Csb | Luvisols and alluvial terrace soils | Moderate | 387.00 |
24 | Lugo (Lugo) | Csb | Shallow with silty or sandy-loam texture | None | 397.00 |
25 | Cala (Huelva) | Csa | Regosols and Leptosols over shales and quartzite | High | 418.00 |
26 | Silvota (Asturias) | Cfb | Deep soils, loamy to clayey loam in texture | Low or moderate | 430.00 |
27 | Marismas (Sevilla) | Csa | Loamy/clayey | High | 441.00 |
28 | Jaca (Huesca) | Cfb | Rocky/pebbly | None | 446.00 |
29 | Miranda de Ebro (Burgos) | Csb | Claystones, limestones, and sandstones | Low | 463.00 |
30 | Cabeza de Vaca (Badajoz) | Csa | Brown limestone and clayey soils | Low | 473.00 |
31 | El Bonillo (Albacete) | Csa | Limestone and dolomitic soils | Low | 474.00 |
32 | Iznajar (Córdoba) | Csa | Clayey and limestone soils | Moderate | 500.00 |
33 | Villarquemado (Teruel) | Cfb | Brown limestone and clayey soils | Moderate | 510.00 |
34 | Yeste (Albacete) | Csa | Mediterranean rendzina, brown limestone, and alluvial | Low | 515.00 |
35 | Berrueco (Zaragoza) | Cfb | Xerophytic (desert), loose, dusty soils | Low | 516.00 |
36 | Jaca (Huesca) | Cfa | Fluvisoles, Leptosoles, Cambisoles | None | 533.00 |
37 | Rueda (Valladolid) | Cfa | Sandy loam and limestone soils | Moderate | 572.00 |
38 | La Venta Usagre (Badajoz) | Csa | Brown limestone and clayey soils | Low | 576.00 |
39 | Requena (Valencia) | Csa | Fluvisols and Cambisols with clay accumulation | Low | 617.00 |
40 | Torico (Cáceres) | Csa | Leptosols and Regosols developed over shales | Low | 636.00 |
41 | Used (Zaragoza) | Cfb | Ordovician quartzites and dolomitic limestones | Low | 664.00 |
42 | Villaviudas (Palencia) | Cfb | Rendzinas with brown limestone soils in higher areas | Moderate | 667.00 |
43 | Puebla de Don Fabrique (Granada) | BSk | Chalky and clayey soils over Mesozoic materials | Low | 670.00 |
44 | Fuensalida (Toledo) | BSk | Fluvisols and Cambisols over alluvial materials | Low | 706.00 |
45 | Nohales (Cuenca) | Csa | Chalky and clayey soils | Moderate | 712.00 |
46 | La Guardia de Jaén (Jaén) | BSk | Clayey and limestone soils | Moderate | 720.00 |
47 | Miranda de Ebro (Burgos) | Cfb | Clayey, limestone, and sandstone soils | Low | 788.00 |
48 | Villarez de Saz (Cuenca) | Csa | Limestone and clayey soils over Mesozoic materials | Moderate | 823.00 |
49 | Torremejia (Badajoz) | Csa | Southern brown earth and clayey red soils | Low | 927.00 |
50 | Colomera (Granada) | Csa | Limestone and clayey soils over Mesozoic materials | Low | 970.00 |
51 | Villamiel de Toledo (Toledo) | BSk | Fluvisols and Cambisols over alluvial materials | Moderate | 1060.00 |
52 | Argamasilla de Alba (Ciudad Real) | BSk | Clayey loam and chalky clay soils | Moderate | 1080.00 |
53 | Chinchilla de Montearagón (Albacete) | BSk | Limestone, clayey, and gypsiferous soils | Moderate | 1087.00 |
54 | Calzada de Don Diego (Salamanca) | Csb | Sandy and sandy loam over granitic peneplains | Low | 1100.00 |
55 | Santa Julia de Ramis (Girona) | Cfa | Granitic and alluvial materials | None | 1160.00 |
56 | Puente Genil (Córdoba) | BSk | Clayey and limestone soils | Moderate | 1240.00 |
57 | Orce (Granada) | BSk | Calcium Cambisols and chalky Regosols | Low | 1250.00 |
58 | Moreal del Campo (Teruel) | Cfb | Brown limestone and clayey soils over Tertiary soils | Moderate | 1263.00 |
59 | Almagro (Ciudad Real) | BSk | Clayey and limestone soils with Miocene sediments | Moderate | 1431.00 |
60 | Montejicar (Granada) | BSk | Limestone, clayey, and marly limestone Subbetic mountain ranges | Moderate | 1480.00 |
61 | Vega de Granada (Granada) | BSk | Fluvisols with alluvial soils, with clay–loam texture | Moderate | 1677.00 |
62 | Sierra de los Caballos (Sevilla) | Csa | Limestone, clayey and stony with Mesozoic material | High | 1786.00 |
63 | Santa Cruz De La Muela (Alicante) | BSh | Clayey and limestone soils | Moderate | 1800.00 |
64 | Bailen (Linares) | BSk | Strongly to slightly chalky soils | Moderate | 1826.00 |
65 | L’Hospitalet de Llobregat (Barcelona) | Csa | Alluvial soils with Fluvisols | Low | 1880.00 |
66 | Navas de San Juan (Jaén) | Csa | Marls, clays, and gypsum | High | 1887.00 |
67 | Carmona (Sevilla) | Csa | Alluvial and chalky soils | High | 1975.00 |
68 | Verdu (Lleida) | BSk | Chalky and sandy loam soils over Tertiary soils | Moderate | 2010.00 |
69 | Caspe (Zaragoza) | BSk | Chalky, stony, and loose soils over Tertiary soils | Moderate | 2300.00 |
70 | Peñafiel (Valladolid) | Csb | Sandy loam and limestone soils | High | 2580.00 |
71 | Mazarrón (Murcia) | BSk | Soils with chalky crust and ferruginization | High | 2800.00 |
72 | Torrejoncillo Del Rey (Cuenca) | Cfb | Chalky and clayey soils over Mesozoic materials | Moderate | 2834.00 |
73 | Villafuerte (Valladolid) | Csb | Chalky moor and sandy or sandy loam soils | High | 3126.00 |
74 | La Luisiana (Sevilla) | Csa | Alluvial Fluviosols and clayey soils | High | 3285.00 |
75 | Mejorada del Campo (Madrid) | Csa | Soils with chalky crust and ferruginization | High | 3380.00 |
76 | Girona (Girona) | Cfa | Sandy loam to clay–loam soils | Low | 3563.00 |
77 | Caspe (Zaragoza) | BSk | Chalky, stony, and loose soils over marls | High | 3857.00 |
2.2.2. Analysis of Existing Water Legislation
Limit Values | Sector Affected | Source |
---|---|---|
>6000 µS/cm | Crops | [34] Ismayilov et al. (2021) |
>5000 µS/cm | Surface water | [35] Degree 141/2012, of June 21 (Galicia, Spain) |
Human health | [36] Martín and Ángel (2023) | |
>4000 µS/cm | Surface water | [37] R.D 38/2004, BOA 10 March 2004, (Spain) |
Irrigation | [34] Ismayilov, A., et al. (2021) | |
>3000 µS/cm | Irrigation | [34] Ismayilov, A., et al. (2021) [38] Álvarez, M., et al. (2004) |
Crops | [39] Pérez-Vázquez et al. (2020) | |
>2500 µS/cm | Human consumption | [40] European Directive 2020/2184 [41] European Directive 98/83/EC [42] European Council Directive 98/83/EC, 1998 [43] R.D. 1138/90 of 14 September 1990 [44] R.D. 140/2003 |
>2000 µS/cm | Freshwater species | [45] Flores and Jara (2017) [46] Cañedo-Argüelles et al. (2016) |
>1800 µS/cm | Discharges into the natural environment | [47] R.D. 606/2003 (CNAE 3519) |
>1000 µS/cm | Human consumption | [31] Solís-Carvajal (2017) [39] European Council Directive 75/440/EEC of 16 June 1975 |
Crops | [48] Porta and Herrero (1996) |
2.2.3. Trial Monitoring and Data Collection
2.2.4. Analysis of Results
2.3. Development of an Algorithm to Estimate the Amounts of Reject Water and Usable Water
Reject water conductivity (by mass balance): (inflow_flow × inflow_conductivity) = (filtered_flow × filtered_conductivity) + (reject_flow × reject_conductivity)
Filtered or process water flow rate: filtered_flow = input_flow × recovery
Reject water flow rate: reject_flow = input_flow − filtered_flow
2.4. Determination of the Limit Values Corresponding to Optimum, Moderate, and Restricted Water Quality for Green Hydrogen Production
- Optimum: when the incoming raw water has a conductivity between 0 and 410 µS/cm.
- Moderate: when the incoming raw water has a conductivity between 411 and 900 µS/cm.
- Restricted: when the incoming raw water has a conductivity above 900 µS/cm.
3. Results and Discussion
3.1. Analysis of the Limit Values in Legislation
3.2. Flow Analysis and Water Analysis at the Pretreatment Plant
Water Quality | Percentage Average Water Use | Ultrapure Water Required to Generate 1 kgH2 [52] | |||||||
---|---|---|---|---|---|---|---|---|---|
Category | |||||||||
AEL/AWE [53] | PEM [53,54] | AEM [55] | SOEC [56] | ||||||
15 l | 22.3 l | 11 l | 17 l | 13 l | 18 l | 10 l | 16 l | ||
Optimum | 81% | 18.52 | 24.69 | 13.58 | 21.01 | 16.05 | 22.22 | 12.35 | 19.75 |
Moderate | 75% | 20.00 | 26.67 | 14.66 | 22.68 | 17.33 | 23.98 | 13.33 | 21.33 |
Restricted | 45% | 33.3 | 44.44 | 24.44 | 37.74 | 28.88 | 40.00 | 22.22 | 35.56 |
3.3. Algorithm Development and Validation
4. Future Research
5. Conclusions
6. Patents/Records
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EDI | Electrodeionization |
IEA | International Energy Agency |
AEL/AWE | Alkaline electrolyzers |
PEM | Polymeric exchange membrane |
AEM | Anion electrolysis membrane |
SOEC | Solid oxide electrolyzer cells |
References
- Jacobson, M.Z. 100% Clean, Renewable Energy and Storage for Everything; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Kharissova, A.B.; Kharissova, O.; Kharisov, B.; Méndez, Y.P. Carbon negative footprint materials: A review. Nano-Struct. Amp Nano-Objects 2024, 37, 101100. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Bouckaert, S.; Pales, A.F.; McGlade, C.; Remme, U.; Wanner, B.; Varro, L.; D’Ambrosio, D.; Spencer, T. Net Zero by 2050—A Roadmap for the Global Energy Sector; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Consejo Europeo, 12 y 13 de Diciembre de 2019—Consilium. Available online: https://www.consilium.europa.eu/es/meetings/european-council/2019/12/12-13/ (accessed on 10 January 2024).
- TA-9-2021-0241_ES.pdf. Available online: https://www.europarl.europa.eu/doceo/document/TA-9-2021-0241_ES.pdf (accessed on 10 January 2024).
- REPowerEU. Available online: https://commission.europa.eu/topics/energy/repowereu_en (accessed on 8 July 2025).
- United Nations. Adoption of the Paris Agreement. 2015. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 26 January 2024).
- Terlouw, T.; Bauer, C.; McKenna, R.; Mazzotti, M. Large-scale hydrogen production via water electrolysis: A techno-economic and environmental assessment. Energy Environ. Sci. 2022, 15, 3583–3602. [Google Scholar] [CrossRef]
- Becker, H.; Murawski, J.; Shinde, D.V.; Stephens, I.E.L.; Hinds, G.; Smith, G. Impact of impurities on water electrolysis: A review. Sustain. Energy Fuels 2023, 7, 1565–1603. [Google Scholar] [CrossRef]
- Lima, A.; Torrubia, J.; Valero, A.; Valero, A. Non-Renewable and Renewable Exergy Costs of Water Electrolysis in Hydrogen Production. Energies 2025, 18, 1398. [Google Scholar] [CrossRef]
- Lim, T.; Kim, S.-K. Non-precious hydrogen evolution reaction catalysts: Stepping forward to practical polymer electrolyte membrane-based zero-gap water electrolyzers. Chem. Eng. J. 2022, 433, 133681. [Google Scholar] [CrossRef]
- Marouani, I.; Guesmi, T.; Alshammari, B.M.; Alqunun, K.; Alzamil, A.; Alturki, M.; Abdallah, H.H. Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future. Processes 2023, 11, 2685. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Kazmi, B.; Taqvi, S.A.A.; Chen, W.-H.; Juchelková, D. Techno economic analysis for advanced methods of green hydrogen production. Curr. Opin. Green Sustain. Chem. 2024, 48, 100939. [Google Scholar] [CrossRef]
- Nasser, M.; Megahed, T.F.; Ookawara, S.; Hassan, H. A review of water electrolysis–based systems for hydrogen production using hybrid/solar/wind energy systems. Environ. Sci. Pollut. Res. 2022, 29, 86994–87018. [Google Scholar] [CrossRef]
- Chi, J.; Yu, H. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390–394. [Google Scholar] [CrossRef]
- Oliveira, A.M.; Beswick, R.R.; Yan, Y. A green hydrogen economy for a renewable energy society. Curr. Opin. Chem. Eng. 2021, 33, 100701. [Google Scholar] [CrossRef]
- Egert, F.; Ullmer, D.; Marx, S.; Taghizadeh, E.; Morawietz, T.; Gerle, M.; Le, T.A.; Schneider, L.P.C.; Biswas, I.S.; Wirz, R.E.; et al. Intensification of Alkaline Electrolyzer with Improved Two-Phase Flow. Adv. Energy Mater. 2025, 15, 2405285. [Google Scholar] [CrossRef]
- Ceballos-Alvarez, C.; Maziar, J.; Moradizadeh, L.; Siaj, M.; Shahgaldi, S.; Izquierdo, R. Enhanced Graphene Oxide-Nafion® membranes for proton exchange membrane water electrolysis. J. Membr. Sci. 2025, 734, 124267. [Google Scholar] [CrossRef]
- Ceballos-Alvarez, C.; Jafari, M.; Siaj, M.; Shahgaldi, S.; Izquierdo, R. Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion® Membranes. Nanomaterials 2025, 15, 68. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Tian, L.; Zhang, Q.; Shangguan, L.; Wang, F.; Zhu, H. Hydrophilic and hydrophobic dual-side-linked poly(carbazole-butanedione) anion exchange membranes for water electrolysis and fuel cells applications. J. Membr. Sci. 2025, 722, 123840. [Google Scholar] [CrossRef]
- Li, L.; Watanabe, M.; Inada, M.; Ishihara, T. Planer type solid oxide cells using La0.9Sr0.1Ga0.8Mg0.2O3-δ thin-film electrolyte prepared by dip-coating method for high performance CO2/H2O co-electrolysis. Appl. Catal. Gen. 2025, 694, 120146. [Google Scholar] [CrossRef]
- Magnino, A.; Marocco, P.; Santarelli, M.; Gandiglio, M. Economic viability and CO2 emissions of hydrogen production for ammonia synthesis: A comparative analysis across Europe. Adv. Appl. Energy 2025, 17, 100204. [Google Scholar] [CrossRef]
- Mosiałek, M.; Hanif, M.B.; Šalkus, T.; Kežionis, A.; Kazakevičius, E.; Orliukas, A.F.; Socha, R.P.; Łasocha, W.; Dziubaniuk, M.; Wyrwa, J.; et al. Synthesis of Yb and Sc stabilized zirconia electrolyte (Yb0.12Sc0.08Zr0.8O2–δ) for intermediate temperature SOFCs: Microstructural and electrical properties. Ceram. Int. 2023, 49, 15276–15283. [Google Scholar] [CrossRef]
- Brey, J.J. La electrolisis como una herramienta clave de la descarbonización del siglo XXI. Econ. Ind. 2022, 424, 87–96. [Google Scholar]
- Rey, J.; Segura, F.; Andújar, J. Green Hydrogen: Resources Consumption, Technological Maturity, and Regulatory Framework. Energies 2023, 16, 6222. [Google Scholar] [CrossRef]
- Clerici, A.; Furfari, S. Future energy scenarios, impact on hydrogen development and EU green energy strategy. In Proceedings of the en 2021 AEIT International Annual Conference (AEIT), Milan, Italy, 4–8 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Garrote, L.; Iglesias, A.; Granados, A. Country-level assessment of future risk of water scarcity in Europe. In Proceedings of IAHS; Copernicus GmbH: Göttingen, Germany, 2018; pp. 455–462. [Google Scholar] [CrossRef]
- Kim, Y.; Jung, S.; Kim, S.; Choi, S.T.; Kim, M.; Lee, H. Heat transfer performance of water-based electrospray cooling. Int. Commun. Heat Mass Transf. 2020, 118, 104861. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, Z.; Yu, E.; Ye, H.; Li, Z.; Guo, X.; Zhou, D.; Wang, C.; Sha, Q.; et al. A Review of Hydrogen Production via Seawater Electrolysis: Current Status and Challenges. Catalysts 2024, 14, 691. [Google Scholar] [CrossRef]
- Solís-Carvajal, C.A.; Pasos, C.A.V.; Ramírez-Navas, J.S. Tecnología de membranas: Ultrafiltración. Entre Cienc. E Ing. 2017, 11, 26–36. [Google Scholar] [CrossRef]
- Cunha, S.; Silva, A.P.; Herráez, C.F.; Pires, V.C.; Chazarra, A.; Mestre, A.; Nunes, L.F.; Mendes, M.T.; Neto, J.; Marques, J.; et al. Atlas Climático Ibérico—Iberian Climate Atlas; Portugal Instituto de Meterologia: Lisbon, Portugal, 2011. [Google Scholar]
- Real Decreto Legislativo 12001, de 20 de julio, p.pdf. Available online: https://www.boe.es/buscar/pdf/2001/BOE-A-2001-14276-consolidado.pdf (accessed on 14 April 2025).
- Ismayilov, A.I.; Mamedov, A.I.; Fujimaki, H.; Tsunekawa, A.; Levy, G.J. Soil Salinity Type Effects on the Relationship between the Electrical Conductivity and Salt Content for 1:5 Soil-to-Water Extract. Sustainability 2021, 13, 3395. [Google Scholar] [CrossRef]
- DOG 129 del 6/07/2012—DECRETO 141/2012; De 21 de Junio, Por el Que se Aprueba el Reglamento Marco del Servicio Público de Saneamiento y Depuración de Aguas Residuales de Galicia. Xunta de Galicia: Santiago, Spain, 2012. Available online: https://www.xunta.gal/dog/Publicados/2012/20120706/AnuncioCA02-270612-0001_es.html (accessed on 28 May 2024).
- Martín, P.; Ángel, M. Modelo Distribuido de Simulación del Ciclo Hidrológico y Calidad del Agua, Integrado en Sistemas de Información Geográfica para Grandes Cuencas. Aportación al Análisis de Presiones e Impactos de la Directiva Marco del Agua. ene. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2023. Available online: https://riunet.upv.es/handle/10251/191462 (accessed on 2 July 2025).
- DECRETO 38/2004; de 24 de Febrero, del Gobierno de Aragón, Por el Que se Aprueba el Reglamento de los ver-tidos de Aguas Residuales a las Redes Municipales de Alcantarillado. Available online: https://www.boa.aragon.es/cgi-bin/EBOA/BRSCGI?CMD=VEROBJ&MLKOB=376569325554 (accessed on 8 July 2025).
- Olías, M.; Cerón, J.C.; Fernández, I. Sobre la utilización de la clasificación de las aguas de riego del U.S. Laboratory Salinity (USLS). Geogaceta 2005, 37, 111–113. [Google Scholar]
- Pérez-Vazquez, E.L.; Gaucín-Delgado, J.M.; Ramírez-Rodríguez, S.C.; Sariñana-Aldaco, M.d.L.Á.; Sifuentes, G.Z.; Valenzuela, E.Z. Electrical conductivity of the nutrient solution its effect on the yield and nutraceutical quality of bell pepper. Rev. Mex. Cienc. Agríc. 2020, 11, 1669–1675. [Google Scholar] [CrossRef]
- Directive—2020/2184—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj/eng (accessed on 8 July 2025).
- Directiva 98/83/CE; Del Consejo de 3 de Noviembre de 1998 Relativa a la Calidad de las Aguas Destinadas al Consumo Humano. European Union: Brussels, Belgium, 1998; Volume 330. Available online: http://data.europa.eu/eli/dir/1998/83/oj/spa (accessed on 8 July 2025).
- Directive—98/83—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/1998/83/oj/eng (accessed on 8 July 2025).
- Ministerio de Relaciones con las Cortes y de la Secretaría del Gobierno. Real Decreto 1138/1990, de 14 de septiembre, por el que se aprueba la Reglamentación Técnico-Sanitaria para el abastecimiento y control de calidad de las aguas potables de consumo público. BOE 1990, BOE-A-1990-23231, 27488–27497. Available online: https://www.boe.es/eli/es/rd/1990/09/14/1138 (accessed on 8 July 2025).
- BOE-A-2003-3596 Real Decreto 140/2003; de 7 de Febrero, Por el que se Establecen los Criterios Sanitarios de la Calidad del Agua de Consumo Humano. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2003-3596 (accessed on 8 July 2025).
- Guerra Jara, D.A. Alteración Física y Fisiológica en un Macroinvertebrado Acuático (Género Smicridea) Como Efecto de Cambios en la Salinidad. Bachelor’s Thesis, Universidad de las Américas, TPuebla, Mexico, 2017. Available online: https://www.researchgate.net/publication/315701621_ALTERACION_FISICA_Y_FISIOLOGICA_EN_UN_MACROINVERTEBRADO_ACUATICO_GENERO_SMICRIDEA_COMO_EFECTO_DE_CAMBIOS_EN_LA_SALINIDAD (accessed on 9 July 2025).
- Cañedo-Argüelles, M.; Prat, N.; Ladrera, R. Impact of potash mining in streams: The Llobregat basin (northeast Spain) as a case study. J. Limnol. 2016, 76, 343–354. [Google Scholar] [CrossRef]
- Ministerio de Medio Ambiente. Real Decreto 606/2003, de 23 de mayo, por el que se modifica el Real Decreto 849/1986, de 11 de abril, por el que se aprueba el Reglamento del Dominio Público Hidráulico, que desarrolla los Títulos preliminar, I, IV, V, VI y VIII de la Ley 29/1985, de 2 de agosto, de Aguas. BOE 2003, BOE-A-2003-11384, 22071–22096. Available online: https://www.boe.es/eli/es/rd/2003/05/23/606 (accessed on 8 July 2025).
- Porta, J.; Herrero, J. Vulnerability of Soils Under Irrigation; Springer: Dordrecht, The Netherlands, 1996; pp. 85–96. [Google Scholar] [CrossRef]
- Yousefi, M.; Esrafili, A.; Gholami, M.; Mohammadi, A.A.; Khan, N.A.; Baziar, M.; Oskoei, V. Modeling and analysis of the groundwater hardness variations process using machine learning procedure. Desalination Water Treat. 2021, 238, 135–141. [Google Scholar] [CrossRef]
- Casanova, J.F.; Figueroa, A. Determinación Del Caudal Ambiental Y Su Relación Con Variables Indicadoras De Calidad Del Recurso Hídrico. Luna Azul 2015, 40, 5–24. [Google Scholar] [CrossRef]
- Jiao, Y.-J.; Jiang, K.-J.; Chen, S.; Xiang, P.-P.; He, C.-M. Water use in the industrial sector based on the IPAC model under the carbon-neutral transformation path in China. Adv. Clim. Change Res. 2024, 15, 1130–1146. [Google Scholar] [CrossRef]
- Saulnier, R.; Minnich, K.; Sturgess, K. Water for the Hydrogen Economy; WaterSMART Solutions Ltd.: Calgary, AB, Canada, 2025; p. 13. [Google Scholar]
- Lin, N.; Arzumanyan, M.; Calzado, E.R.; Nicot, J.-P. Water Requirements for Hydrogen Production: Assessing Future Demand and Impacts on Texas Water Resources. Sustainability 2025, 17, 385. [Google Scholar] [CrossRef]
- Newborough, M.; Cooley, G. Green hydrogen: Water use implications and opportunities. Fuel Cells Bull. 2021, 2021, 12–15. [Google Scholar] [CrossRef]
- Azam, A.M.I.N.; Ragunathan, T.; Zulkefli, N.N.; Masdar, M.S.; Majlan, E.H.; Yunus, R.M.; Shamsul, N.S.; Husaini, T.; Shaffee, S.N.A. Investigation of Performance of Anion Exchange Membrane (AEM) Electrolysis with Different Operating Conditions. Polymers 2023, 15, 1301. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S. Electrolyser innovations PEM, alkaline, SOEC, and AEM. In Proceedings of the Presentado en Hydrogen Tech World, Essen, Germany, 26–27 June 2024; Available online: https://hydrogentechworld.com/wp-content/uploads/sites/22/2024/07/1.7.-Stephen-B-Harrison-sbh4-consulting.pdf (accessed on 15 June 2025).
- Grozier, R.U.; Land, L.F. Water Resources Activities of the U.S. Geological Survey in Texas Fiscal Years 1982-84; U.S. Geological Survey: Austin, TX, USA, 1984. [Google Scholar]
- Coitiño-López, J.; Barbazán, M.; Ernst, O. Conductividad eléctrica aparente para delimitar zonas de manejo en un suelo agrícola con reducida variabilidad en propiedades físico-químicas. Agrociencia Urug. 2015, 19, 102–111. [Google Scholar] [CrossRef]
- Maru, B.T. Sustainable Production of Hydrogen and Chemical Commodities from Biodiesel Waste Crude Glycerol and Cellulose by Biological and Catalytic Processes. Universitat Rovira i Virgili, Tarragona, Spain. 2013. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=84088 (accessed on 28 May 2025).
Title | Type of Electrolyzer | |||
---|---|---|---|---|
Characteristics of the required input water | AEL/AWE | PEM | AEM | SOEC |
Water phase at entry | Liquid | Liquid | Liquid | Gaseous |
Amount of water per kW produced, as indicated by the manufacturer | 15–20 L | 11–17 L | 13–18 L | 10–16 L |
Recommended water conductivity | <0.2 µS/cm | <0.1 µS/cm | 0.1 µS/cm | 0.1 µS/cm |
Hardness | No hardness allowed at input | |||
Acceptable pH range | 4–10 | 7–8 | 7 | 7–9 |
Operating temperature | Low 100–150 °C | Low 70–90 °C | Low 30–70 °C | High 800–1000 °C |
Chloride content | <5 ppm | Maximum 2 ppm | Maximum 2 ppm | Maximum 2 ppm |
Turbidity | <1 ppm | <1 ppm | 1 ppm | 1 ppm |
Total organic carbon (TOC) | <30 ppb | |||
Resistivity | >10 MΩ cm | |||
Technology development status | Since the nineteenth century | Since the twentieth century | Under study | Under study |
Device lifetime | 60,000 h | 30,000 h | 10,000 h | <20,000 h |
Energy consumption of the electrolyzer | 4.6 kWhel/m3H2 | 4.8 kWhel/m3H2 or 49.9 kWh/kg H2 | 4.8 kWhel/m3H2 or 53.3 kWh/kgH2 | 3.8 kWhel/m3H2 |
MEMBRANE TECHNIQUES | WATER | MONOVALENT IONS | MULTIVALENT IONS | ORGANIC COMPOUNDS | PRESSURE (bar) | ENERGY CONSUMPTION kWh/m3 | |
---|---|---|---|---|---|---|---|
PRESSURE-DRIVEN | MICROFILTRATION | ||||||
ULTRAFILTRATION | |||||||
NANOFILTRATION | |||||||
REVERSE OSMOSIS | |||||||
ELECT | ELECTRODIALYSIS |
Origin | Input Conductivity (µS/cm) | Reject Water Conductivity (µS/cm) | Percentage of Reject Water Flow (%) | |
---|---|---|---|---|
01 | Underground | 32.00 | 74.34 | 9.02 |
02 | Surface | 39.00 | 90.60 | 9.42 |
03 | Underground | 55.00 | 128.58 | 10.12 |
04 | Underground | 83.00 | 197.75 | 10.42 |
06 | Underground | 116.00 | 282.51 | 10.83 |
11 | Underground | 228.00 | 594.10 | 12.92 |
13 | Surface | 266.00 | 706.12 | 15.05 |
20 | Surface | 357.00 | 984.11 | 17.66 |
22 | Surface | 375.00 | 1042.16 | 17.85 |
23 | Underground | 387.00 | 1079.96 | 19.38 |
29 | Surface | 463.00 | 1308.25 | 20.96 |
37 | Underground | 572.00 | 1622.25 | 28.87 |
38 | Underground | 576.00 | 1633.71 | 29.12 |
42 | Underground | 667.00 | 1896.75 | 30.98 |
44 | Underground | 706.00 | 2008.01 | 34.62 |
49 | Surface | 927.00 | 2683.76 | 47.15 |
53 | Underground | 1087.00 | 3156.65 | 51.32 |
63 | Surface | 1800.00 | 5364.90 | 55.98 |
70 | Underground | 2580.00 | 7898.67 | 61.71 |
73 | Underground | 3126.00 | 9767.50 | 68.63 |
Optimum | Raw water conductivity: 0–410 μS/cm |
Moderate | Raw water conductivity: 411–900 μS/cm |
Restricted | Raw water conductivity: >900 μS/cm |
Location | Input Conductivity (µS/cm) | Reject Water Conductivity (µS/cm) | Date of First Measurement | Aquifer Water Level | Input Conductivity (µS/cm) | Reject Water Conductivity (µS/cm) | Date of Second Measurement | Aquifer Water Level | Water TABLE over Time |
---|---|---|---|---|---|---|---|---|---|
42 | 667 | 1896.75 | 15 April 2023 | High | 653 | 1855.76 | 10 April 2024 | High | Constant |
23 | 387 | 1079.96 | 15 April 2024 | High | 394 | 1099.50 | 22 May 2024 | High | |
22 | 375 | 1042.16 | 19 June 2023 | Low | 342 | 923.54 | 19 June 2024 | Low | |
44 | 706 | 2008.01 | 15 April 2023 | High | 1200 | 3499.08 | 13 September 2024 | Low | Strong variation |
3 | 55 | 128.58 | 22 May 2024 | High | 57 | 133.49 | 25 September 2024 | Low | |
4 | 83 | 197.75 | 24 June 2024 | High | 81 | 196.51 | 25 September 2024 | Low | |
73 | 3126 | 9767.50 | 23 February 2023 | High | 3201 | 10,039.62 | 15 September 2024 | Low | |
2 | 39 | 90.60 | 16 June 2023 | High | 41 | 95.63 | 15 September 2024 | Low | |
53 | 1087 | 3156.65 | 12 December 2023 | High | 1118 | 3249.02 | 10 April 2024 | Moderate | Moderate variation |
29 | 463 | 1308.25 | 8 May 2023 | High | 503 | 1423.34 | 28 November 2024 | Moderate | |
6 | 116 | 282.51 | 16 June 2023 | Moderate | 116 | 282.51 | 15 September 2024 | Low |
Location | Source | Input Conductivity (µS/cm) | Reject Water Conductivity (µS/cm) | Reject Water Conductivity According to the Algorithm (µS/cm) | Relative Error (%) |
---|---|---|---|---|---|
San Román de Bembibre (León) | Surface | 41.00 | 95.63 | 97.14 | 1.58 |
Quintana Dueñas (Burgos) | Underground | 86.00 | 205.25 | 213.27 | 3.91 |
Robleda (Salamanca) | Underground | 137.00 | 335.68 | 340.44 | 1.42 |
Cerdeña (A Coruña) | Surface | 180.00 | 459.00 | 456.37 | 0.57 |
Aboño (A Coruña) | Surface | 220.00 | 572.46 | 598.46 | 4.54 |
Rozas de Valdearroyo (Cantabria) | Surface | 254.00 | 667.44 | 670.30 | 0.43 |
Guareña (Badajoz) | Surface | 270.00 | 716.74 | 716.40 | 0.05 |
Fuentidueña (Segovia) | Underground | 365.00 | 1007.40 | 1007.00 | 0.04 |
Talavera la Real (Badajoz) | Surface | 406.00 | 1141.14 | 1147.70 | 0.57 |
Alquezar (Huesca) | Surface | 413.00 | 1161.44 | 1162.00 | 0.05 |
Villasalla (Soria) | Underground | 422.00 | 1194.39 | 1198.00 | 0.30 |
Mérida (Badajoz) | Underground | 442.00 | 1248.56 | 1257.02 | 0.68 |
Cabezas Rubias (Huelva) | Underground | 501.00 | 1417.68 | 1422.00 | 0.30 |
Leza (Álava) | Surface | 560.00 | 1587.26 | 1589.60 | 0.15 |
Lupiana (Guadalajara) | Underground | 562.00 | 1593.27 | 1598.77 | 0.35 |
Caravaca de la Cruz (Murcia) | Underground | 565.00 | 1601.94 | 1604.00 | 0.13 |
Brihuega (Guadalajara) | Underground | 600.00 | 1701.96 | 1697.14 | 0.28 |
Martín del Rio (Teruel) | Surface | 602.00 | 1708.11 | 1709.00 | 0.05 |
Alcázar de San Juan (Ciudad Real) | Underground | 625.00 | 1775.50 | 1776.71 | 0.07 |
Alfaro (La Rioja) | Surface | 693.00 | 1972.35 | 1978.50 | 0.31 |
Toro (Zamora) | Surface | 746.00 | 2124.68 | 2119.00 | 0.27 |
Valdepeñas (Ciudad Real) | Surface | 869.00 | 2483.69 | 2471.79 | 0.48 |
Daroca (Zaragoza) | Surface | 940.00 | 2725.81 | 2733.00 | 0.26 |
Villamediana (Palencia) | Underground | 1170.00 | 3408.68 | 3391.13 | 0.51 |
Calzada de Calatrava (Ciudad Real) | Underground | 2200.00 | 6644.22 | 6640.10 | 0.06 |
Azanjuez (Madrid) | Underground | 2520.00 | 7671.89 | 7669.33 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Manso, M.; Búrdalo-Salcedo, G.; Fernández-Raga, M. Classification Framework for Hydrological Resources for Sustainable Hydrogen Production with a Predictive Algorithm for Optimization. Hydrogen 2025, 6, 54. https://doi.org/10.3390/hydrogen6030054
Álvarez-Manso M, Búrdalo-Salcedo G, Fernández-Raga M. Classification Framework for Hydrological Resources for Sustainable Hydrogen Production with a Predictive Algorithm for Optimization. Hydrogen. 2025; 6(3):54. https://doi.org/10.3390/hydrogen6030054
Chicago/Turabian StyleÁlvarez-Manso, Mónica, Gabriel Búrdalo-Salcedo, and María Fernández-Raga. 2025. "Classification Framework for Hydrological Resources for Sustainable Hydrogen Production with a Predictive Algorithm for Optimization" Hydrogen 6, no. 3: 54. https://doi.org/10.3390/hydrogen6030054
APA StyleÁlvarez-Manso, M., Búrdalo-Salcedo, G., & Fernández-Raga, M. (2025). Classification Framework for Hydrological Resources for Sustainable Hydrogen Production with a Predictive Algorithm for Optimization. Hydrogen, 6(3), 54. https://doi.org/10.3390/hydrogen6030054