Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (919)

Search Parameters:
Keywords = endogenous hormone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2600 KiB  
Article
Bamboo Biochar and Sodium Silicate Alleviate Oxybenzone-Induced Phytotoxicity via Distinct Mechanisms for Sustainable Plant Protection
by Chuantong Cui, Wenhai Yang, Weiru Dang, Ruiya Chen, Pedro García-Caparrós, Guoqun Yang, Jianhua Huang and Li-Jun Huang
Plants 2025, 14(15), 2382; https://doi.org/10.3390/plants14152382 - 2 Aug 2025
Viewed by 312
Abstract
Oxybenzone (OBZ), an organic ultraviolet filter, is an emerging contaminant posing severe threats to ecosystem health. Using tobacco (Nicotiana tabacum) as a model plant, this study investigated the alleviation mechanisms of exogenous silicon (Na2SiO3, Si) and bamboo-based [...] Read more.
Oxybenzone (OBZ), an organic ultraviolet filter, is an emerging contaminant posing severe threats to ecosystem health. Using tobacco (Nicotiana tabacum) as a model plant, this study investigated the alleviation mechanisms of exogenous silicon (Na2SiO3, Si) and bamboo-based biochar (Bc) under OBZ stress. We systematically analyzed physiological and biochemical responses, including phenotypic parameters, reactive oxygen species metabolism, photosynthetic function, chlorophyll synthesis, and endogenous hormone levels. Results reveal that OBZ significantly inhibited tobacco growth and triggered a reactive oxygen species (ROS) burst. Additionally, OBZ disrupted antioxidant enzyme activities and hormonal balance. Exogenous Bc mitigated OBZ toxicity by adsorbing OBZ, directly scavenging ROS, and restoring the ascorbate-glutathione (AsA-GSH) cycle, thereby enhancing photosynthetic efficiency, while Si alleviated stress via cell wall silicification, preferential regulation of root development and hormonal signaling, and repair of chlorophyll biosynthesis precursor metabolism and PSII function. The mechanisms of the two stress mitigators were complementary, Bc primarily relied on physical adsorption and ROS scavenging, whereas Si emphasized metabolic regulation and structural reinforcement. These findings provide practical strategies for simultaneously mitigating organic UV filter pollution and enhancing plant resilience in contaminated soils. Full article
Show Figures

Figure 1

15 pages, 4556 KiB  
Article
Coordinated Regulation of Photosynthesis, Stomatal Traits, and Hormonal Dynamics in Camellia oleifera During Drought and Rehydration
by Linqing Cao, Chao Yan, Tieding He, Qiuping Zhong, Yaqi Yuan and Lixian Cao
Biology 2025, 14(8), 965; https://doi.org/10.3390/biology14080965 - 1 Aug 2025
Viewed by 199
Abstract
Camellia oleifera, a woody oilseed species endemic to China, often experiences growth constraints due to seasonal drought. This study investigates the coordinated regulation of photosynthetic traits, stomatal behavior, and hormone responses during drought–rehydration cycles in two cultivars with contrasting drought resistance: ‘CL53’ [...] Read more.
Camellia oleifera, a woody oilseed species endemic to China, often experiences growth constraints due to seasonal drought. This study investigates the coordinated regulation of photosynthetic traits, stomatal behavior, and hormone responses during drought–rehydration cycles in two cultivars with contrasting drought resistance: ‘CL53’ (tolerant) and ‘CL40’ (sensitive). Photosynthetic inhibition resulted from both stomatal and non-stomatal limitations, with cultivar-specific differences. After 28 days of drought, the net photosynthetic rate (Pn) declined by 26.6% in CL53 and 32.6% in CL40. A stable intercellular CO2 concentration (Ci) in CL53 indicated superior mesophyll integrity and antioxidant capacity. CL53 showed rapid Pn recovery and photosynthetic compensation post-rehydration, in contrast to CL40. Drought triggered extensive stomatal closure; >98% reopened upon rehydration, though the total stomatal pore area remained reduced. Abscisic acid (ABA) accumulation was greater in CL40, contributing to stomatal closure and Pn suppression. CL53 exhibited faster ABA degradation and gibberellin (GA3) recovery, promoting photosynthetic restoration. ABA negatively correlated with Pn, transpiration rate (Tr), stomatal conductance (Gs), and Ci, but positively with stomatal limitation (Ls). Water use efficiency (WUE) displayed a parabolic response to ABA, differing by cultivar. This integrative analysis highlights a coordinated photosynthesis–stomata–hormone network underlying drought adaptation and informs selection strategies for drought-resilient cultivars and precision irrigation. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

15 pages, 4805 KiB  
Article
Postharvest 2,4-Epibrassinolide Treatment Delays Senescence and Increases Chilling Tolerance in Flat Peach
by Bin Xu, Haixin Sun, Xuena Rang, Yanan Ren, Ting Zhang, Yaoyao Zhao and Yuquan Duan
Agronomy 2025, 15(8), 1835; https://doi.org/10.3390/agronomy15081835 - 29 Jul 2025
Viewed by 238
Abstract
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide [...] Read more.
Chilling injury (CI) frequently occurs in postharvest flat peach fruit during cold storage, leading to quality deterioration and a reduced shelf life. Therefore, investigating the key factors involved in alleviating CI and developing effective preservatives are vital scientific issues for the industry. 2,4-Epibrassinolide (EBR) is a crucial endogenous hormone involved in plant response to both biological and environmental stressors. At present, most studies focus on the mechanisms of mitigating CI using a single concentration of EBR treatment, while few studies focus on the effects varying EBR concentrations have on CI. The purpose of this research is to explore the effects of varying concentrations of EBR on the postharvest quality and cold resistance of peach fruit, thereby establishing a basis for refining a technical framework of environmentally sustainable strategies to mitigate postharvest CI. The results show that EBR treatment effectively inhibits the generation of reactive oxygen species (ROS) and malondialdehyde (MDA) by maintaining the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), thereby delaying the internal browning process of postharvest peaches. In addition, EBR treatment reduced the consumption of total phenolics by inhibiting the activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL). Experimental results identify that 5 μmol L−1 EBR treatment emerged as the most effective concentration for maintaining core postharvest quality attributes. It significantly delayed the decrease in firmness, reduced weight loss, effectively inhibited the production of H2O2 and O2·, particularly during the early storage period, strongly restrained the activity of PAL, and maintained lower rot rates and internal browning indexes. While the 15 μmol L−1 EBR treatment enhanced antioxidant activity, increased total phenolic content at certain stages, and maintained higher soluble solids and acid content, its effects on key physical quality parameters, like firmness and weight loss, were less pronounced compared to the 5 μmol L−1 treatment. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

22 pages, 4619 KiB  
Article
Physiological and Transcriptomic Analyses Reveal Regulatory Mechanisms of Adventitious Root Formation in In Vitro Culture of Cinnamomum camphora
by Yuntong Zhang, Ting Zhang, Yongjie Zheng, Jun Wang, Chenglin Luo, Yuhua Li and Xinliang Liu
Int. J. Mol. Sci. 2025, 26(15), 7264; https://doi.org/10.3390/ijms26157264 - 27 Jul 2025
Viewed by 377
Abstract
Cinnamomum camphora is an ecologically and economically significant species, highly valued for its essential oil production and environmental benefits. Although a tissue culture system has been established for C. camphora, large-scale propagation remains limited due to the inconsistent formation of adventitious roots [...] Read more.
Cinnamomum camphora is an ecologically and economically significant species, highly valued for its essential oil production and environmental benefits. Although a tissue culture system has been established for C. camphora, large-scale propagation remains limited due to the inconsistent formation of adventitious roots (ARs). This study investigated AR formation from callus tissue, focusing on associated physiological changes and gene expression dynamics. During AR induction, contents of soluble sugars and proteins decreased, alongside reduced activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO). Levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) decreased significantly throughout AR formation. Zeatin riboside (ZR) levels initially declined and then rose, whereas gibberellic acid (GA) levels displayed the opposite trend. Comparative transcriptomic and temporal expression analyses identified differentially expressed genes (DEGs), which were grouped into four distinct expression patterns. KEGG pathway enrichment indicated that 67 DEGs are involved in plant hormone signaling pathways and that 38 DEGs are involved in the starch and sucrose metabolism pathway. Additionally, protein–protein interaction network (PPI) analysis revealed ten key regulatory genes, which are mainly involved in auxin, cytokinin, GA, ABA, and ethylene signaling pathways. The reliability of the transcriptome data was further validated by quantitative real-time PCR. Overall, this study provides new insights into the physiological and molecular mechanisms underlying AR formation in C. camphora and offers valuable guidance for optimizing tissue culture systems. Full article
(This article belongs to the Special Issue Emerging Insights into Phytohormone Signaling in Plants)
Show Figures

Figure 1

15 pages, 6009 KiB  
Article
Establishment of an In Vitro Regeneration System and Analysis of Endogenous Hormone Dynamics in Melastoma dodecandrum
by Shunshun Wang, Ruonan Tang, Fei Wang, Yun Pan, Yanru Duan, Luyu Xue, Danqi Zeng, Jinliao Chen and Donghui Peng
Horticulturae 2025, 11(8), 875; https://doi.org/10.3390/horticulturae11080875 - 25 Jul 2025
Viewed by 252
Abstract
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth [...] Read more.
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth regulators (PGRs) and culture media on the in vitro regeneration system of M. dodecandrum. The highest rate of callus induction (96.67%) was achieved when sterile leaf explants were cultured on Murashige and Skoog (MS) basal medium supplemented with 2.00 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.50 mg·L−1 6-benzylaminopurine (6-BA). For callus differentiation, the optimal formulation of MS + 2.0 mg·L−1 6-BA + 0.5 mg·L−1 naphthylacetic acid (NAA) resulted in a differentiation frequency of 83.33%. The optimal PGR combinations for shoot proliferation were 1.5 mg·L−1 6-BA + 0.1 mg·L−1 NAA and 0.5 mg·L−1 6-BA + 0.2 mg·L−1 NAA. The optimal rooting media were MS medium supplemented with 0.1, 0.2, or 0.5 mg·L−1 indole-3-butyric acid (IBA) or 1/2MS medium supplemented with 0.1 mg·L−1 IBA. Additionally, this study investigated the dynamic changes in endogenous hormones during the regeneration process. The levels and ratios of hormones, including gibberellin (GA3), abscisic acid (ABA), indole-3-acetic acid (IAA), and zeatin (ZT), collectively regulated the regeneration process. Elevated levels of ABA and GA3 may promote callus initiation as well as the growth and development of adventitious roots during the early induction stage. Reduced levels of ABA and IAA favored callus differentiation into shoots, whereas elevated GA3 levels facilitated proliferation of adventitious shoots. Throughout the regeneration process, fluctuations in ZT levels remained relatively stable. This study successfully established an in vitro regeneration system for M. dodecandrum using leaf explants, providing theoretical guidance and technical support for further molecular breeding efforts, genetic transformation, and industrial development. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

22 pages, 5347 KiB  
Article
Transcriptome and Endogenous Hormones Reveal the Regulatory Mechanism of Flower Development in Camellia azalea
by Jian Xu, Fan Yang, Ruimin Nie, Wanyue Zhao, Fang Geng and Longqing Chen
Plants 2025, 14(15), 2291; https://doi.org/10.3390/plants14152291 - 25 Jul 2025
Viewed by 347
Abstract
Camellia azalea is an endemic species within the genus Camellia that exhibits the trait of summer flowering, which is of significant ornamental and research value. Nevertheless, research on the regulatory mechanisms of flower formation in C. azalea is still limited, so in this [...] Read more.
Camellia azalea is an endemic species within the genus Camellia that exhibits the trait of summer flowering, which is of significant ornamental and research value. Nevertheless, research on the regulatory mechanisms of flower formation in C. azalea is still limited, so in this study, transcriptome sequencing and analysis of endogenous hormone contents were conducted at three distinct growth stages: floral induction, floral organ maturation, and anthesis. Illumina sequencing yielded a total of 20,643 high-quality unigenes. Comparative analyses of representative samples from the three growth stages identified 6681, 1925, and 8400 differentially expressed genes (DEGs), respectively. These DEGs were further analyzed for functional enrichment using the GO and KEGG databases. Additionally, core genes from each flowering pathway underwent expression pattern analysis and network diagram construction. This revealed that the flower development process in C. azalea is linked to the specific expression of the genes involved in the photoperiod, temperature, and autonomous pathways and is subject to comprehensive regulation by multiple pathways. Further analysis of the dynamic trends of five endogenous hormone contents and plant hormone signal transduction genes revealed significant differences in the requirements of endogenous hormones, such as gibberellins and indoleacetic acid, by C. azalea at distinct growth stages. Additionally, the majority of genes on the phytohormone signal transduction pathway demonstrated a high correlation with the changes in the contents of each hormone. The present study integrates physiological and molecular approaches to identify key genes and metabolic pathways that regulate the summer flowering of C. azalea, thereby laying a theoretical foundation for further investigations into its flowering mechanism and related functional genes. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

18 pages, 4037 KiB  
Article
A Genetically-Engineered Thyroid Gland Built for Selective Triiodothyronine Secretion
by Cintia E. Citterio, Berenice Morales-Rodriguez, Xiao-Hui Liao, Catherine Vu, Rachel Nguyen, Jessie Tsai, Jennifer Le, Ibrahim Metawea, Ming Liu, David P. Olson, Samuel Refetoff and Peter Arvan
Int. J. Mol. Sci. 2025, 26(15), 7166; https://doi.org/10.3390/ijms26157166 - 24 Jul 2025
Viewed by 359
Abstract
Thyroid hormones (thyroxine, T4, and triiodothyronine, T3) are indispensable for sustaining vertebrate life, and their deficiency gives rise to a wide range of symptoms characteristic of hypothyroidism, affecting 5–10% of the world’s population. The precursor for thyroid hormone synthesis [...] Read more.
Thyroid hormones (thyroxine, T4, and triiodothyronine, T3) are indispensable for sustaining vertebrate life, and their deficiency gives rise to a wide range of symptoms characteristic of hypothyroidism, affecting 5–10% of the world’s population. The precursor for thyroid hormone synthesis is thyroglobulin (Tg), a large iodoglycoprotein consisting of upstream regions I-II-III (responsible for synthesis of most T4) and the C-terminal CholinEsterase-Like (ChEL) domain (responsible for synthesis of most T3, which can also be generated extrathyroidally by T4 deiodination). Using CRISPR/Cas9-mediated mutagenesis, we engineered a knock-in of secretory ChEL into the endogenous TG locus. Secretory ChEL acquires Golgi-type glycans and is properly delivered to the thyroid follicle lumen, where T3 is first formed. Homozygous knock-in mice are capable of thyroidal T3 synthesis but largely incompetent for T4 synthesis such that T4-to-T3 conversion contributes little. Instead, T3 production is regulated thyroidally by thyrotropin (TSH). Compared to cog/cog mice with conventional hypothyroidism (low serum T4 and T3), the body size of ChEL-knock-in mice is larger; although, these animals with profound T4 deficiency did exhibit a marked elevation of serum TSH and a large goiter, despite normal circulating T3 levels. ChEL knock-in mice exhibited a normal expression of hepatic markers of thyroid hormone action but impaired locomotor activities and increased anxiety-like behavior, highlighting tissue-specific differences in T3 versus T4 action, reflecting key considerations in patients receiving thyroid hormone replacement therapy. Full article
Show Figures

Figure 1

33 pages, 1463 KiB  
Review
Molecular Mechanisms of the Endocannabinoid System with a Focus on Reproductive Physiology and the Cannabinoid Impact on Fertility
by Patrycja Kalak, Piotr Kupczyk, Antoni Szumny, Tomasz Gębarowski, Marcin Jasiak, Artur Niedźwiedź, Wojciech Niżański and Michał Dzięcioł
Int. J. Mol. Sci. 2025, 26(15), 7095; https://doi.org/10.3390/ijms26157095 - 23 Jul 2025
Viewed by 359
Abstract
The endocannabinoid system (ECS) is a complex neuromodulatory network involved in maintaining physiological balance through interactions with various neurotransmitter and hormonal pathways. Its key components—cannabinoid receptors (CBRs)—are activated by endogenous ligands and exogenous cannabinoids such as those found in the Cannabis sativa plant. [...] Read more.
The endocannabinoid system (ECS) is a complex neuromodulatory network involved in maintaining physiological balance through interactions with various neurotransmitter and hormonal pathways. Its key components—cannabinoid receptors (CBRs)—are activated by endogenous ligands and exogenous cannabinoids such as those found in the Cannabis sativa plant. Although cannabinoids like cannabidiol (CBD) have garnered interest for their potential therapeutic effects, evidence regarding their safety, particularly for reproductive health, remains limited. This review summarizes the structure and molecular mechanisms of the ECS, its role in reproductive physiology—including its interactions with the hypothalamic–pituitary–gonadal axis (HPG axis), gametogenesis, implantation, and lactation—and the possible consequences of cannabinoid exposure for fertility. In addition, we focus on the involvement of the ECS and cannabinoids in breast cancer, highlighting emerging evidence on their dual role in tumor progression and therapy. These insights emphasize the need for further research to better define the therapeutic potential and risks associated with cannabinoid use in reproductive health and breast cancer. Full article
Show Figures

Figure 1

7 pages, 186 KiB  
Case Report
Spontaneous Improvement of Hypogonadotropic Hypogonadism in a Patient with PCSK1 and HS6ST1 Mutations: A Case Report
by Alanna Asgeirsson, Eujean Park, Vinicius Seidel, Mathew Shedd, Matheni Sathananthan, Tania Arous, Kevin Codorniz, Silvana Giannelli, Justin Do, Wyut Yi Thin, Arsenije Jelovac and Scott Lee
Life 2025, 15(7), 1151; https://doi.org/10.3390/life15071151 - 21 Jul 2025
Viewed by 275
Abstract
Kallmann syndrome (KS) is a form of hypogonadotropic hypogonadism (HH) characterized by gonadotropin-releasing hormone (GnRH) deficiency and anosmia due to defective neuronal migration. While traditionally considered irreversible, cases of spontaneous improvement of HH have been reported, suggesting residual GnRH neuronal function in some [...] Read more.
Kallmann syndrome (KS) is a form of hypogonadotropic hypogonadism (HH) characterized by gonadotropin-releasing hormone (GnRH) deficiency and anosmia due to defective neuronal migration. While traditionally considered irreversible, cases of spontaneous improvement of HH have been reported, suggesting residual GnRH neuronal function in some individuals. We present a case of a 29-year-old man with KS who exhibited spontaneous recovery of endogenous testosterone production following the cessation of long-term androgen therapy without the use of alternative hormonal agents. After ceasing testosterone therapy for several months, the patient’s total testosterone levels normalized (407–424 ng/dL), accompanied by increased secondary sexual characteristics, stable gonadotropin levels, and normal testicular volume. Persistent anosmia was noted, suggesting that restoration of reproductive endocrine function can occur independently of olfactory recovery. Genetic testing identified heterozygous mutations in PCSK1 and HS6ST1, genes implicated in GnRH regulation and KS pathogenesis. This case highlights the potential role of genetic variation in spontaneous HH improvement and underscores the need for individualized management strategies, including periodic reassessment of gonadal function and fertility potential. Further research is needed to elucidate the mechanisms driving spontaneous HH improvement, identify predictive biomarkers of reversibility, and explore therapeutic strategies that may promote endogenous GnRH activity in select patients with KS. Full article
(This article belongs to the Section Medical Research)
18 pages, 6976 KiB  
Article
Molecular Mechanisms Underlying Sweet Potato (Ipomoea batatas L.) Responses to Phosphorus Deficiency
by Zhufang Yao, Zhongxia Luo, Hongda Zou, Yiling Yang, Bingzhi Jiang, Lifei Huang and Zhangying Wang
Agronomy 2025, 15(7), 1745; https://doi.org/10.3390/agronomy15071745 - 20 Jul 2025
Viewed by 256
Abstract
Phosphorus deficiency poses a significant challenge to the growth and productivity of crops, particularly in nutrient-poor soils. This study investigates the effects of phosphorus deficiency on the growth, endogenous phytohormones, metabolome, and transcriptome of sweet potato (Ipomoea batatas L.) over a growth [...] Read more.
Phosphorus deficiency poses a significant challenge to the growth and productivity of crops, particularly in nutrient-poor soils. This study investigates the effects of phosphorus deficiency on the growth, endogenous phytohormones, metabolome, and transcriptome of sweet potato (Ipomoea batatas L.) over a growth period from 30 to 120 days. We found that low phosphorus conditions significantly reduced both above- and below-ground biomass, while tuber number remained unchanged. Endogenous phytohormone analysis revealed altered levels of abscisic acid (ABA), indole-3-acetic acid (IAA), and cytokinins, indicating a complex hormonal response to phosphorus starvation. Transcriptomic analysis identified a total of 6324 differentially expressed genes (DEGs) at 60 days, with significant enrichment in pathways related to stress response and phosphorus utilization (PAPs and PHO1). Metabolomic profiling revealed notable shifts in key metabolites, with consistent downregulation of several phosphorous-related compounds. Our findings highlight the intricate interplay between growth, hormonal regulation, metabolic reprogramming, and gene expression in response to phosphorus deficiency in sweet potato. This research underscores the importance of understanding nutrient stress responses to enhance sweet potato resilience and inform sustainable agricultural practices. Future research should focus on exploring the potential for genetic and agronomic interventions to mitigate the effects of phosphorus deficiency and optimize sweet potato productivity in challenging environments. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 1649 KiB  
Article
LC-MS-Based Untargeted Metabolic Profiling in Plasma Following Dapagliflozin Administration in Healthy Volunteers
by Hyeon Ji Kim, Jae Hwa Lee, Ji Seo Park, Jin Ju Park, Hae Won Lee, Heeyoun Bunch, Sook Jin Seong, Mi-Ri Gwon and Young-Ran Yoon
Metabolites 2025, 15(7), 484; https://doi.org/10.3390/metabo15070484 - 17 Jul 2025
Viewed by 494
Abstract
Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, treats type 2 diabetes by blocking renal glucose reabsorption and promoting urinary glucose excretion. This mechanism lowers blood glucose concentrations independently of insulin. The resulting caloric loss also contributes to weight reduction. Although these effects are well [...] Read more.
Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, treats type 2 diabetes by blocking renal glucose reabsorption and promoting urinary glucose excretion. This mechanism lowers blood glucose concentrations independently of insulin. The resulting caloric loss also contributes to weight reduction. Although these effects are well documented in patients with diabetes, their magnitude and underlying mechanisms in healthy individuals remain poorly understood. Background/Objectives: We investigated metabolic alterations after a single 10 mg dose of dapagliflozin in healthy adults with normal body-mass indices (BMIs) using untargeted metabolomics. Methods: Thirteen healthy volunteers completed this study. Plasma was collected before and 24 h after dosing. Untargeted metabolic profiling was performed with ultra-high-performance liquid chromatography–quadrupole time-of-flight/mass spectrometry. Results: Twenty-five endogenous metabolites were annotated; ten were putatively identified. Eight metabolites increased significantly, whereas two decreased. Up-regulated metabolites included phosphatidylcholine (PC) species (PC O-36:5, PC 36:3), phosphatidylserine (PS) species (PS 40:2, PS 40:3, PS 36:1, PS 40:4), lysophosphatidylserine 22:1, and uridine. Dehydroepiandrosterone sulfate and bilirubin were down-regulated. According to the Human Metabolome Database, these metabolites participate in glycerophospholipid, branched-chain amino acid, pyrimidine, and steroid-hormone metabolism. Conclusions: Dapagliflozin may affect pathways related to energy metabolism and homeostasis beyond glucose regulation. These data provide a reference for future investigations into energy balance and metabolic flexibility in metabolic disorders. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

12 pages, 241 KiB  
Review
Recombinant Human TSH Versus Thyroid Hormone Withdrawal: The Role in the Preparation for RAI Therapy in Differentiated Thyroid Cancer: A Comprehensive Evidence-Based Review
by Motaz Daraghma and Michael M. Graham
J. Clin. Med. 2025, 14(14), 5000; https://doi.org/10.3390/jcm14145000 - 15 Jul 2025
Viewed by 423
Abstract
Radioactive iodine (RAI) therapy plays a fundamental role in the management of differentiated thyroid cancer (DTC) following appropriate surgical intervention. High levels of TSH are required in order to achieve maximum RAI uptake in residual thyroid tissue or metastatic cells. The two techniques [...] Read more.
Radioactive iodine (RAI) therapy plays a fundamental role in the management of differentiated thyroid cancer (DTC) following appropriate surgical intervention. High levels of TSH are required in order to achieve maximum RAI uptake in residual thyroid tissue or metastatic cells. The two techniques that are most commonly used are thyroid hormone withdrawal (THW), which induces endogenous TSH elevation by creating a hypothyroid state, and exogenous stimulation with recombinant human TSH (rhTSH). This review compares both approaches over a range of DTC risk categories. Extensive evidence demonstrates that rhTSH and THW yield equivalent oncological outcomes, including remnant ablation success, recurrence-free survival, and overall survival, in low-, intermediate-, and high-risk disease. Additionally, rhTSH maintains quality of life by avoiding hypothyroid symptoms. While THW continues to be an excellent option when there is a lack of availability of rhTSH, its disadvantages, particularly the transient hypothyroid state, must be carefully weighed against the demonstrated equivalence in efficacy. In current clinical practice, rhTSH is frequently the preferred option for its convenience, safety, and patient-centered benefits; however, the selection of the optimal approach should be based on individual clinical circumstances and patients’ preferences, as well as resource considerations. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
18 pages, 4538 KiB  
Article
Effects of Drought Stress on the Growth and Physiological Characteristics of Idesia polycarpa Maxim
by Xiaoyu Lu, Yian Yin, Maolin Yang, Shucheng Zhang, Zhangtai Niu, Lingli Wu and Chan Chen
Horticulturae 2025, 11(7), 834; https://doi.org/10.3390/horticulturae11070834 - 15 Jul 2025
Viewed by 261
Abstract
Idesia polycarpa is a valuable woody oil plant with potential for horticultural and industrial applications. However, limited information is available regarding its drought tolerance during the seedling stage. In this study, one-year-old seedlings were subjected to five treatments based on soil relative water [...] Read more.
Idesia polycarpa is a valuable woody oil plant with potential for horticultural and industrial applications. However, limited information is available regarding its drought tolerance during the seedling stage. In this study, one-year-old seedlings were subjected to five treatments based on soil relative water content (RWC): moderate drought (T1, 40 ± 5%), severe drought (T2, 20 ± 5%), control (CK, 70 ± 5%), and rewatering following moderate (T3) and severe drought stress (T4), with RWC restored to 70 ± 5%. Under drought stress, seedlings exhibited adaptive responses including reduced growth, enhanced antioxidant enzyme activity, osmotic regulation, and changes in endogenous hormone levels. Seedlings showed good tolerance and recovery under moderate drought, but severe drought caused substantial damage and limited post-rewatering recovery. Pearson correlation and principal component analyses revealed that betaine, APX, SA, IAA, ABA, chlorophyll (a + b) content, and crown growth were strongly associated with drought response and could serve as key indicators for drought resistance assessment in I. polycarpa. These findings provide insights into the physiological mechanisms of drought adaptation and support the development of a reliable evaluation system for drought tolerance in this promising species. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

28 pages, 5487 KiB  
Review
Vitamin A5: Evidence, Definitions, Gaps, and Future Directions
by Torsten Bohn, Sascha Rohn, Volker Böhm, Marta Despotovic, Angel R. de Lera, Wojciech Krezel, Omer Kucuk, Diána Bánáti and Ralph Rühl
Nutrients 2025, 17(14), 2317; https://doi.org/10.3390/nu17142317 - 14 Jul 2025
Viewed by 642
Abstract
With the emergence of a new vitamin concept—vitamin A5—it is essential to first clarify the basic definition of vitamins, particularly vitamin A. This article summarizes the foundational concepts and definitions of vitamins with particular relevance to the discovery, establishment, and categorization of new [...] Read more.
With the emergence of a new vitamin concept—vitamin A5—it is essential to first clarify the basic definition of vitamins, particularly vitamin A. This article summarizes the foundational concepts and definitions of vitamins with particular relevance to the discovery, establishment, and categorization of new vitamin concepts. Vitamin A5 was discovered 80 years after the last vitamin was identified. It serves as an umbrella term for the dietary precursors 9-cis-β,β-carotene and 9-cis-13,14-dihydroretinol for the endogenous activator of the nuclear hormone receptor RXR, 9-cis-13,14-dihydroretinoic acid. However, several questions arise: Which criteria are typically used to identify a substance as a vitamin? How does vitamin A5 fit into the sometimes misleading definition of vitamin A? This review summarizes key findings and provides a comprehensive assessment of the current understanding, concluding that (a) vitamin A5 is a newly identified micronutrient that plays an important role in the prevention of diet-related diseases and (b) vitamin A5 is an important micronutrient that provides a plausible, mechanistic explanation for why a Western lifestyle diet low in vegetables and especially leafy vegetables can lead to a high prevalence of Western-lifestyle diseases, particularly neurological diseases and poor mental health. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

20 pages, 6911 KiB  
Article
Comparative Analysis of Ratoon-Competent and Ratoon-Deficient Sugarcane by Hormonal and Transcriptome Profiling
by Liping Zhao, Maoyong Ran, Jing Zhang, Peifang Zhao, Fenggang Zan, Jun Zhao, Wei Qin, Qibin Wu, Jiayong Liu and Xinlong Liu
Agronomy 2025, 15(7), 1669; https://doi.org/10.3390/agronomy15071669 - 10 Jul 2025
Viewed by 317
Abstract
The ratooning capacity of sugarcane cultivars represents a crucial agronomic trait that significantly influences the sustainability of crop yields. This study elucidates the physiological and molecular mechanisms underlying the sugarcane ratooning ability observed in ratoon-competent GuiTang 29 (GT29) and ratoon-deficient Badila cultivars following [...] Read more.
The ratooning capacity of sugarcane cultivars represents a crucial agronomic trait that significantly influences the sustainability of crop yields. This study elucidates the physiological and molecular mechanisms underlying the sugarcane ratooning ability observed in ratoon-competent GuiTang 29 (GT29) and ratoon-deficient Badila cultivars following stem excision. Through integrated hormonal profiling and transcriptome analysis, we identified significant differences in hormone levels and gene expression patterns. The quantification of 15 endogenous hormones via HPLC revealed marked reductions in zeatin (ZA) and zeatin riboside (ZR) in both cultivars. Additionally, GT29 exhibited notable reductions in gibberellins (GA3 and GA5) and strigolactone (5-DS) post-stem-excision, while Badila displayed stable or distinct hormonal changes. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that hormone signal transduction, MAPK signaling pathways, phenylpropanoid biosynthesis, flavonoid biosynthesis, and other metabolic pathways were significantly enriched in both GT29 and Badila, with a particularly higher enrichment of plant hormone signal transduction in GT29. Furthermore, several differentially expressed genes (DEGs) had different expression patterns between GT29 and Badila, including the cytokinin receptor B-ARR and transcription factor A-ARR, gibberellin pathway components GID1 and DELLA, and AUX/IAA and SAUR in the auxin pathway. The real-time quantitative PCR (qRT-PCR) validation of 12 DEGs corroborated the RNA-seq data, further supporting the reliability of the transcriptomic analysis. This study delineates a clear molecular framework distinguishing ratoon competence, offers novel insights into the molecular basis of perennial regeneration and provides reliable candidate genes for functional marker development in sugarcane breeding. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

Back to TopTop