Bamboo Biochar and Sodium Silicate Alleviate Oxybenzone-Induced Phytotoxicity via Distinct Mechanisms for Sustainable Plant Protection
Abstract
1. Introduction
2. Results
2.1. Phenotypic Parameters
2.2. Effects on Reactive Oxygen Species (ROS) Levels
2.3. Antioxidant System
2.4. Porphyrin and Chlorophyll Metabolic Pathways
2.5. Osmotic Regulation
2.6. Gas Exchange Parameters and Chlorophyll Fluorescence
2.7. Endogenous Hormones
3. Discussion
3.1. ROS Accumulation and Tobacco Growth
3.2. Changes in the Antioxidant System
3.3. Changes in the Photosynthetic System
3.4. Changes in Endogenous Hormones
4. Materials and Methods
4.1. Preparation and Exposure of Experimental Materials
4.2. Experimental Procedures
4.2.1. Phenotypic Analysis and Sample Preservation
4.2.2. H2O2 Content, O2− Production Rate, and ROS Staining
4.2.3. Porphyrin and Chlorophyll Metabolism Assays
4.2.4. Antioxidant Enzyme Activity and Metabolite Assays
4.2.5. Endogenous Hormone Quantification
4.2.6. Data Analysis and Visualization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Apel, C.; Tang, J.; Ebinghaus, R. Environmental Occurrence and Distribution of Organic UV Stabilizers and UV Filters in the Sediment of Chinese Bohai and Yellow Seas. Environ. Pollut. 2018, 235, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Cadena-Aizaga, M.I.; Montesdeoca-Esponda, S.; Torres-Padrón, M.E.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Organic UV Filters in Marine Environments: An Update of Analytical Methodologies, Occurrence and Distribution. Trends Environ. Anal. Chem. 2020, 25, e00079. [Google Scholar] [CrossRef]
- Ramos, S.; Homem, V.; Alves, A.; Santos, L. A Review of Organic UV-Filters in Wastewater Treatment Plants. Environ. Int. 2016, 86, 24–44. [Google Scholar] [CrossRef]
- Sieratowicz, A.; Kaiser, D.; Behr, M.; Oetken, M.; Oehlmann, J. Acute and Chronic Toxicity of Four Frequently Used UV Filter Substances for Desmodesmus subspicatus and Daphnia magna. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2011, 46, 1311–1319. [Google Scholar] [CrossRef]
- Ju, Y.-R.; Su, C.-R.; Chen, C.-F.; Shih, C.-F.; Gu, L.-S. Single and Mixture Toxicity of Benzophenone-3 and Its Metabolites on Daphnia magna. Chemosphere 2024, 366, 143536. [Google Scholar] [CrossRef]
- Kryczyk-Poprawa, A.; Sánchez-Hidalgo, A.; Baran, W.; Adamek, E.; Sułkowska-Ziaja, K.; Kała, K.; Muszyńska, B.; Opoka, W. The Toxicological Impact of the Ultraviolet Filter Oxybenzone on Antioxidant Profiles in In Vitro Cultures of Lentinula edodes. Toxics 2025, 13, 145. [Google Scholar] [CrossRef]
- Carve, M.; Nugegoda, D.; Allinson, G.; Shimeta, J. A Systematic Review and Ecological Risk Assessment for Organic Ultraviolet Filters in Aquatic Environments. Environ. Pollut. 2021, 268, 115894. [Google Scholar] [CrossRef]
- Scheele, A.; Sutter, K.; Karatum, O.; Danley-Thomson, A.A.; Redfern, L.K. Environmental Impacts of the Ultraviolet Filter Oxybenzone. Sci. Total Environ. 2023, 863, 160966. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhou, R.; Ding, Z.; Zhou, D.; Jin, Q. Melanin Interference Toxicity or Transgenerational Toxicity of Organic UV Filter Ethylhexyl Salicylate on Zebrafish. Sci. Total Environ. 2022, 845, 157365. [Google Scholar] [CrossRef]
- Carve, M.; Singh, N.; Grist, S.; Shimeta, J.; Nugegoda, D. Toxicity of the Organic UV Filter Oxybenzone to the Brown Macroalga Hormosira banksii and the Green Macroalga Ulva lactuca. Sci. Total Environ. 2025, 958, 177982. [Google Scholar] [CrossRef] [PubMed]
- Medeiros da Silva, F.; Pena Modesto, R.; Cávoli Lira, M.C.; Libanio Reis Santos, E.; de Oliveira-Lima, J. Effects of Benzophenone-3 on the Liver and Thyroid of Adult Zebrafish. Xenobiotica 2024, 54, 840–846. [Google Scholar] [CrossRef]
- Zhong, X.; Downs, C.A.; Che, X.; Zhang, Z.; Li, Y.; Liu, B.; Li, Q.; Li, Y.; Gao, H. The Toxicological Effects of Oxybenzone, an Active Ingredient in Suncream Personal Care Products, on Prokaryotic Alga Arthrospira sp. and Eukaryotic Alga Chlorella sp. Aquat. Toxicol. 2019, 216, 105295. [Google Scholar] [CrossRef]
- Zhong, X.; Li, Y.; Che, X.; Zhang, Z.; Li, Y.; Liu, B.; Li, Q.; Gao, H. Significant Inhibition of Photosynthesis and Respiration in Leaves of Cucumis sativus L. by Oxybenzone, an Active Ingredient in Sunscreen. Chemosphere 2019, 219, 456–462. [Google Scholar] [CrossRef]
- Luyckx, M.; Hausman, J.-F.; Lutts, S.; Guerriero, G. Silicon and Plants: Current Knowledge and Technological Perspectives. Front. Plant Sci. 2017, 8, 411. [Google Scholar] [CrossRef] [PubMed]
- Farouk, S.; Elhindi, K.M.; Alotaibi, M.A. Silicon Supplementation Mitigates Salinity Stress on Ocimum basilicum L. via Improving Water Balance, Ion Homeostasis, and Antioxidant Defense System. Ecotoxicol. Environ. Saf. 2020, 206, 111396. [Google Scholar] [CrossRef]
- Johnson, S.N.; Chen, Z.-H.; Rowe, R.C.; Tissue, D.T. Field Application of Silicon Alleviates Drought Stress and Improves Water Use Efficiency in Wheat. Front. Plant Sci. 2022, 13, 1030620. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Coffman, L.; Weerasooriya, A.D.; Crawford, K.; Khan, A.L. The Silicon Regulates Microbiome Diversity and Plant Defenses during Cold Stress in Glycine max L. Front. Plant Sci. 2024, 14, 1280251. [Google Scholar] [CrossRef]
- Iqbal, Z.; Sarkhosh, A.; Balal, R.M.; Gómez, C.; Zubair, M.; Ilyas, N.; Khan, N.; Shahid, M.A. Silicon Alleviate Hypoxia Stress by Improving Enzymatic and Non-Enzymatic Antioxidants and Regulating Nutrient Uptake in Muscadine Grape (Muscadinia rotundifolia Michx.). Front. Plant Sci. 2021, 11, 618873. [Google Scholar] [CrossRef]
- Adrees, M.; Ali, S.; Rizwan, M.; Zia-ur-Rehman, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Qayyum, M.F.; Irshad, M.K. Mechanisms of Silicon-Mediated Alleviation of Heavy Metal Toxicity in Plants: A Review. Ecotoxicol. Environ. Saf. 2015, 119, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Islam, W.; Tayyab, M.; Khalil, F.; Hua, Z.; Huang, Z.; Chen, H.Y.H. Silicon-Mediated Plant Defense against Pathogens and Insect Pests. Pestic. Biochem. Physiol. 2020, 168, 104641. [Google Scholar] [CrossRef]
- Abd-El-Aty, M.S.; Kamara, M.M.; Elgamal, W.H.; Mesbah, M.I.; Abomarzoka, E.A.; Alwutayd, K.M.; Mansour, E.; Ben Abdelmalek, I.; Behiry, S.I.; Almoshadak, A.S.; et al. Exogenous Application of Nano-Silicon, Potassium Sulfate, or Proline Enhances Physiological Parameters, Antioxidant Enzyme Activities, and Agronomic Traits of Diverse Rice Genotypes under Water Deficit Conditions. Heliyon 2024, 10, e26077. [Google Scholar] [CrossRef]
- Pu, J.; Wang, L.; Zhang, W.; Ma, J.; Zhang, X.; Putnis, C.V. Organically-Bound Silicon Enhances Resistance to Enzymatic Degradation and Nanomechanical Properties of Rice Plant Cell Walls. Carbohydr. Polym. 2021, 266, 118057. [Google Scholar] [CrossRef]
- Luo, L.; Wang, J.; Lv, J.; Liu, Z.; Sun, T.; Yang, Y.; Zhu, Y.-G. Carbon Sequestration Strategies in Soil Using Biochar: Advances, Challenges, and Opportunities. Environ. Sci. Technol. 2023, 57, 11357–11372. [Google Scholar] [CrossRef]
- Amalina, F.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. Pristine and Modified Biochar Applications as Multifunctional Component towards Sustainable Future: Recent Advances and New Insights. Sci. Total Environ. 2024, 914, 169608. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Fawzy, S.; Farghali, M.; El-Azazy, M.; Elgarahy, A.M.; Fahim, R.A.; Maksoud, M.I.A.A.; Ajlan, A.A.; Yousry, M.; Saleem, Y.; et al. Biochar for Agronomy, Animal Farming, Anaerobic Digestion, Composting, Water Treatment, Soil Remediation, Construction, Energy Storage, and Carbon Sequestration: A Review. Environ. Chem. Lett. 2022, 20, 2385–2485. [Google Scholar] [CrossRef]
- Gęca, M.; Wiśniewska, M.; Nowicki, P. Biochars and Activated Carbons as Adsorbents of Inorganic and Organic Compounds from Multicomponent Systems—A Review. Adv. Colloid. Interface Sci. 2022, 305, 102687. [Google Scholar] [CrossRef]
- Chi, W.; Nan, Q.; Liu, Y.; Dong, D.; Qin, Y.; Li, S.; Wu, W. Stress Resistance Enhancing with Biochar Application and Promotion on Crop Growth. Biochar 2024, 6, 43. [Google Scholar] [CrossRef]
- Jiang, D.; Yang, G.; Huang, L.-J.; Chen, K.; Tang, Y.; Pi, X.; Yang, R.; Peng, X.; Cui, C.; Li, N. Unveiling the Toxic Effects, Physiological Responses and Molecular Mechanisms of Tobacco (Nicotiana tabacum) in Exposure to Organic Ultraviolet Filters. J. Hazard. Mater. 2024, 465, 133060. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive Oxygen Species, Abiotic Stress and Stress Combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Dietz, K.-J.; Mittler, R.; Noctor, G. Recent Progress in Understanding the Role of Reactive Oxygen Species in Plant Cell Signaling. Plant Physiol. 2016, 171, 1535–1539. [Google Scholar] [CrossRef]
- Del Río, L.A.; López-Huertas, E. ROS Generation in Peroxisomes and Its Role in Cell Signaling. Plant Cell Physiol. 2016, 57, 1364–1376. [Google Scholar] [CrossRef]
- Choudhary, A.; Kumar, A.; Kaur, N. ROS and Oxidative Burst: Roots in Plant Development. Plant Divers. 2020, 42, 33–43. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Huang, H.; Ullah, F.; Zhou, D.-X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Downs, C.A.; Li, Y.; Zhang, Z.; Li, Y.; Liu, B.; Gao, H.; Li, Q. Comparison of Toxicological Effects of Oxybenzone, Avobenzone, Octocrylene, and Octinoxate Sunscreen Ingredients on Cucumber Plants (Cucumis sativus L.). Sci. Total Environ. 2020, 714, 136879. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Xie, M.; Clough, T.J.; Yuan, D.; Wu, S.; He, X.; Hu, C.; Zhou, S.; Qin, S. Biochar-Derived Persistent Free Radicals and Reactive Oxygen Species Reduce the Potential of Biochar to Mitigate Soil N2O Emissions by Inhibiting nosZ. Soil. Biol. Biochem. 2023, 178, 108970. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, L.; Liu, Y.; Su, W.; Yan, J.; Xu, D. Effect of Biochar on the Growth, Photosynthesis, Antioxidant System and Cadmium Content of Mentha Piperita ‘Chocolate’ and Mentha Spicata in Cadmium-Contaminated Soil. Agronomy 2022, 12, 2737. [Google Scholar] [CrossRef]
- Lyu, L.; Bi, Y.; Li, S.; Xue, H.; Li, Y.; Prusky, D.B. Sodium Silicate Prime Defense Responses in Harvested Muskmelon by Regulating Mitochondrial Energy Metabolism and Reactive Oxygen Species Production. Food Chem. 2019, 289, 369–376. [Google Scholar] [CrossRef]
- Gill, S.S.; Anjum, N.A.; Gill, R.; Yadav, S.; Hasanuzzaman, M.; Fujita, M.; Mishra, P.; Sabat, S.C.; Tuteja, N. Superoxide Dismutase—Mentor of Abiotic Stress Tolerance in Crop Plants. Environ. Sci. Pollut. Res. 2015, 22, 10375–10394. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R.; Zandalinas, S.I.; Fichman, Y.; Van Breusegem, F. Reactive Oxygen Species Signalling in Plant Stress Responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.; Lyu, S.; Mao, Y.; Yu, F.; Liu, S.; Fang, Y.; Deng, S. Arabidopsis CIRP1 E3 Ligase Modulates Drought and Oxidative Stress Tolerance and Reactive Oxygen Species Homeostasis by Directly Degrading Catalases. J. Integr. Plant Biol. 2025, 67, 1274–1289. [Google Scholar] [CrossRef]
- Wu, Y.; Ye, B. Effects of Combined Elevated Temperature and Drought Stress on Anti-Oxidative Enzyme Activities and Reactive Oxygen Species Metabolism of Broussonetia Papyrifera Seedlings. AES 2016, 36, 403–410. [Google Scholar] [CrossRef]
- Sarraf, M.; Janeeshma, E.; Arif, N.; Yadav, V.; Zahra, N.; Bouzroud, S.; Mirmazloum, I.; Yadi, R.; Hasanuzzaman, M. Biochar for the Mitigation of Metal/Metalloid Stress in Plants. J. Plant Growth Regul. 2024, 43, 3303–3319. [Google Scholar] [CrossRef]
- Alam, S.N.; Khalid, Z.; Sweta; Singh, B.; Guldhe, A.; Shahi, D.K.; Bauddh, K. Application of Biochar in Agriculture: A Sustainable Approach for Enhanced Plant Growth, Productivity and Soil Health. In Ecological and Practical Applications for Sustainable Agriculture; Bauddh, K., Kumar, S., Singh, R.P., Korstad, J., Eds.; Springer: Singapore, 2020; pp. 107–130. ISBN 978-981-15-3372-3. [Google Scholar]
- Upadhyay, V.; Choudhary, K.K.; Agrawal, S.B. Use of Biochar as a Sustainable Agronomic Tool, Its Limitations and Impact on Environment: A Review. Discov. Agric. 2024, 2, 20. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, H.; Lv, X.; Zhang, Y.; Wang, W. Effects of Biochar and Biofertilizer on Cadmium-Contaminated Cotton Growth and the Antioxidative Defense System. Sci. Rep. 2020, 10, 20112. [Google Scholar] [CrossRef]
- Murtaza, G.; Deng, G.; Usman, M.; Jamil, A.; Qasim, M.; Iqbal, J.; Ercisli, S.; Akram, M.I.; Rizwan, M.; Elshikh, M.S.; et al. Impact of Acacia-Derived Biochar to Mitigate Salinity Stress in Zea mays L. by Morpho-Physiological and Biochemical Indices. Sci. Rep. 2024, 14, 31883. [Google Scholar] [CrossRef]
- Teixeira, G.C.M.; de Prado, R.M.; Rocha, A.M.S.; de Oliveira Filho, A.S.B.; da Sousa Junior, G.S.; Gratão, P.L. Action of Silicon on the Activity of Antioxidant Enzymes and on Physiological Mechanisms Mitigates Water Deficit in Sugarcane and Energy Cane Plants. Sci. Rep. 2022, 12, 17487. [Google Scholar] [CrossRef]
- Xue, S.; Bi, Y.; Ackah, S.; Li, Z.; Li, B.; Wang, B.; Wang, Y.; Li, Y.; Prusky, D. Sodium Silicate Treatment Accelerates Biosynthesis and Polymerization of Suberin Polyaliphatics Monomers at Wounds of Muskmelon. Food Chem. 2023, 417, 135847. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Zhang, J. Advances in the Research on the AsA-GSH Cycle in Horticultural Crops. Front. Agric. China 2010, 4, 84–90. [Google Scholar] [CrossRef]
- Anjum, N.A.; Chan, M.-T.; Umar, S. (Eds.) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants; Springer: Dordrecht, The Netherlands, 2010; ISBN 978-90-481-9403-2. [Google Scholar]
- Rahmatizadeh, R.; Jamei, R.; Arvin, M.J. Silicon Nanoparticles (SiNPs) Mediate GABA, SOD and ASA-GSH Cycle to Improve Cd Stress Tolerance in Solanum lycopersicum. Sci. Rep. 2024, 14, 21948. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Yao, B.; Yang, X.; Wang, L.; Xu, Z.; Yan, X.; Tian, L.; Zhou, H.; Zhou, Y. Novel Insights into the Adsorption of Organic Contaminants by Biochar: A Review. Chemosphere 2022, 287, 132113. [Google Scholar] [CrossRef]
- Radotić, K.; Djikanović, D.; Kalauzi, A.; Tanasijević, G.; Maksimović, V.; Dragišić Maksimović, J. Influence of Silicon on Polymerization Process during Lignin Synthesis. Implications for Cell Wall Properties. Int. J. Biol. Macromol. 2022, 198, 168–174. [Google Scholar] [CrossRef]
- Hussain, S.; Shuxian, L.; Mumtaz, M.; Shafiq, I.; Iqbal, N.; Brestic, M.; Shoaib, M.; Sisi, Q.; Li, W.; Mei, X.; et al. Foliar Application of Silicon Improves Stem Strength under Low Light Stress by Regulating Lignin Biosynthesis Genes in Soybean (Glycine max (L.) Merr.). J. Hazard. Mater. 2021, 401, 123256. [Google Scholar] [CrossRef] [PubMed]
- Czarnecki, O.; Gläßer, C.; Chen, J.-G.; Mayer, K.F.X.; Grimm, B. Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling. Front. Plant Sci. 2012, 3, 236. [Google Scholar] [CrossRef]
- Aarti, P.d.; Tanaka, R.; Tanaka, A. Effects of Oxidative Stress on Chlorophyll Biosynthesis in Cucumber (Cucumis sativus) Cotyledons. Physiol. Plant. 2006, 128, 186–197. [Google Scholar] [CrossRef]
- Samol, I. Implications of OEP16 Protein in the Photoprotection of Arabidopsis Thaliana During Light Stress. Ph.D. Thesis, Joseph Fourier University, Grenoble, France, 2009. [Google Scholar]
- Farhat, N.; Elkhouni, A.; Zorrig, W.; Smaoui, A.; Abdelly, C.; Rabhi, M. Effects of Magnesium Deficiency on Photosynthesis and Carbohydrate Partitioning. Acta Physiol. Plant 2016, 38, 145. [Google Scholar] [CrossRef]
- Li, J.; Wen, T.; Zhang, R.; Hu, X.; Guo, F.; Zhao, H.; Wang, P.; Wang, Y.; Ni, D.; Wang, M. Metabolome Profiling and Transcriptome Analysis Unveiling the Crucial Role of Magnesium Transport System for Magnesium Homeostasis in Tea Plants. Hortic. Res. 2024, 11, uhae152. [Google Scholar] [CrossRef]
- Rao, C.V.; Kirby, J.R.; Arkin, A.P. Design and Diversity in Bacterial Chemotaxis: A Comparative Study in Escherichia coli and Bacillus subtilis. PLoS Biol. 2004, 2, e49. [Google Scholar] [CrossRef]
- Reinbothe, C.; Springer, A.; Samol, I.; Reinbothe, S. Plant Oxylipins: Role of Jasmonic Acid during Programmed Cell Death, Defence and Leaf Senescence. FEBS J. 2009, 276, 4666–4681. [Google Scholar] [CrossRef]
- Liao, H.-S.; Chung, Y.-H.; Hsieh, M.-H. Glutamate: A Multifunctional Amino Acid in Plants. Plant Sci. 2022, 318, 111238. [Google Scholar] [CrossRef]
- Quan, J.; Zheng, W.; Tan, J.; Li, Z.; Wu, M.; Hong, S.-B.; Zhao, Y.; Zhu, Z.; Zang, Y. Glutamic Acid and Poly-γ-Glutamic Acid Enhanced the Heat Resistance of Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) by Improving Carotenoid Biosynthesis, Photosynthesis, and ROS Signaling. Int. J. Mol. Sci. 2022, 23, 11671. [Google Scholar] [CrossRef]
- La, V.H.; Lee, B.-R.; Islam, M.T.; Mamun, M.A.; Park, S.-H.; Bae, D.-W.; Kim, T.-H. Characterization of Glutamate-Mediated Hormonal Regulatory Pathway of the Drought Responses in Relation to Proline Metabolism in Brassica napus L. Plants 2020, 9, 512. [Google Scholar] [CrossRef] [PubMed]
- Kochanová, Z.; Jašková, K.; Sedláková, B.; Luxová, M. Silicon Improves Salinity Tolerance and Affects Ammonia Assimilation in Maize Roots. Biologia 2014, 69, 1164–1171. [Google Scholar] [CrossRef]
- Hou, J.; Pugazhendhi, A.; Sindhu, R.; Vinayak, V.; Thanh, N.C.; Brindhadevi, K.; Lan Chi, N.T.; Yuan, D. An Assessment of Biochar as a Potential Amendment to Enhance Plant Nutrient Uptake. Environ. Res. 2022, 214, 113909. [Google Scholar] [CrossRef]
- Gou, T.; Yang, L.; Hu, W.; Chen, X.; Zhu, Y.; Guo, J.; Gong, H. Silicon Improves the Growth of Cucumber under Excess Nitrate Stress by Enhancing Nitrogen Assimilation and Chlorophyll Synthesis. Plant Physiol. Biochem. 2020, 152, 53–61. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Shu, P.; Gong, X.; Du, Y.; Han, Y.; Jin, S.; Wang, Z.; Qian, P.; Li, X. Effects of Simulated Acid Rain on Photosynthesis in Pinus Massoniana and Cunninghamia Lanceolata in Terms of Prompt Fluorescence, Delayed Fluorescence, and Modulated Reflection at 820 Nm. Plants 2024, 13, 622. [Google Scholar] [CrossRef]
- Moustaka, J.; Moustakas, M. Photoprotective Mechanism of the Non-Target Organism Arabidopsis thaliana to Paraquat Exposure. Pestic. Biochem. Physiol. 2014, 111, 1–6. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Z.; Zhao, M.; Hao, J.; Liu, J.; Yan, Y.; Sun, P.; Jia, Y.; Ge, G. Hydrothermal Biochar Enhances the Photosynthetic Efficiency and Yield of Alfalfa by Optimizing Soil Chemical Properties and Stimulating the Activity of Microbial Communities. Sci. Rep. 2024, 14, 31420. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.S.; Li, G.; Andersen, M.N.; Liu, F. Biochar Enhances Yield and Quality of Tomato under Reduced Irrigation. Agric. Water Manag. 2014, 138, 37–44. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Wang, Q.; Chang, T.; Shaghaleh, H.; Hamoud, Y.A. Improvement of Photosynthesis by Biochar and Vermicompost to Enhance Tomato (Solanum lycopersicum L.) Yield under Greenhouse Conditions. Plants 2022, 11, 3214. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, J.; Wang, Y.; Yang, Q.; Chen, T.; Chen, Y.; Chi, D.; Xia, G.; Siddique, K.H.M.; Wang, T. Photosynthesis, Chlorophyll Fluorescence, and Yield of Peanut in Response to Biochar Application. Front. Plant Sci. 2021, 12, 650432. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, T.M.; Saharkhiz, M.J.; Ramezanian, A.; Zarei, M. The Use of Silicon and Mycorrhizal Fungi to Mitigate Changes in Licorice Leaf Micromorphology, Chlorophyll Fluorescence, and Rutin Content under Water-Deficit Conditions. Plant Physiol. Biochem. 2023, 197, 107662. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, A.; Kaur, H.; Singh, K.; Guha, S.; Choudhary, D.R.; Sonkar, A.; Mehta, S.; Husen, A. Exploring the Role of Silicon in Enhancing Sustainable Plant Growth, Defense System, Environmental Stress Mitigation and Management. Discov. Appl. Sci. 2025, 7, 406. [Google Scholar] [CrossRef]
- Ozfidan-Konakci, C.; Alp, F.N.; Arikan, B.; Elbasan, F.; Cavusoglu, H.; Yildiztugay, E. The Biphasic Responses of Nanomaterial Fullerene on Stomatal Movement, Water Status, Chlorophyll a Fluorescence Transient, Radical Scavenging System and Aquaporin-Related Gene Expression in Zea mays under Cobalt Stress. Sci. Total Environ. 2022, 826, 154213. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Guo, Q.; Zhu, Z.; Zhang, L. Effects of Different Water Management Options and Fertilizer Supply on Photosynthesis, Fluorescence Parameters and Water Use Efficiency of Prunella vulgaris Seedlings. Biol. Res. 2016, 49, 12. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, H.; Song, X.; Jin, J.; Zhang, X. The Responses of Plant Leaf CO2/H2O Exchange and Water Use Efficiency to Drought: A Meta-Analysis. Sustainability 2018, 10, 551. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, N.; Lu, H.; Zhu, L. Molecular Mechanism of Organic Pollutant-Induced Reduction of Carbon Fixation and Biomass Yield in Oryza sativa L. Environ. Sci. Technol. 2022, 56, 4162–4172. [Google Scholar] [CrossRef] [PubMed]
- Sherin, G.; Aswathi, K.P.R.; Puthur, J.T. Photosynthetic Functions in Plants Subjected to Stresses Are Positively Influenced by Priming. Plant Stress. 2022, 4, 100079. [Google Scholar] [CrossRef]
- Soliman, M.H.; Alnusairi, G.S.H.; Khan, A.A.; Alnusaire, T.S.; Fakhr, M.A.; Abdulmajeed, A.M.; Aldesuquy, H.S.; Yahya, M.; Najeeb, U. Biochar and Selenium Nanoparticles Induce Water Transporter Genes for Sustaining Carbon Assimilation and Grain Production in Salt-Stressed Wheat. J. Plant Growth Regul. 2023, 42, 1522–1543. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X.; Gao, H.; Chen, J.; Zhang, T. Alleviating Cd Stress in Sunflower (Helianthus annuus) through the Sodium Silicate Application. Sustainability 2024, 16, 2037. [Google Scholar] [CrossRef]
- Li, L.; Ai, S.; Li, Y.; Wang, Y.; Tang, M. Exogenous Silicon Mediates Alleviation of Cadmium Stress by Promoting Photosynthetic Activity and Activities of Antioxidative Enzymes in Rice. J. Plant Growth Regul. 2018, 37, 602–611. [Google Scholar] [CrossRef]
- Thalmann, M.; Santelia, D. Starch as a Determinant of Plant Fitness under Abiotic Stress. New Phytol. 2017, 214, 943–951. [Google Scholar] [CrossRef]
- Krasensky, J.; Jonak, C. Drought, Salt, and Temperature Stress-Induced Metabolic Rearrangements and Regulatory Networks. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.J.; Dong, W.; Stephanopoulos, G.N.; Sikes, H.D. Oxidative Pentose Phosphate Pathway and Glucose Anaplerosis Support Maintenance of Mitochondrial NADPH Pool under Mitochondrial Oxidative Stress. Bioeng. Transl. Med. 2020, 5, e10184. [Google Scholar] [CrossRef] [PubMed]
- Imran, S.; Sarker, P.; Hoque, M.N.; Paul, N.C.; Mahamud, M.A.; Chakrobortty, J.; Tahjib-Ul-Arif, M.; Latef, A.A.H.A.; Hasanuzzaman, M.; Rhaman, M.S. Biochar Actions for the Mitigation of Plant Abiotic Stress. CPSC 2022, 74, 6–20. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Zhang, L.; Zheng, Y.; Liu, X.; Zhang, Y. The Critical Role of Biochar to Mitigate the Adverse Impacts of Drought and Salinity Stress in Plants. Front. Plant Sci. 2023, 14, 1163451. [Google Scholar] [CrossRef]
- Peixoto, B.; Baena-González, E. Management of Plant Central Metabolism by SnRK1 Protein Kinases. J. Exp. Bot. 2022, 73, 7068–7082. [Google Scholar] [CrossRef] [PubMed]
- Min, M.K.; Choi, E.-H.; Kim, J.-A.; Yoon, I.S.; Han, S.; Lee, Y.; Lee, S.; Kim, B.-G. Two Clade A Phosphatase 2Cs Expressed in Guard Cells Physically Interact with Abscisic Acid Signaling Components to Induce Stomatal Closure in Rice. Rice 2019, 12, 37. [Google Scholar] [CrossRef]
- Lind, C.; Dreyer, I.; López-Sanjurjo, E.J.; von Meyer, K.; Ishizaki, K.; Kohchi, T.; Lang, D.; Zhao, Y.; Kreuzer, I.; Al-Rasheid, K.A.S.; et al. Stomatal Guard Cells Co-Opted an Ancient ABA-Dependent Desiccation Survival System to Regulate Stomatal Closure. Curr. Biol. 2015, 25, 928–935. [Google Scholar] [CrossRef]
- Iqbal, N.; Sehar, Z.; Fatma, M.; Umar, S.; Sofo, A.; Khan, N.A. Nitric Oxide and Abscisic Acid Mediate Heat Stress Tolerance through Regulation of Osmolytes and Antioxidants to Protect Photosynthesis and Growth in Wheat Plants. Antioxidants 2022, 11, 372. [Google Scholar] [CrossRef] [PubMed]
- Mu, T.; Luo, S.; Li, L.; Zhang, R.; Wang, P.; Zhang, G. A Review of the Interaction Mechanisms between Jasmonic Acid (JA) and Various Plant Hormones, as Well as the Core Regulatory Role of MYC2. Plant Sci. 2025, 353, 112407. [Google Scholar] [CrossRef]
- Guo, Y.; Yan, J.; Su, Z.; Chang, J.; Yang, J.; Wei, C.; Zhang, Y.; Ma, J.; Zhang, X.; Li, H. Abscisic Acid Mediates Grafting-Induced Cold Tolerance of Watermelon via Interaction with Melatonin and Methyl Jasmonate. Front. Plant Sci. 2021, 12, 785317. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Xu, J.; Zheng, C.; Yang, Y.; Wang, L.; Zhang, R.; Ren, X.; Wei, S.; Aziz, U.; Du, J.; et al. Abscisic Acid Inhibits Primary Root Growth by Impairing ABI4-Mediated Cell Cycle and Auxin Biosynthesis. Plant Physiol. 2022, 191, 265–279. [Google Scholar] [CrossRef]
- Sarfraz, R.; Priyadarshani, S.V.G.N.; Fakhar, A.; Khan, M.I.; Hassan, Z.U.; Joo Kim, P.; Won Kim, G. Unlocking Plant Defense: Exploring the Nexus of Biochar and Ca2+ Signaling. Plant Stress. 2024, 14, 100584. [Google Scholar] [CrossRef]
- Wiszniewska, A.; Dziurka, K.; Dziurka, M.; Rodrigues, A.F.; Latawiec, A.E. Biochars as Culture Medium Additives Influence Organogenic Potential of Plant Explants through Changes in Endogenous Phytohormone and Carbohydrate Contents in Daphne Species. Plant Cell Tiss. Organ. Cult. 2023, 152, 45–66. [Google Scholar] [CrossRef]
- Khan, A.; Bilal, S.; Khan, A.L.; Imran, M.; Shahzad, R.; Al-Harrasi, A.; Al-Rawahi, A.; Al-Azhri, M.; Mohanta, T.K.; Lee, I.-J. Silicon and Gibberellins: Synergistic Function in Harnessing ABA Signaling and Heat Stress Tolerance in Date Palm (Phoenix dactylifera L.). Plants 2020, 9, 620. [Google Scholar] [CrossRef]
- Gao, H.; Yu, W.; Yang, X.; Liang, J.; Sun, X.; Sun, M.; Xiao, Y.; Peng, F. Silicon Enhances the Drought Resistance of Peach Seedlings by Regulating Hormone, Amino Acid, and Sugar Metabolism. BMC Plant Biol. 2022, 22, 422. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, N.; Altaf, M.A.; Ning, J.; Shu, H.; Fu, H.; Lu, X.; Cheng, S.; Wang, Z. Silicon Improves the Drought Tolerance in Pepper Plants through the Induction of Secondary Metabolites, GA Biosynthesis Pathway, and Suppression of Chlorophyll Degradation. Plant Physiol. Biochem. 2024, 214, 108919. [Google Scholar] [CrossRef]
- Devireddy, A.R.; Tschaplinski, T.J.; Tuskan, G.A.; Muchero, W.; Chen, J.-G. Role of Reactive Oxygen Species and Hormones in Plant Responses to Temperature Changes. Int. J. Mol. Sci. 2021, 22, 8843. [Google Scholar] [CrossRef]
- Ji, E.; Hu, S.; Lu, Q.; Zhang, M.; Jiang, M. Hydrogen Peroxide Positively Regulates ABA Signaling via Oxidative Modification of the C2H2-Type Zinc Finger Protein ZFP36 in Rice. Plant Physiol. Biochem. 2024, 213, 108844. [Google Scholar] [CrossRef]
- Jaballi, A.; Missihoun, T.D. The Phytohormone Abscisic Acid Modulates Protein Carbonylation in Arabidopsis Thaliana. Physiol. Plant. 2022, 174, e13658. [Google Scholar] [CrossRef]
- Blomster, T.; Salojärvi, J.; Sipari, N.; Brosché, M.; Ahlfors, R.; Keinänen, M.; Overmyer, K.; Kangasjärvi, J. Apoplastic Reactive Oxygen Species Transiently Decrease Auxin Signaling and Cause Stress-Induced Morphogenic Response in Arabidopsis. Plant Physiol. 2011, 157, 1866–1883. [Google Scholar] [CrossRef]
- Yanhui, C.; Tongtong, Y.; Hongrui, W.; Xiaoqian, L.; Zhe, Z.; Zihan, W.; Hongbo, Z.; Ye, Y.; Guoqiang, H.; Guangyu, S.; et al. Abscisic Acid Plays a Key Role in the Mechanism of Photosynthetic and Physiological Response Effect of Tetrabromobisphenol A on Tobacco. J. Hazard. Mater. 2023, 447, 130792. [Google Scholar] [CrossRef]
- Wu, Y.; Jin, X.; Liao, W.; Hu, L.; Dawuda, M.M.; Zhao, X.; Tang, Z.; Gong, T.; Yu, J. 5-Aminolevulinic Acid (ALA) Alleviated Salinity Stress in Cucumber Seedlings by Enhancing Chlorophyll Synthesis Pathway. Front. Plant Sci. 2018, 9, 635. [Google Scholar] [CrossRef]
- Hodgins, R.R.; Van Huystee, R.B. Rapid Simultaneous Estimation of Protoporphyrin and Mg-Porphyrins in Higher Plants. J. Plant Physiol. 1986, 125, 311–323. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Yao, X.; Zhang, Y.; Li, J.; Wang, X.; Xu, Z.; Chen, W. Characterization and Fine Mapping of Thermo-Sensitive Chlorophyll Deficit Mutant1 in Rice (Oryza sativa L.). Breed. Sci. 2015, 65, 161–169. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, Y.; Gu, Q.; Zhao, G.; Zhang, Y.; Cui, W.; Xu, S.; Wang, R.; Shen, W. The AtrbohF-Dependent Regulation of ROS Signaling Is Required for Melatonin-Induced Salinity Tolerance in Arabidopsis. Free Radic. Biol. Med. 2017, 108, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Jiang, D.; Huang, L.-J.; Cui, C.; Yang, R.; Pi, X.; Peng, X.; Peng, X.; Pi, J.; Li, N. Distinct Toxic Effects, Gene Expression Profiles, and Phytohormone Responses of Polygonatum cyrtonema Exposed to Two Different Antibiotics. J. Hazard. Mater. 2024, 466, 133639. [Google Scholar] [CrossRef] [PubMed]
- Giribaldi, M.; Gény, L.; Delrot, S.; Schubert, A. Proteomic Analysis of the Effects of ABA Treatments on Ripening Vitis vinifera berries. J. Exp. Bot. 2010, 61, 2447–2458. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Uwaremwe, C.; Tian, Y.; Liu, Y.; Zhao, X.; Zhou, Q.; Wang, Y.; Zhang, Y.; Liu, B.; Cui, Z.; et al. Bacillus amyloliquefaciens Rescues Glycyrrhizic Acid Loss Under Drought Stress in Glycyrrhiza uralensis by Activating the Jasmonic Acid Pathway. Front. Microbiol. 2022, 12, 798525. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, C.; Yang, W.; Dang, W.; Chen, R.; García-Caparrós, P.; Yang, G.; Huang, J.; Huang, L.-J. Bamboo Biochar and Sodium Silicate Alleviate Oxybenzone-Induced Phytotoxicity via Distinct Mechanisms for Sustainable Plant Protection. Plants 2025, 14, 2382. https://doi.org/10.3390/plants14152382
Cui C, Yang W, Dang W, Chen R, García-Caparrós P, Yang G, Huang J, Huang L-J. Bamboo Biochar and Sodium Silicate Alleviate Oxybenzone-Induced Phytotoxicity via Distinct Mechanisms for Sustainable Plant Protection. Plants. 2025; 14(15):2382. https://doi.org/10.3390/plants14152382
Chicago/Turabian StyleCui, Chuantong, Wenhai Yang, Weiru Dang, Ruiya Chen, Pedro García-Caparrós, Guoqun Yang, Jianhua Huang, and Li-Jun Huang. 2025. "Bamboo Biochar and Sodium Silicate Alleviate Oxybenzone-Induced Phytotoxicity via Distinct Mechanisms for Sustainable Plant Protection" Plants 14, no. 15: 2382. https://doi.org/10.3390/plants14152382
APA StyleCui, C., Yang, W., Dang, W., Chen, R., García-Caparrós, P., Yang, G., Huang, J., & Huang, L.-J. (2025). Bamboo Biochar and Sodium Silicate Alleviate Oxybenzone-Induced Phytotoxicity via Distinct Mechanisms for Sustainable Plant Protection. Plants, 14(15), 2382. https://doi.org/10.3390/plants14152382