Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (830)

Search Parameters:
Keywords = endocrine signaling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 858 KiB  
Review
Unraveling the Core of Endometriosis: The Impact of Endocrine Disruptors
by Efthalia Moustakli, Anastasios Potiris, Themos Grigoriadis, Athanasios Zikopoulos, Eirini Drakaki, Ioanna Zouganeli, Charalampos Theofanakis, Angeliki Gerede, Athanasios Zachariou, Ekaterini Domali, Peter Drakakis and Sofoklis Stavros
Int. J. Mol. Sci. 2025, 26(15), 7600; https://doi.org/10.3390/ijms26157600 - 6 Aug 2025
Abstract
Globally, endometriosis affects almost 10% of reproductive-aged women, leading to chronic pain and discomfort. Endocrine-disrupting compounds (EDCs) seem to play a pivotal role as a causal factor. The current manuscript aims to explain potential molecular pathways, synthesize current evidence regarding EDCs as causative [...] Read more.
Globally, endometriosis affects almost 10% of reproductive-aged women, leading to chronic pain and discomfort. Endocrine-disrupting compounds (EDCs) seem to play a pivotal role as a causal factor. The current manuscript aims to explain potential molecular pathways, synthesize current evidence regarding EDCs as causative agents of endometriosis, and highlight implications in the general population and clinical work. A thorough review of experimental, epidemiologic, and mechanistic research studies was conducted to explain the association between EDCs and endometriosis. Among the primary EDCs under investigation are polychlorinated biphenyls, dioxins, phthalates, and bisphenol A (BPA). Despite methodological heterogeneity and some discrepancies, epidemiologic evidence supports a positive association between some increased levels of BPA, phthalates, and dioxins in urine or in blood, and endometriosis. Experiments support some effect of EDCs on endometrial cells and causing endometriosis. EDCs function as xenoestrogens, alter immune function, induce oxidative stress, and disrupt progesterone signaling. Epigenetic reprogramming may play a role in mediating EDC-induced endometriosis. Endocrine, immunological, and epigenetic pathways link EDCs and endometriosis. Prevention techniques require deeper comprehension of those factors. Causal linkages and possible treatment targets should be based on longitudinal studies and multi-omics techniques. Restriction of EDCs could be beneficial for endometriosis prevalence limitation. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

21 pages, 3236 KiB  
Article
The Plasticizer Dibutyl Phthalate (DBP) Impairs Pregnancy Vascular Health: Insights into Calcium Signaling and Nitric Oxide Involvement
by Ana R. Quelhas, Melissa Mariana and Elisa Cairrao
J. Xenobiot. 2025, 15(4), 127; https://doi.org/10.3390/jox15040127 - 6 Aug 2025
Abstract
Dibutyl phthalate (DBP) is used as a plasticizer to enhance flexibility in several household products, cosmetics, and food-contact materials. Due to its harmful effects, DBP is restricted or banned in children’s products and food items, particularly in Europe. Due to its endocrine disruptor [...] Read more.
Dibutyl phthalate (DBP) is used as a plasticizer to enhance flexibility in several household products, cosmetics, and food-contact materials. Due to its harmful effects, DBP is restricted or banned in children’s products and food items, particularly in Europe. Due to its endocrine disruptor properties and considering its ability to cross the placental barrier, it is imperative to study DBP’s vascular effects in pregnancy, given the vulnerability of this period. Thus, this study investigated the potential effects of DBP on the cardiovascular system using umbilical arteries from healthy pregnant women. Specifically, the impact of DBP on the vascular reactivity after both rapid and 24 h DBP exposure was analyzed, as well as the contractility and the cell viability of vascular smooth muscle cells (VSMC). DBP did not exhibit overt cytotoxic effects on VSMCs, possibly due to its adsorption onto polystyrene surfaces, potentially limiting bioavailability. Interestingly, DBP induced vasorelaxation in a concentration-dependent manner. Although mechanistic insights remain to be fully elucidated, the results suggest the involvement of pathways associated with nitric oxide signaling and calcium handling. Overall, DBP exposure appears to modulate arterial tone regulation, which may have implications for vascular function during pregnancy. Full article
Show Figures

Figure 1

18 pages, 1241 KiB  
Review
PCOS and the Genome: Is the Genetic Puzzle Still Worth Solving?
by Mario Palumbo, Luigi Della Corte, Dario Colacurci, Mario Ascione, Giuseppe D’Angelo, Giorgio Maria Baldini, Pierluigi Giampaolino and Giuseppe Bifulco
Biomedicines 2025, 13(8), 1912; https://doi.org/10.3390/biomedicines13081912 - 5 Aug 2025
Abstract
Background: Polycystic ovary syndrome (PCOS) is a complex and multifactorial disorder affecting reproductive, endocrine, and metabolic functions in women of reproductive age. While environmental and lifestyle factors play a role, increasing evidence highlights the contribution of genetic and epigenetic mechanisms to its pathogenesis. [...] Read more.
Background: Polycystic ovary syndrome (PCOS) is a complex and multifactorial disorder affecting reproductive, endocrine, and metabolic functions in women of reproductive age. While environmental and lifestyle factors play a role, increasing evidence highlights the contribution of genetic and epigenetic mechanisms to its pathogenesis. Objective: This narrative review aims to provide an updated overview of the current evidence regarding the role of genetic variants, gene expression patterns, and epigenetic modifications in the etiopathogenesis of PCOS, with a focus on their impact on ovarian function, fertility, and systemic alterations. Methods: A comprehensive search was conducted across MEDLINE, EMBASE, PubMed, Web of Science, and the Cochrane Library using MeSH terms including “PCOS”, “Genes involved in PCOS”, and “Etiopathogenesis of PCOS” from January 2015 to June 2025. The selection process followed the SANRA quality criteria for narrative reviews. Seventeen studies published in English were included, focusing on original data regarding gene expression, polymorphisms, and epigenetic changes associated with PCOS. Results: The studies analyzed revealed a wide array of molecular alterations in PCOS, including the dysregulation of SIRT and estrogen receptor genes, altered transcriptome profiles in cumulus cells, and the involvement of long non-coding RNAs and circular RNAs in granulosa cell function and endometrial receptivity. Epigenetic mechanisms such as the DNA methylation of TGF-β1 and inflammation-related signaling pathways (e.g., TLR4/NF-κB/NLRP3) were also implicated. Some genetic variants—particularly in DENND1A, THADA, and MTNR1B—exhibit signs of positive evolutionary selection, suggesting possible ancestral adaptive roles. Conclusions: PCOS is increasingly recognized as a syndrome with a strong genetic and epigenetic background. The identification of specific molecular signatures holds promise for the development of personalized diagnostic markers and therapeutic targets. Future research should focus on large-scale genomic studies and functional validation to better understand gene–environment interactions and their influence on phenotypic variability in PCOS. Full article
Show Figures

Figure 1

29 pages, 14681 KiB  
Article
Single-Nucleus RNA Sequencing and Spatial Transcriptomics Reveal Cellular Heterogeneity and Intercellular Communication Networks in the Hypothalamus–Pituitary–Ovarian Axis of Pregnant Mongolian Cattle
by Yanchun Bao, Fengying Ma, Chenxi Huo, Hongxia Jia, Yunhan Li, Xiaoyi Yang, Jiajing Liu, Pengbo Gu, Caixia Shi, Mingjuan Gu, Lin Zhu, Yu Wang, Bin Liu, Risu Na and Wenguang Zhang
Animals 2025, 15(15), 2277; https://doi.org/10.3390/ani15152277 - 4 Aug 2025
Abstract
The hypothalamus–pituitary–ovarian (HPO) axis orchestrates reproductive functions through intricate neuroendocrine crosstalk. Here, we integrated single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics (ST) to decode the cellular heterogeneity and intercellular communication networks in the reproductive systems of pregnant Mongolian cattle. We retained a total [...] Read more.
The hypothalamus–pituitary–ovarian (HPO) axis orchestrates reproductive functions through intricate neuroendocrine crosstalk. Here, we integrated single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics (ST) to decode the cellular heterogeneity and intercellular communication networks in the reproductive systems of pregnant Mongolian cattle. We retained a total of 6161 high-quality nuclei from the hypothalamus, 14,715 nuclei from the pituitary, and 26,072 nuclei from the ovary, providing a comprehensive cellular atlas across the HPO axis. In the hypothalamus, neurons exhibited synaptic and neuroendocrine specialization, with glutamatergic subtype Glut4 serving as a TGFβ signaling hub to regulate pituitary feedback, while GABAergic GABA1 dominated PRL signaling, likely adapting maternal behavior. Pituitary stem cells dynamically replenished endocrine populations via TGFβ, and lactotrophs formed a PRLPRLR paracrine network with stem cells, synergizing mammary development. Ovarian luteal cells exhibited steroidogenic specialization and microenvironmental synergy: endothelial cells coregulated TGFβ-driven angiogenesis and immune tolerance, while luteal–stromal PRLPRLR interactions amplified progesterone synthesis and nutrient support. Granulosa cells (GCs) displayed spatial-functional stratification, with steroidogenic GCs persisting across pseudotime as luteinization precursors, while atretic GCs underwent apoptosis. Spatial mapping revealed GCs’ annular follicular distribution, mediating oocyte–somatic crosstalk, and luteal–endothelial colocalization supporting vascularization. This study unveils pregnancy-specific HPO axis regulation, emphasizing multi-organ crosstalk through TGFβ/PRL pathways and stem cell-driven plasticity, offering insights into reproductive homeostasis and pathologies. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

18 pages, 3421 KiB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 (registering DOI) - 4 Aug 2025
Viewed by 33
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

16 pages, 7088 KiB  
Article
The Potential Mechanisms of Ochratoxin A in Prostate Cancer Development: An Integrated Study Combining Network Toxicology, Machine Learning, and Molecular Docking
by Hong Cai, Dandan Shen, Xiangjun Hu, Hongwei Yin and Zhangren Yan
Toxins 2025, 17(8), 388; https://doi.org/10.3390/toxins17080388 - 4 Aug 2025
Viewed by 166
Abstract
Ochratoxin A (OTA), a prevalent food contaminant, has been proposed as a potential contributor to the development of prostate cancer, although its precise mechanisms remain unclear. This study employed a comprehensive approach that integrated network toxicology, machine learning, and molecular docking to clarify [...] Read more.
Ochratoxin A (OTA), a prevalent food contaminant, has been proposed as a potential contributor to the development of prostate cancer, although its precise mechanisms remain unclear. This study employed a comprehensive approach that integrated network toxicology, machine learning, and molecular docking to clarify the role of OTA in prostate cancer. The findings indicated that OTA interacts with 364 targets related to prostate cancer, and machine learning was employed to identify five key molecular targets as priorities (ESR1, TP53, TNF, INS, and EGFR). In conjunction with the results of a functional enrichment analysis, OTA was found to possibly facilitate cancer progression by disrupting endocrine function, activating oncogenic signaling pathways, reprogramming metabolism, and modulating the tumor microenvironment. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

21 pages, 1024 KiB  
Review
The Impact of Environmental Factors on the Secretion of Gastrointestinal Hormones
by Joanna Smarkusz-Zarzecka, Lucyna Ostrowska and Marcelina Radziszewska
Nutrients 2025, 17(15), 2544; https://doi.org/10.3390/nu17152544 - 2 Aug 2025
Viewed by 252
Abstract
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion [...] Read more.
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion of GI hormones. This study aims to analyze how these factors modulate enteroendocrine function and influence systemic metabolic regulation. This review synthesizes the current scientific literature on the physiology and distribution of enteroendocrine cells and mechanisms of hormone secretion in response to macronutrients, physical activity, and microbial metabolites. Special attention is given to the interactions between gut-derived signals and central nervous system pathways involved in appetite control. Different GI hormones are secreted in specific regions of the digestive tract in response to meal composition and timing. Macronutrients, particularly during absorption, stimulate hormone release, while physical activity influences hormone concentrations, decreasing ghrelin and increasing GLP-1, PYY, and leptin levels. The gut microbiota, through fermentation and metabolite production (e.g., SCFAs and bile acids), modulates enteroendocrine activity. Species such as Akkermansia muciniphila are associated with improved gut barrier integrity and enhanced GLP-1 secretion. These combined effects contribute to appetite regulation and energy balance. Diet composition, physical activity, and gut microbiota are key modulators of gastrointestinal hormone secretion. Their interplay significantly affects appetite regulation and metabolic health. A better understanding of these relationships may support the development of personalized strategies for managing obesity and related disorders. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Graphical abstract

28 pages, 17610 KiB  
Article
Histological Assessment of Intestinal Changes Induced by Liquid Whey-Enriched Diets in Pigs
by Kamel Mhalhel, Mauro Cavallaro, Lidia Pansera, Leyanis Herrera Ledesma, Maria Levanti, Antonino Germanà, Anna Maria Sutera, Giuseppe Tardiolo, Alessandro Zumbo, Marialuisa Aragona and Giuseppe Montalbano
Vet. Sci. 2025, 12(8), 716; https://doi.org/10.3390/vetsci12080716 - 30 Jul 2025
Viewed by 301
Abstract
Liquid whey (LW) is a nutrient-rich dairy by-product and a promising resource for animal nutrition. However, data regarding its impact on intestinal morphology and endocrine signaling are limited. Therefore, the current study aims to dissect those aspects. An experiment was conducted on 14 [...] Read more.
Liquid whey (LW) is a nutrient-rich dairy by-product and a promising resource for animal nutrition. However, data regarding its impact on intestinal morphology and endocrine signaling are limited. Therefore, the current study aims to dissect those aspects. An experiment was conducted on 14 crossbred pigs divided into control (fed 3% of their body weight pelleted feed) and LW (fed 3% of their body weight supplemented with 1.5 L of LW) groups. The results show a significantly increased body weight gain in LW pigs during the second half of the experiment. Moreover, an increased ileal villus height, deeper crypts, and a thicker muscularis externa in the duodenum and jejunum have been reported in LW-fed pigs. Goblet cell count revealed a significant abundance of these cells in duodenal villi and jejunal crypts of the LW group, suggesting enhanced mucosal defense in all segments of LW-fed pigs. While Cholecystokinin8 and Galanin showed the same expression pattern among both groups and SI segments, the leptin expression was significantly higher in LW swine. These findings indicate that LW promotes growth, gut mucosa remodeling, and neuroendocrine signaling, thus supporting LW use as a functional dietary strategy with attention to the adaptation period. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
Show Figures

Figure 1

31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 440
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

21 pages, 1971 KiB  
Review
Etiology of Delayed Lactogenesis in Obesity
by Gema Gomez-Casado, Natalia Saldaña-Garcia, Ernesto Gonzalez-Mesa and Almudena Ortega-Gomez
Biomedicines 2025, 13(8), 1848; https://doi.org/10.3390/biomedicines13081848 - 30 Jul 2025
Viewed by 280
Abstract
Obesity is a multifactorial condition that influences metabolic, endocrine, inflammatory, circadian, and behavioral systems. These disruptions can adversely affect the initiation of lactogenesis II—the critical process marking the onset of copious milk secretion following childbirth. In mothers with obesity, prolonged inflammation within the [...] Read more.
Obesity is a multifactorial condition that influences metabolic, endocrine, inflammatory, circadian, and behavioral systems. These disruptions can adversely affect the initiation of lactogenesis II—the critical process marking the onset of copious milk secretion following childbirth. In mothers with obesity, prolonged inflammation within the mammary gland, a blunted hormonal response (notably of prolactin), altered progesterone and estrogen dynamics, high leptin levels, and misaligned circadian rhythms contribute significantly to delayed lactogenesis. In addition, mechanical difficulties and psychological factors further hinder effective breastfeeding. This report synthesizes evidence from human epidemiological studies and animal models that elucidate the diverse mechanisms linking maternal obesity to delayed lactogenesis. We review the role of obesity-associated inflammatory mediators in impairing mammary tissue remodeling, the endocrine aberrations that impair lactogenic signaling, the consequences of circadian disruption on hormonal rhythmicity, and the behavioral influences that challenge effective breastfeeding. Finally, we discuss the clinical implications of these findings and propose future research directions targeting endocrine modulation, anti-inflammatory therapy, circadian interventions, and enhanced lactation support strategies for mothers with obesity. Full article
(This article belongs to the Special Issue Molecular Research in Obesity, 2nd Edition)
Show Figures

Figure 1

27 pages, 1569 KiB  
Review
Bisphenols: Endocrine Disruptors and Their Impact on Fish: A Review
by Nikola Peskova and Jana Blahova
Fishes 2025, 10(8), 365; https://doi.org/10.3390/fishes10080365 - 29 Jul 2025
Viewed by 339
Abstract
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for [...] Read more.
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for aquatic organisms. This review summarises the occurrence, environmental distribution, and toxicity of BPs in fish, with a focus on estrogenic, androgenic, thyroid, and glucocorticoid disruptions. Studies consistently show that exposure to BPs leads to altered gene expression, developmental abnormalities, impaired reproduction, and disrupted hormonal signalling in various fish species. Although BPA alternatives like bisphenol S, bisphenol F, or bisphenol AF were introduced as safer options, emerging evidence suggests they may pose equal or greater risks. Regulatory measures are evolving, particularly within the European Union, but legislation remains limited for many bisphenol analogues. This review emphasises the need for comprehensive environmental monitoring, stricter regulatory frameworks, and the development of genuinely safer alternatives to minimise the ecological and health impacts of BPs in aquatic systems. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

18 pages, 1263 KiB  
Review
Fertility Protection in Female Cancer Patients: From Molecular Mechanisms of Gonadotoxic Therapies to Pharmacotherapeutic Possibilities
by Weronika Zajączkowska, Maria Buda, Witold Kędzia and Karina Kapczuk
Int. J. Mol. Sci. 2025, 26(15), 7314; https://doi.org/10.3390/ijms26157314 - 29 Jul 2025
Viewed by 358
Abstract
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, [...] Read more.
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, and platinum compounds. It discusses the loss of PMFs due to gonadotoxic exposure, including DNA double-strand breaks, oxidative stress, and dysregulated signaling pathways like PI3K/PTEN/Akt/mTOR and TAp63-mediated apoptosis. Furthermore, it explores strategies to mitigate gonadal damage, including GnRH agonists, AMH, imatinib, melatonin, sphingolipid metabolites, G-CSF, mTOR inhibitors, AS101, and LH. These therapies, paired with existing fertility preservation methods, could safeguard reproductive and hormonal functions and improve the quality of life for young cancer patients. Despite the progress made in recent years in understanding gonadotoxic mechanisms, gaps remain due to questionable reliance on mouse models and the lack of models replicating human ovarian dynamics. Long-term studies are vital for wider analyses and exploration of protective strategies based on various animal models and clinical trials. It is essential to verify that these substances do not hinder the anti-cancer effectiveness of treatments or cause lasting DNA changes in granulosa cells, raising the risk of miscarriages and infertility. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 1159 KiB  
Article
Multifactorial Refractory Acne in Women: Insights from a Case Series Involving Hormonal-, Metabolic-, and Corticosteroid-Related Triggers
by Alexa Florina Bungau, Ruxandra Cristina Marin, Delia Mirela Tit, Gabriela Bungau, Ada Radu, Daciana Elena Branisteanu and Laura Maria Endres
Life 2025, 15(8), 1196; https://doi.org/10.3390/life15081196 - 28 Jul 2025
Viewed by 436
Abstract
Acne vulgaris is a multifactorial inflammatory skin disorder that significantly impairs quality of life and may signal underlying systemic dysfunction, particularly in adult women with treatment-resistant or atypical presentations. This case series presents three clinically and etiologically distinct examples of persistent acne in [...] Read more.
Acne vulgaris is a multifactorial inflammatory skin disorder that significantly impairs quality of life and may signal underlying systemic dysfunction, particularly in adult women with treatment-resistant or atypical presentations. This case series presents three clinically and etiologically distinct examples of persistent acne in female patients, each associated with different contributing factors: long-term topical corticosteroid misuse, polycystic ovary syndrome (PCOS), and metabolic syndrome with autoimmune thyroiditis. All cases underwent comprehensive dermatologic evaluation, endocrine/metabolic assessments, and personalized therapeutic interventions, ranging from corticosteroid withdrawal and barrier repair to hormonal modulation and insulin-sensitizing therapy. Clinical progression was monitored for up to six months, revealing favorable responses in all cases, with substantial lesion clearance and improved skin quality. These real-world cases highlight the importance of an integrative, interdisciplinary diagnostic approach in refractory acne and support the need for individualized, long-term management strategies tailored to underlying systemic contributors. Full article
Show Figures

Figure 1

15 pages, 1024 KiB  
Review
The Impact of Endocrine Disruptors on the Female Genital Tract Microbiome: A Narrative Review
by Efthalia Moustakli, Themos Grigoriadis, Anastasios Potiris, Eirini Drakaki, Athanasios Zikopoulos, Ismini Anagnostaki, Athanasios Zachariou, Ekaterini Domali, Peter Drakakis and Sofoklis Stavros
Life 2025, 15(8), 1177; https://doi.org/10.3390/life15081177 - 24 Jul 2025
Viewed by 251
Abstract
Background/Objectives: Endocrine disruptors (EDs) are xenobiotic chemicals that disrupt hormone signaling and homeostasis within the human body. Accumulative evidence proposes that EDs could affect systemic hormone balance and local microbial communities, including the female genital tract (FGT) microbiome. The FGT microbiome, and especially [...] Read more.
Background/Objectives: Endocrine disruptors (EDs) are xenobiotic chemicals that disrupt hormone signaling and homeostasis within the human body. Accumulative evidence proposes that EDs could affect systemic hormone balance and local microbial communities, including the female genital tract (FGT) microbiome. The FGT microbiome, and especially the vaginal microbiota, contributes significantly to reproductive health maintenance, defense against infection, and favorable pregnancy outcomes. Disruption of the delicate microbial environment is associated with conditions like bacterial vaginosis, infertility, and preterm birth. Methods: The present narrative review summarizes the existing literature on EDs’ potential for changing the FGT microbiome. We discuss EDs like bisphenol A (BPA), phthalates, and parabens and their potential for disrupting the FGT microbiome through ED-induced hormone perturbations, immune modulation, and epithelial barrier breach, which could lead to microbial dysbiosis. Results: Preliminary evidence suggests that ED exposure–microbial composition changes relationships; however, robust human evidence for EDs’ changes on the FGT microbiome remains scarce. Conclusions: Our review addresses major research gaps and suggests future directions for investigation, such as the necessity for longitudinal and mechanistic studies that combine microbiome, exposome, and endocrine parameters. The relationship between EDs and the FGT microbiome could be critical for enhancing women’s reproductive health and for steering regulatory policies on exposure to environmental chemicals. Full article
Show Figures

Figure 1

13 pages, 573 KiB  
Review
Developmental Programming and Postnatal Modulations of Muscle Development in Ruminants
by Kiersten Gundersen and Muhammad Anas
Biology 2025, 14(8), 929; https://doi.org/10.3390/biology14080929 - 24 Jul 2025
Viewed by 337
Abstract
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5 [...] Read more.
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5, MYOD1, and MYOG. Studies in sheep and cattle indicate that nutrient restriction or overnutrition alters muscle fiber number, the cross-sectional area, and the transcriptional regulation of myogenic genes in offspring. Postnatally, muscle hypertrophy is primarily mediated by satellite cells, which are activated via PAX7, MYOD, and MYF5, and regulated through mechanisms such as CARM1-induced chromatin remodeling and miR-31-mediated mRNA expression. Hormonal signaling via the GH–IGF1 axis and thyroid hormones further modulate satellite cell proliferation and protein accretion. Genetic variants, such as myostatin mutations in Texel sheep and Belgian Blue cattle, enhance muscle mass but may compromise reproductive efficiency. Nutritional interventions, including the plane of nutrition, supplementation strategies, and environmental stressors such as heat and stocking density, significantly influence muscle fiber composition and carcass traits. This review provides a comprehensive overview of skeletal muscle programming in ruminants, tracing the developmental trajectory from progenitor cell differentiation to postnatal growth and maturation. These insights underscore the need for integrated approaches combining maternal diet optimization, molecular breeding, and precision livestock management to enhance muscle growth, meat quality, and production sustainability in ruminant systems. Full article
Show Figures

Figure 1

Back to TopTop