Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (369)

Search Parameters:
Keywords = electronic conductor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6245 KiB  
Article
Investigation of Charging Effect on an Isolated Conductor Based on a Monte Carlo Simulation
by Haotian Chen, Shifeng Mao and Zejun Ding
Physics 2025, 7(3), 32; https://doi.org/10.3390/physics7030032 (registering DOI) - 1 Aug 2025
Abstract
We report calculations of charging effect on an isolated conductor, gold nanosphere, under electron beam bombardment at primary electron energies of 0.1–10 keV based on an up-to-date Monte Carlo simulation method. The calculations consider electron flow in sample, in which the electron yield [...] Read more.
We report calculations of charging effect on an isolated conductor, gold nanosphere, under electron beam bombardment at primary electron energies of 0.1–10 keV based on an up-to-date Monte Carlo simulation method. The calculations consider electron flow in sample, in which the electron yield is almost equivalent to the case when the electron flow is not considered. The electron yields and charging spatial distribution are obtained. For comparison, the calculation for bulk conductor is also performed, for which the time average of electric potential is found to reproduce the law of electrostatics. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

18 pages, 2148 KiB  
Article
Structural and Dielectric Impedance Studies of Mixed Ionic–Electronic Conduction in SrLaFe1−xMnxTiO6 (x = 0, 0.33, 0.67, and 1.0) Double Perovskites
by Abdelrahman A. Elbadawi, Elsammani A. Shokralla, Mohamed A. Siddig, Obaidallah A. Algethami, Abdullah Ahmed Alghamdi and Hassan H. E. Idris
Ceramics 2025, 8(3), 87; https://doi.org/10.3390/ceramics8030087 - 7 Jul 2025
Viewed by 331
Abstract
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor [...] Read more.
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor solid-state reaction in air at 1250 °C. The purity phase and crystal structures of perovskite compounds were determined by means of the standard Rietveld refinement method using the FullProf suite. The best fitting results showed that SrLaFeTiO6−δ was orthorhombic with space group Pnma, and both SrLaFe0.67Mn0.33TiO6−δ and SrLaFe0.33Mn0.67TiO6−δ were cubic structures with space group Fm3m, while SrLaMnTiO6−δ was tetragonal with a I/4m space group. The charge density maps obtained for these structures indicated that the compounds show an ionic and mixed ionic–electronic conduction. The dielectric impedance measurements were carried out in the range of 20 Hz to 1 MHz, and the analysis showed that there is more than one relaxation mechanism of Debye type. Doping with Mn was found to reduce the dielectric impedance of the samples, and the major contribution to the dielectric impedance was established to change from a capacitive for SrLaFeTiO6−δ to a resistive for SrLaMnTiO6−δ. The fall in values of electrical resistance may be related to the possible occurrence of the double exchange (DEX) mechanism among the Mn ions, provided there is oxygen deficiency in the samples. DC-resistivity measurements revealed that SrLaFeTiO6−δ was an insulator while SrLaMnTiO6−δ was showing a semiconductor–metallic transition at ~250 K, which is in support of the DEX interaction. The dielectric impedance of SrLaFe0.67Mn0.33TiO6−δ was found to be similar to that of (La,Sr)(Co,Fe)O3-δ, the mixed ionic–electronic conductor (MIEC) model. The occurrence of a mixed ionic–electronic state in these compounds may qualify them to be used in free lead solar cells and energy storage technology. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

15 pages, 2366 KiB  
Article
Transverse Electric Inverse Scattering of Conductors Using Artificial Intelligence
by Chien-Ching Chiu, Po-Hsiang Chen, Yen-Chen Chang and Hao Jiang
Sensors 2025, 25(12), 3774; https://doi.org/10.3390/s25123774 - 17 Jun 2025
Viewed by 375
Abstract
Sensors are devices that can detect changes in the external environment and convert them into signals. They are widely used in fields like industrial automation, smart homes, medical devices, automotive electronics, and the Internet of Things (IoT), enabling real-time data collection to enhance [...] Read more.
Sensors are devices that can detect changes in the external environment and convert them into signals. They are widely used in fields like industrial automation, smart homes, medical devices, automotive electronics, and the Internet of Things (IoT), enabling real-time data collection to enhance system intelligence and efficiency. With advancements in technology, sensors are evolving toward miniaturization, high sensitivity, and multifunctional integration. This paper employs the Direct Sampling Method (DSM) and neural networks to reconstruct the shape of perfect electric conductors from the sensed electromagnetic field. Transverse electric (TE) electromagnetic waves are transmitted to illuminate the conductor. The scattered fields in the x- and y-directions are measured by sensors and used in the method of moments for forward scattering calculations, followed by the DSM for initial shape reconstruction. The preliminary shape data obtained from the DSM are then fed into a U-net for further training. Since the training parameters of deep learning significantly affect the reconstruction results, extensive tests are conducted to determine optimal parameters. Finally, the trained neural network model is used to reconstruct TE images based on the scattered fields in the x- and y-directions. Owing to the intrinsic strong nonlinearity in TE waves, different regularization factors are applied to improve imaging quality and reduce reconstruction errors after integrating the neural network. Numerical results show that compared to using the DSM alone, combining the DSM with a neural network enables the generation of high-resolution images with enhanced efficiency and superior generalization capability. In addition, the error rate has decreased to below 15%. Full article
Show Figures

Figure 1

15 pages, 2205 KiB  
Article
Highly Stretchable, Low Hysteresis, and Transparent Ionogels as Conductors for Dielectric Elastomer Actuators
by Limei Zhang, Hong Li, Zhiquan Li, Weimin Pan, Yi Men, Niankun Zhang, Jing Xu and Xuewei Liu
Gels 2025, 11(5), 369; https://doi.org/10.3390/gels11050369 - 17 May 2025
Viewed by 635
Abstract
As conductive materials, ionogels have attracted significant attention for their potential applications in flexible wearable electronics. However, preparing an ionogel with mechanical properties akin to human skin while also achieving transparency, adhesion, and low hysteresis through simple processes remains challenging. Here, we introduce [...] Read more.
As conductive materials, ionogels have attracted significant attention for their potential applications in flexible wearable electronics. However, preparing an ionogel with mechanical properties akin to human skin while also achieving transparency, adhesion, and low hysteresis through simple processes remains challenging. Here, we introduce a multifunctional ionogel synthesized via a one-step photopolymerization method. By leveraging the good compatibility between the ionic liquid and the polymer network, as well as the hydrogen bonding and chemical crosslinking within the gel network, we achieved an ionogel with high transparency (>98%), stretchability (fracture strain of 19), low hysteresis (<5.83%), strong adhesion, robust mechanical stability, excellent electrical properties, a wide operating temperature range, and a tunable modulus (1–103 kPa) that matches human skin. When used as a conductor in soft actuators, the ionogel enabled a large area strain of 36% and a fast electromechanical conversion time of less than 1 s. The actuator demonstrated good actuation performance with voltage and frequency dependence, electrochemical stability, and outstanding durability over millions of cycles. This study provides a simple and effective method to produce multifunctional ionogels with tailored mechanical properties that match those of human skin, paving the way for their application in flexible wearable electronics. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

14 pages, 2772 KiB  
Article
Critical Considerations for Observing Cross Quantum Capacitance in Electric-Double-Layer-Gated Transistors Based on Two-Dimensional Crystals
by Jacob D. Eisensmith, Pratik P. Dholabhai and Ke Xu
Electronics 2025, 14(9), 1811; https://doi.org/10.3390/electronics14091811 - 29 Apr 2025
Viewed by 441
Abstract
Cross quantum capacitance (CQC) has been proposed as an extension to traditional quantum capacitance (TQC) in systems where strong interfacial screening between spatially separated charge layers modifies the total capacitance—particularly in electric-double-layer-gated transistors (EDLTs) based on two-dimensional (2D) crystals. In this work, we [...] Read more.
Cross quantum capacitance (CQC) has been proposed as an extension to traditional quantum capacitance (TQC) in systems where strong interfacial screening between spatially separated charge layers modifies the total capacitance—particularly in electric-double-layer-gated transistors (EDLTs) based on two-dimensional (2D) crystals. In this work, we revisit a theoretical model of CQC to evaluate its relevance under experimentally realistic conditions. By systematically analyzing the model’s behavior across key parameter spaces, we identify the specific conditions under which CQC leads to the non-monotonic dependence of capacitance on inter-plate distance—a proposed experimental signature of CQC. However, we find that these conditions—requiring similar effective masses, high charge densities, and strong charge asymmetry—are highly restrictive and difficult to realize in typical EDLTs. Instead, we highlight a more experimentally accessible regime in which CQC enhances total capacitance beyond TQC predictions, even in the absence of non-monotonicity. These results clarify the limitations of the existing model and suggest concrete strategies for probing CQC in nanoscale devices, emphasizing the need for new theoretical frameworks that explicitly incorporate both ionic and electronic conductors. Full article
Show Figures

Graphical abstract

17 pages, 9301 KiB  
Review
Recent Progress in Copper Nanowire-Based Flexible Transparent Conductors
by Jiaxin Shi, Mingyang Zhang, Su Ding and Ge Cao
Coatings 2025, 15(4), 465; https://doi.org/10.3390/coatings15040465 - 15 Apr 2025
Viewed by 1094
Abstract
With the increasing demand for alternatives to traditional indium tin oxide (ITO), copper nanowires (Cu NWs) have gained significant attention due to their excellent conductivity, cost-effectiveness, and ease of synthesis. However, challenges such as wire–wire contact resistance and oxidation susceptibility hinder their practical [...] Read more.
With the increasing demand for alternatives to traditional indium tin oxide (ITO), copper nanowires (Cu NWs) have gained significant attention due to their excellent conductivity, cost-effectiveness, and ease of synthesis. However, challenges such as wire–wire contact resistance and oxidation susceptibility hinder their practical applications. This review discusses the development and challenges associated with Cu NW-based flexible transparent conductors (FTCs). Cu NWs are considered a promising alternative to traditional materials like ITO, thanks to their high electrical conductivity and low cost. This paper explores various synthesis methods for Cu NWs, including template-assisted synthesis, hydrazine reduction, and hydrothermal processes, while highlighting the advantages and limitations of each approach. The key challenges, such as contact resistance, oxidation, and the need for protective coatings, are also addressed. Several strategies to enhance the conductivity and stability of Cu NW-based FTCs are proposed, including thermal sintering, laser sintering, acid treatment, and photonic sintering. Additionally, protective coatings like noble metal core–shell layers, electroplated layers, and conductive polymers like PEDOT:PSS are discussed as effective solutions. The integration of graphene with Cu NWs is explored as a promising method to improve oxidation resistance and overall performance. The review concludes with an outlook on the future of Cu NWs in flexible electronics, emphasizing the need for scalable, cost-effective solutions to overcome current challenges and improve the practical application of Cu NW-based FTCs in advanced technologies such as displays, solar cells, and flexible electronics. Full article
(This article belongs to the Special Issue Design of Nanostructures for Energy and Environmental Applications)
Show Figures

Figure 1

17 pages, 6320 KiB  
Article
Oscillation Flow of Viscous Electron Fluids in Conductors of Rectangular Cross-Section
by Andriy A. Avramenko, Igor V. Shevchuk, Nataliia P. Dmitrenko, Andriy I. Tyrinov, Yiliia Y. Kovetska and Andriy S. Kobzar
Computation 2025, 13(4), 90; https://doi.org/10.3390/computation13040090 - 1 Apr 2025
Viewed by 370
Abstract
The article presents results of an analytical and numerical modeling of electron fluid motion and heat generation in a rectangular conductor at an alternating electric potential. The analytical solution is based on the series expansion solution (Fourier method) and double series solution (method [...] Read more.
The article presents results of an analytical and numerical modeling of electron fluid motion and heat generation in a rectangular conductor at an alternating electric potential. The analytical solution is based on the series expansion solution (Fourier method) and double series solution (method of eigenfunction decomposition). The numerical solution is based on the lattice Boltzmann method (LBM). An analytical solution for the electric current was obtained. This enables estimating the heat generation in the conductor and determining the influence of the parameters characterizing the conductor dimensions, the parameter M (phenomenological transport time describing momentum-nonconserving collisions), the Knudsen number (mean free path for momentum-nonconserving) and the Sh number (frequency) on the heat generation rate as an electron flow passes through a conductor. Full article
Show Figures

Figure 1

28 pages, 11152 KiB  
Article
In-Depth DFT-Based Analysis of the Structural, Mechanical, Thermodynamic, and Electronic Characteristics of CuP2 and Cu3P: Insights into Material Stability and Performance
by Ching-Feng Yu and Hsien-Chie Cheng
Metals 2025, 15(4), 369; https://doi.org/10.3390/met15040369 - 27 Mar 2025
Cited by 1 | Viewed by 602
Abstract
This study employed density functional theory (DFT) to investigate the structural, mechanical, thermodynamic, and electronic properties of monoclinic CuP2 and hexagonal Cu3P. The analysis confirmed the mechanical stability of both compounds, with distinct anisotropic behaviors arising from crystallographic symmetries. Cu [...] Read more.
This study employed density functional theory (DFT) to investigate the structural, mechanical, thermodynamic, and electronic properties of monoclinic CuP2 and hexagonal Cu3P. The analysis confirmed the mechanical stability of both compounds, with distinct anisotropic behaviors arising from crystallographic symmetries. Cu3P exhibits a higher bulk modulus (130.1 GPa), indicating superior resistance to volumetric compression, while CuP2 demonstrates greater shear (52.9 GPa) and Young’s moduli (133.3 GPa), reflecting enhanced stiffness and tensile resistance. The K/G ratio (1.749 for CuP2 vs. 3.120 for Cu3P) and Cauchy pressure analyses revealed the brittle nature of CuP2, with covalent bonding, and the ductility of Cu3P, with metallic bonding. The thermodynamic evaluations highlighted the higher Debye temperature of CuP2 (453.1 K) and its lattice thermal conductivity (8.37 W/mK), suggesting superior heat dissipation, whereas Cu3P shows greater thermal expansion (38.4 × 10−6/K) and a higher volumetric heat capacity (3.29 × 106 J/m3K). The electronic structure calculations identified CuP2 as a semiconductor with a 0.824 eV bandgap and Cu3P as a conductor with metallic states at the Fermi level. These insights are critical for optimizing Cu-P compounds in microelectronic packaging, where thermal management and mechanical reliability are paramount. Full article
(This article belongs to the Special Issue Properties, Microstructure and Forming of Intermetallics)
Show Figures

Figure 1

18 pages, 2968 KiB  
Article
Research on the Mechanical and Photoelectric Properties Regulation of the New-Type Ceramic Material Ta2AlC
by Zhongzheng Zhang, Chunhong Zhang, Xinmao Qin and Wanjun Yan
Crystals 2025, 15(4), 309; https://doi.org/10.3390/cryst15040309 - 26 Mar 2025
Viewed by 372
Abstract
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation [...] Read more.
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation of the mechanical and photoelectric properties of Ta2AlC through doping using the first-principles pseudopotential plane-wave method. We specifically calculated the geometric structure, mechanical properties, electronic structure, Mulliken population analysis, and optical properties of Ta2AlC doped with V, Ga, or Si. The results indicate that doping induces significant changes in the structural parameters of Ta2AlC. By applying the Born’s criterion as the standard for mechanical stability, we have calculated that the structures of Ta2AlC, both before and after doping, are stable. The mechanical property calculations revealed that V and Si doping weaken the material’s resistance to deformation while enhancing its plasticity. In contrast, Ga doping increases the material’s resistance to lateral deformation and brittleness. Doping also increases the anisotropy of Ta2AlC. Electronic structure calculations confirmed that Ta2AlC is a conductor with excellent electrical conductivity, which is not diminished by doping. The symmetric distribution of spin-up and spin-down electronic state densities indicates that the Ta2AlC system remains non-magnetic after doping. The partial density of states diagrams successfully elucidated the influence of dopant atoms on the band structure and electronic state density. Mulliken population analysis revealed that V and Ga doping enhance the covalent interactions between C-Ta and Al-Ta atoms, whereas Si doping weakens these interactions. Optical property calculations showed that V and Si doping significantly enhance the electromagnetic energy storage capacity and dielectric loss of Ta2AlC, while Ga doping has minimal effect. The reflectivity of doped and undoped Ta2AlC reaches over 90% in the ultraviolet region, indicating its potential as an anti-ultraviolet coating material. In the visible light region, both doped and undoped Ta2AlC exhibit a similar metallic gray appearance, suggesting its potential as a temperature control coating material. The light loss of Ta2AlC is limited to a narrow energy range, indicating that doping does not affect its use as a light storage material. These results demonstrate that different dopants can effectively modulate the mechanical and photoelectric properties of Ta2AlC. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

17 pages, 4946 KiB  
Article
Enhanced Carbon Nanotube Ionogels for High-Performance Wireless Strain Sensing
by Xiao Wang, Menglin Tian, Jiajia Wan, Shuxing Mei, Mingwang Pan and Zhicheng Pan
Polymers 2025, 17(6), 817; https://doi.org/10.3390/polym17060817 - 20 Mar 2025
Viewed by 719
Abstract
Ionogels, as emerging stretchable conductor materials, have garnered significant attention for their potential applications in flexible electronics, particularly in wearable strain sensors. However, a persistent challenge in optimizing ionogels lies in achieving a balance between enhanced mechanical properties and electrical conductivity. In this [...] Read more.
Ionogels, as emerging stretchable conductor materials, have garnered significant attention for their potential applications in flexible electronics, particularly in wearable strain sensors. However, a persistent challenge in optimizing ionogels lies in achieving a balance between enhanced mechanical properties and electrical conductivity. In this study, we successfully addressed this challenge by incorporating carbon nanotubes (CNTs) into ionogels, achieving a simultaneous improvement in the electrical conductivity (2.67 mS/cm) and mechanical properties (400.83 kPa). The CNTs served dual purposes, acting as a continuous conductive pathway to facilitate electrical signal transmission and as reinforcing nanotubes to bolster the mechanical robustness of the ionogels. Additionally, the polymer network, composed of acrylic acid (AA) and 2-hydroxyethyl acrylate (HEA), established a purely physical cross-linking network characterized by dense hydrogen bonding, which ensured sufficient toughness within the ionogels. Notably, the assembled ionogels, when utilized as wireless strain sensors, demonstrated exceptional sensitivity in detecting subtle finger movements, with the CNTs significantly amplifying the electrical response. This work provides new insights into the integration of carbon nanotubes in ionogels, expanding their applications and pioneering a fresh approach to functionalized ionogel design. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

14 pages, 2548 KiB  
Article
In-Situ One-Step Hydrothermal Synthesis of LiTi2(PO4)3@rGO Anode for High Performance Lithium-Ion Batteries
by Otmane Zoubir, Abdelfettah Lallaoui, M’hamed Oubla, Alvaro Y. Tesio, Alvaro Caballero and Zineb Edfouf
Materials 2025, 18(6), 1329; https://doi.org/10.3390/ma18061329 - 17 Mar 2025
Viewed by 605
Abstract
The sodium super ionic conductor (NASICON) structured LiTi2(PO4)3 (LTP) has been developed as electrode material for Li-ion batteries (LIBs) with promising electrochemical performance, owing to its outstanding structural stability and rapid lithium-ion diffusion. Nevertheless, challenges still exist, especially [...] Read more.
The sodium super ionic conductor (NASICON) structured LiTi2(PO4)3 (LTP) has been developed as electrode material for Li-ion batteries (LIBs) with promising electrochemical performance, owing to its outstanding structural stability and rapid lithium-ion diffusion. Nevertheless, challenges still exist, especially the rapid capacity fading caused by the low electronic conductivity of LTP-NASICON material. Recently, the hydrothermal method has emerged as an important technique for the production of diverse nano-electrode materials due to its low preparation temperature, high phase purity, and well-controlled morphology and crystallinity. Herein, we report, for the first time at low-moderate temperatures, an advanced hydrothermal synthesis of LTP-coated reduced graphene oxide (LTP@rGO) particles that includes the growth of LTP particles while simultaneously coating them with rGO material. The LTP offers a discharge specific capacity of 84 mAh/g, while the LTP@rGO delivers a discharge capacity of 147 mAh/g, both with a coulombic efficiency of 99.5% after 100 cycles at a 1C rate. Full article
Show Figures

Figure 1

9 pages, 1767 KiB  
Article
Possible Superconductivity in Very Thin Magnesium Films
by Giovanni Alberto Ummarino and Alessio Zaccone
Condens. Matter 2025, 10(1), 17; https://doi.org/10.3390/condmat10010017 - 10 Mar 2025
Cited by 1 | Viewed by 2470
Abstract
It is known that noble metals such as gold, silver and copper are not superconductors; this is also true for magnesium. This is due to the weakness of the electron–phonon interaction, which makes them excellent conductors but not superconductors. As has recently been [...] Read more.
It is known that noble metals such as gold, silver and copper are not superconductors; this is also true for magnesium. This is due to the weakness of the electron–phonon interaction, which makes them excellent conductors but not superconductors. As has recently been shown for gold, silver and copper, and even for magnesium, it is possible that in very particular situations, superconductivity may occur. Quantum confinement in thin films has been consistently shown to induce a significant enhancement of the superconducting critical temperature in several superconductors. It is therefore an important fundamental question whether ultra-thin film confinement may induce observable superconductivity in non-superconducting metals such as magnesium. We study this problem using a generalization, in the Eliashberg framework, of a BCS theory of superconductivity in good metals under thin-film confinement. By numerically solving these new Eliashberg-type equations, we find the dependence of the superconducting critical temperature on the film thickness, L. This parameter-free theory predicts superconductivity in very thin magnesium films. We demonstrate that this is a fine-tuning problem where the thickness must assume a very precise value, close to half a nanometer. Full article
(This article belongs to the Special Issue Superstripes Physics, 3rd Edition)
Show Figures

Figure 1

24 pages, 24145 KiB  
Article
Influence of Conductor Temperature on the Voltage–Current Characteristic of Corona Discharge in a Coaxial Arrangement—Experiments and Simulation
by Kayumba Grace Ilunga, Andrew Graham Swanson, Nelson Ijumba and Robert Stephen
Energies 2025, 18(5), 1303; https://doi.org/10.3390/en18051303 - 6 Mar 2025
Cited by 2 | Viewed by 988
Abstract
High-current-carrying capability with minimum thermal elongation is one of the key reasons for using high-temperature low-sag (HTLS) conductors in modern power systems. However, their higher operational temperature can significantly affect corona discharge characteristics. Corona is one of the key factors in transmission line [...] Read more.
High-current-carrying capability with minimum thermal elongation is one of the key reasons for using high-temperature low-sag (HTLS) conductors in modern power systems. However, their higher operational temperature can significantly affect corona discharge characteristics. Corona is one of the key factors in transmission line design considerations. Corona discharge is the leading cause of audible noise, radio interference, and corona loss in power transmission systems. The influence of conductor temperature on corona discharge characteristics is investigated in this paper using experimental methods and computational simulations. A simulation framework has been developed in COMSOL Multiphysics using the physics of plasmas and electrostatics to simulate corona plasma dynamic behavior and electric field distribution. The results show that the conductor temperature enhances the ionization by electron impact, enhances the production of positive and negative ions, changes the electric field distribution, and increases the electron temperature. This analysis emphasizes that temperature-dependent conditions affect the inception and intensity of corona discharge. Additionally, an experimental model was developed to evaluate corona voltage–current characteristics under varying temperature conditions. The study presents both simulation results and a newly developed model for predicting corona current at high conductor temperatures. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

13 pages, 4612 KiB  
Article
Balancing Conductivity and Morphology in Aniline-Tuned Biopolymer–Starch Composites
by Mohammed E. Ali Mohsin and Suleiman Mousa
Polymers 2025, 17(4), 497; https://doi.org/10.3390/polym17040497 - 14 Feb 2025
Cited by 2 | Viewed by 667
Abstract
This work investigates the optimization of aniline content in polyaniline (PANI)/sago starch blends prepared via in situ oxidative polymerization under ultrasonic irradiation. Building upon our previous optimizations of pH and sonication time, this study focuses on the effect of aniline concentration (5–65 wt%) [...] Read more.
This work investigates the optimization of aniline content in polyaniline (PANI)/sago starch blends prepared via in situ oxidative polymerization under ultrasonic irradiation. Building upon our previous optimizations of pH and sonication time, this study focuses on the effect of aniline concentration (5–65 wt%) on electrical conductivity, morphological dispersion, and thermal stability. Various characterization techniques, including field emission scanning electron microscopy (FE-SEM), ultraviolet–visible (UV–Vis) spectroscopy, Fourier transform infrared (FT–IR) spectroscopy, and thermogravimetric analysis (TGA), confirm that a well-connected, conductive network forms at about 35 wt% aniline. Electrical conductivity measurements reveal a pronounced rise from ~1.6 × 10−8 to ~2.2 × 10−3 S/cm between 5 wt% and 35 wt% aniline. Conductivity stabilizes above this threshold due to PANI agglomeration. Morphological assessments confirm a shift from smooth, uniform blends at low aniline to rougher, void-filled surfaces when aniline exceeds 50 wt%. TGA shows improved thermal stability with increasing aniline content. These findings highlight an optimum aniline loading of ~35 wt% to achieve synergy between conductivity and structural integrity in biopolymer-based PANI/sago starch composites, offering a pathway to sustainable, high-performance biopolymer-based conductors for applications in sensors, flexible electronics, and electromagnetic shielding. Full article
Show Figures

Figure 1

16 pages, 2646 KiB  
Article
Research on the Accumulative Damage of Flywheels Due to In-Space Charging Effects
by Dong Tian, Yanjun Feng, Hongbo Su, Xiao Zeng, Gang Liu, Yenan Liu and Jing He
Aerospace 2025, 12(2), 98; https://doi.org/10.3390/aerospace12020098 - 28 Jan 2025
Viewed by 766
Abstract
High-speed rotating flywheel bearings, designed for space applications, generate a high-resistance hydrodynamic lubrication film, which isolates the rotor, transforming it into a conductor. This phenomenon introduces a novel failure mode—flywheel bearing electrical damage caused by space charging effects. This paper first reviews the [...] Read more.
High-speed rotating flywheel bearings, designed for space applications, generate a high-resistance hydrodynamic lubrication film, which isolates the rotor, transforming it into a conductor. This phenomenon introduces a novel failure mode—flywheel bearing electrical damage caused by space charging effects. This paper first reviews the sources of common shaft voltages in flywheels and the mechanisms of electrical damage and improves the principle of deep charge causing shaft voltages in flywheel bearings, proposing that surface charge is another source of shaft voltages. The quantified analysis model of flywheel bearing electrical damage in relation to rotational speed and high-energy electron flux is derived, indicating that the damage caused by space charge–discharge to the bearing is of small magnitude and only becomes apparent after long-term accumulation, thus being easily overlooked. Based on the causal chain of electrical damage, a correlation analysis model consistent with physical principles is constructed, and the correlation between on-orbit anomalies of the flywheel and high-energy electron flux is confirmed through the use of big data. Preliminary experiments are conducted to validate all of the research results. Finally, suggestions are given for the reliable design, application, and testing of flywheels. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

Back to TopTop