Investigation of Charging Effect on an Isolated Conductor Based on a Monte Carlo Simulation
Abstract
1. Introduction
2. Monte Carlo Model
2.1. Electron Elastic Scattering
2.2. Electron Inelastic Scattering
3. Monte Carlo Simulation
3.1. Simulation Procedure
3.2. Drift Model
3.3. Transient Model
4. Results and Discussion
4.1. Bulk Material
4.2. Drift Model for Isolated Granule
4.3. Transient Model for Isolated Granule
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cazaux, J. Some considerations on the electric field induced in insulators by electron bombardment. J. Appl. Phys. 1986, 59, 1418–1430. [Google Scholar] [CrossRef]
- Cazaux, J. Electron probe microanalysis of insulating materials: Quantification problems and some possible solutions. X-Ray Spectrom. 1996, 25, 265–280. [Google Scholar] [CrossRef]
- Cazaux, J. About the mechanisms of charging in EPMA, SEM, and ESEM with their time evolution. Microsc. Microanal. 2004, 10, 670–684. [Google Scholar] [CrossRef]
- Cazaux, J. On some contrast reversals in SEM: Application to metal/insulator systems. Ultramicroscopy 2008, 108, 1645–1652. [Google Scholar] [CrossRef]
- Reimer, L. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Niedrig, H. Physical background of electron backscattering. Scanning 1978, 1, 17–34. [Google Scholar] [CrossRef]
- Joy, D.C. Control of charging in low-voltage SEM. Scanning 1989, 11, 1–4. [Google Scholar] [CrossRef]
- Joy, D.C.; Joy, C.S. Dynamic charging in the low voltage SEM. Microsc. Microanal. 1995, 1, 109–112. [Google Scholar] [CrossRef]
- Heinrich, K.F.J.; Newbury, D.E.; Yakowitz, H. (Eds.) Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy: Proceedings of a Workshop Held at the National Bureau of Standards, Gaithersburg, Maryland, October 1–3, 1975; National Bureau of Standards and Technology, U.S. Department of Commerce: Gaithersburg, MD, USA, 1976. [CrossRef]
- Shimizu, R.; Ding, Z.J. Monte Carlo modelling of electron-solid interactions. Rep. Prog. Phys. 1992, 55, 487. [Google Scholar] [CrossRef]
- Joy, D.C. Monte Carlo Modeling for Electron Microscopy and Microanalysis; Oxford University Press, Inc.: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Dapor, M. Transport of Energetic Electrons in Solids: Computer Simulation with Applications to Materials Analysis and Characterization; Springer Nature Switzerland AG: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Koshikawa, T.; Shimizu, R. A Monte Carlo calculation of low-energy secondary electron emission from metals. J. Phys. D 1974, 7, 1303–1315. [Google Scholar] [CrossRef]
- Murata, K.; Kyser, D.F.; Ting, C.H. Monte Carlo simulation of fast secondary electron production in electron beam resists. J. Appl. Phys. 1981, 52, 4396–4405. [Google Scholar] [CrossRef]
- Joy, D.C. Beam interactions, contrast and resolution in the SEM. J. Microsc. 1984, 136, 241–258. [Google Scholar] [CrossRef]
- Dapor, M. Monte Carlo simulation of backscattered electrons and energy from thick targets and surface films. Phys. Rev. B 1992, 46, 618. [Google Scholar] [CrossRef]
- Ganachaud, J.P.; Mokrani, A. Theoretical study of the secondary electron emission of insulating targets. Surf. Sci. 1995, 334, 329–341. [Google Scholar] [CrossRef]
- Ding, Z.-J.; Shimizu, R. A Monte Carlo modeling of electron interaction with solids including cascade secondary electron production. Scanning 1996, 18, 92–113. [Google Scholar] [CrossRef]
- Hovington, P.; Drouin, D.; Gauvin, R. CASINO: A new Monte Carlo code in C language for electron beam interaction—Part I: Description of the program. Scanning 1997, 19, 1–14. [Google Scholar] [CrossRef]
- Werner, W.S. Electron transport in solids for quantitative surface analysis. Surf. Interf. Anal. 2001, 31, 141–176. [Google Scholar] [CrossRef]
- Ding, Z.J.; Tang, X.D.; Shimizu, R. Monte Carlo study of secondary electron emission. J. Appl. Phys. 2001, 89, 718–726. [Google Scholar] [CrossRef]
- Yang, L.; Hussain, A.; Mao, S.; Da, B.; Tőkési, K.; Ding, Z.J. Electron backscattering coefficients of molybdenum and tungsten based on the Monte Carlo simulations. J. Nucl. Mater. 2021, 553, 153042. [Google Scholar] [CrossRef]
- Mott, N.F. The scattering of fast electrons by atomic nuclei. Proc. Roy. Soc. Lond. A Math. Phys. Engin. Sci. 1929, 124, 425–442. [Google Scholar]
- Penn, D.R. Electron mean-free-path calculations using a model dielectric function. Phys. Rev. B 1987, 35, 482–486. [Google Scholar] [CrossRef]
- Li, Y.G.; Zhang, P.; Ding, Z.J. Monte Carlo simulation of CD-SEM images for linewidth and critical dimension metrology. Scanning 2013, 35, 127–139. [Google Scholar] [CrossRef]
- Khan, M.S.S.; Yang, L.H.; Deng, X.; Mao, S.F.; Zou, Y.B.; Li, Y.G.; Li, H.M.; Ding, Z.J. Critical-dimension scanning electron microscope characterization of smoothly varying wave structures with a Monte Carlo simulation. J. Phys. D 2021, 54, 445301. [Google Scholar] [CrossRef]
- Guo, P.; Miao, H.; Mao, S.F.; Zou, Y.B.; Deng, X.; Cheng, X.B.; Ding, Z.J. Linewidth characterization of a self-traceable grating by SEM. J. Phys. D 2024, 57, 275103. [Google Scholar] [CrossRef]
- Da, B.; Mao, S.F.; Zhang, G.H.; Wang, X.P.; Ding, Z.J. Monte Carlo modeling of surface excitation in reflection electron energy loss spectroscopy spectrum for rough surfaces. J. Appl. Phys. 2012, 112, 034310. [Google Scholar] [CrossRef]
- Reimer, L.; Golla, U.; Böngeler, R.; Kässens, M.; Schindler, B.; Senkel, R. Charging of bulk specimens, insulating layers and free-supporting films in scanning electron microscopy. Optik 1992, 92, 14–22. [Google Scholar]
- Di Fabrizio, E.; Grella, L.; Luciani, L.; Gentili, M.; Baciocchi, M.; Figliomeni, M.; Mastrogiacomo, L.; Maggiora, R.; Leonard, Q.; Cerrina, F.; et al. Metrology of high-resolution resist structures on insulating substrates. J. Vac. Sci. Technol. B 1993, 11, 2456–2462. [Google Scholar] [CrossRef]
- Grella, L.; Lorusso, G.; Niemi, T.; Adler, D.L. Simulations of SEM imaging and charging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 519, 242–250. [Google Scholar] [CrossRef]
- Babin, S.; Borisov, S.S.; Ito, H.; Ivanchikov, A.; Suzuki, M. Simulation of scanning electron microscope images taking into account local and global electromagnetic fields. J. Vac. Sci. Technol. B 2010, 28, C6C41–C6C47. [Google Scholar] [CrossRef]
- Villarrubia, J.S.; Vladár, A.E.; Postek, M.T. 3D Monte Carlo modeling of the SEM: Are there applications to photomask metrology? Proc. SPIE 2014, 9236, 923602. [Google Scholar] [CrossRef]
- Ciappa, M.; Illarionov, A.Y.; Ilgünsatiroglu, E. Exact 3D simulation of scanning electron microscopy images of semiconductor devices in the presence of electric and magnetic fields. Microelectron. Reliab. 2014, 54, 2081–2087. [Google Scholar] [CrossRef]
- Arat, K.T.; Klimpel, T.; Hagen, C.W. Model improvements to simulate charging in scanning electron microscope. J. Micro/Nanolithog. MEMS MOEMS 2019, 18, 044003. [Google Scholar] [CrossRef]
- Li, C.; Li, H.M.; Ding, Z.J. Multiple coupled charge layers in electron beam induced charging phenomenon. J. Appl. Phys. 2020, 128, 024902. [Google Scholar] [CrossRef]
- Craven, J.P.; Baker, F.S.; Thiel, B.L.; Donald, A.M. Consequences of positive ions upon imaging in low vacuum scanning electron microscopy. J. Microsc. 2002, 205, 96–105. [Google Scholar] [CrossRef]
- Seeger, A.; Duci, A.; Haussecker, H. Scanning electron microscope charging effect model for chromium/quartz photolithography masks. Scanning 2006, 28, 179–186. [Google Scholar] [CrossRef]
- Desclaux, J.P. Multiconfiguration relativistic Dirac–Fock program. Comput. Phys. Commun. 1975, 9, 31–45. [Google Scholar] [CrossRef]
- Salvat, F. Optical-model potential for electron and positron elastic scattering by atoms. Phys. Rev. A 2003, 68, 012708. [Google Scholar] [CrossRef]
- Salvat, F.; Jablonski, A.; Powell, C.J. ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules (New Version Announcement). Comput. Phys. Commun. 2021, 261, 107704. [Google Scholar] [CrossRef]
- Shinotsuka, H.; Tanuma, S.; Powell, C.J.; Penn, D.R. Calculations of electron inelastic mean free paths. XII. Data for 42 inorganic compounds over the 50 eV to 200 keV range with the full Penn algorithm. Surf. Interf. Anal. 2019, 51, 427–457. [Google Scholar] [CrossRef] [PubMed]
- Tanuma, S.; Powell, C.J.; Penn, D.R. Use of sum rules on the energy-loss function for the evaluation of experimental optical data. J. Electron Spectrosc. Relat. Phenom. 1993, 62, 95–109. [Google Scholar] [CrossRef]
- Tanuma, S.; Powell, C.J.; Penn, D.R. Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 200 keV range. Surf. Interf. Anal. 2011, 43, 689–713. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics; John Wiley & Sons, Inc.: New York, NY, USA; Hermann: Paris, France, 1977; Volumes 1–2; Available online: https://archive.org/details/quantummechanics0000cohe (accessed on 25 June 2025).
- Davey, W.P. Precision measurements of the lattice constants of twelve common metals. Phys. Rev. 1925, 25, 753–761. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Mao, S.; Ding, Z. Investigation of Charging Effect on an Isolated Conductor Based on a Monte Carlo Simulation. Physics 2025, 7, 32. https://doi.org/10.3390/physics7030032
Chen H, Mao S, Ding Z. Investigation of Charging Effect on an Isolated Conductor Based on a Monte Carlo Simulation. Physics. 2025; 7(3):32. https://doi.org/10.3390/physics7030032
Chicago/Turabian StyleChen, Haotian, Shifeng Mao, and Zejun Ding. 2025. "Investigation of Charging Effect on an Isolated Conductor Based on a Monte Carlo Simulation" Physics 7, no. 3: 32. https://doi.org/10.3390/physics7030032
APA StyleChen, H., Mao, S., & Ding, Z. (2025). Investigation of Charging Effect on an Isolated Conductor Based on a Monte Carlo Simulation. Physics, 7(3), 32. https://doi.org/10.3390/physics7030032