Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,251)

Search Parameters:
Keywords = electrolyte activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2532 KiB  
Article
Efficient Oxygen Evolution Reaction Performance Achieved by Tri-Doping Modification in Prussian Blue Analogs
by Yanhong Ding, Bin Liu, Haiyan Xiang, Fangqi Ren, Tianzi Xu, Jiayi Liu, Haifeng Xu, Hanzhou Ding, Yirong Zhu and Fusheng Liu
Inorganics 2025, 13(8), 258; https://doi.org/10.3390/inorganics13080258 (registering DOI) - 2 Aug 2025
Abstract
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost [...] Read more.
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost hydrogen. In water electrolysis technology, the electrocatalytic activity of the electrode affects the kinetics of the oxygen evolution reaction (OER) and the hydrogen evolution rate. This study utilizes the liquid phase co-precipitation method to synthesize three types of Prussian blue analog (PBA) electrocatalytic materials: Fe/PBA(Fe4[Fe(CN)6]3), Fe-Mn/PBA((Fe, Mn)3[Fe(CN)6]2·nH2O), and Fe-Mn-Co/PBA((Mn, Co, Fe)3II[FeIII(CN)6]2·nH2O). X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses show that Fe-Mn-Co/PBA has a smaller particle size and higher crystallinity, and its grain boundary defects provide more active sites for electrochemical reactions. The electrochemical test shows that Fe-Mn-Co/PBA exhibits the best electrochemical performance. The overpotential of the oxygen evolution reaction (OER) under 1 M alkaline electrolyte at 10/50 mA·cm−2 is 270/350 mV, with a Tafel slope of 48 mV·dec−1, and stable electrocatalytic activity is maintained at 5 mA·cm−2. All of these are attributed to the synergistic effect of Fe, Mn, and Co metal ions, grain refinement, and the generation of grain boundary defects and internal stresses. Full article
(This article belongs to the Special Issue Novel Catalysts for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 (registering DOI) - 1 Aug 2025
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

15 pages, 3707 KiB  
Article
Saussurea involucrata CML6 Enhances Freezing Tolerance by Activating Antioxidant Defense and the CBF-COR Pathway in Plants
by Mengjuan Hou, Hui Kong, Jin Li, Wenwen Xia and Jianbo Zhu
Plants 2025, 14(15), 2360; https://doi.org/10.3390/plants14152360 - 1 Aug 2025
Abstract
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C [...] Read more.
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C and −2 °C. Bioinformatics analysis showed that SiCML6 encodes a transmembrane protein containing an EF-hand domain. This protein carries a signal peptide and shows the closest phylogenetic relationship to Helianthus annuus CML3. Its promoter contains ABA, methyl jasmonate (MeJA), and cold-response elements. Arabidopsis plants overexpressing SiCML6 showed significantly higher survival rates at −2 °C than wild-type plants. Under freezing stress, SiCML6-overexpressing lines exhibited reduced malondialdehyde content, relative electrolyte leakage, and ROS accumulation (H2O2 and O2), along with increased proline, soluble sugars, soluble proteins, and total antioxidant capacity (T-AOC). SiCML6 elevated the expression of cold-responsive genes CBF3 and COR15a under normal conditions and further upregulated CBF1/2/3 and COR15a at 4 °C. Thus, low temperatures induced SiCML6 expression, which was potentially regulated by ABA/MeJA. SiCML6 enhances freezing tolerance by mitigating oxidative damage through boosted T-AOC and osmoprotectant accumulation while activating the CBF-COR signaling pathway. This gene is a novel target for improving crop cold resistance. Full article
Show Figures

Figure 1

16 pages, 4629 KiB  
Article
Development of a Reflective Electrochromic Zinc-Ion Battery Device for Infrared Emissivity Control Using Self-Doped Polyaniline Films
by Yi Wang, Ze Wang, Tong Feng, Jiandong Chen, Enkai Lin and An Xie
Polymers 2025, 17(15), 2110; https://doi.org/10.3390/polym17152110 - 31 Jul 2025
Viewed by 17
Abstract
Electrochromic devices (ECDs) capable of modulating both visible color and infrared (IR) emissivity are promising for applications in smart thermal camouflage and multifunctional displays. However, conventional transmissive ECDs suffer from limited IR modulation due to the low IR transmittance of transparent electrodes. Here, [...] Read more.
Electrochromic devices (ECDs) capable of modulating both visible color and infrared (IR) emissivity are promising for applications in smart thermal camouflage and multifunctional displays. However, conventional transmissive ECDs suffer from limited IR modulation due to the low IR transmittance of transparent electrodes. Here, we report a reflection-type electrochromic zinc-ion battery (HWEC-ZIB) using a self-doped polyaniline nanorod film (SP(ANI-MA)) as the active layer. By positioning the active material at the device surface, this structure avoids interference from transparent electrodes and enables broadband and efficient IR emissivity tuning. To prevent electrolyte-induced IR absorption, a thermal lamination encapsulation method is employed. The optimized device achieves emissivity modulation ranges of 0.28 (3–5 μm) and 0.19 (8–14 μm), delivering excellent thermal camouflage performance. It also exhibits a visible color change from earthy yellow to deep green, suitable for various natural environments. In addition, the HWEC-ZIB shows a high areal capacity of 72.15 mAh cm−2 at 0.1 mA cm−2 and maintains 80% capacity after 5000 cycles, demonstrating outstanding electrochemical stability. This work offers a versatile device platform integrating IR stealth, visual camouflage, and energy storage, providing a promising solution for next-generation adaptive camouflage and defense-oriented electronics. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

14 pages, 2265 KiB  
Communication
Bioelectrical Impedance Assessment in a Patient with Breast Cancer: A Case Report on the Effect of Integrative Therapies on Cellular Homeostasis
by Graziella Marino, Giovanni Pace, Lucia Sabato, Marzia Sichetti and Marisabel Mecca
Nutrients 2025, 17(15), 2506; https://doi.org/10.3390/nu17152506 - 30 Jul 2025
Viewed by 101
Abstract
Background/Objectives: Since breast cancer (BC) survival rates have increased to 91% at 5 years and 80% at 15 years postdiagnosis, there is a growing awareness of the importance of addressing the long-term well-being of patients. Consequently, integrative oncology, which combines standard therapies [...] Read more.
Background/Objectives: Since breast cancer (BC) survival rates have increased to 91% at 5 years and 80% at 15 years postdiagnosis, there is a growing awareness of the importance of addressing the long-term well-being of patients. Consequently, integrative oncology, which combines standard therapies with complementary approaches (nutrition, mind–body practices, and lifestyle modifications), has emerged as a patient-centred model aimed at improving symptom management, treatment adherence, and overall quality of life (QoL). This study aims to demonstrate how integrative therapies can benefit body composition, phase angle, and fluid and electrolyte balance through bioelectrical impedance analysis (BIA). Methods: This study considers a patient who underwent BC surgery and was enrolled in the AMICO clinic for anamnesis, as well as their oncological pathology data, assessment of QoL, and BIA. The breast surgeon specialising in integrative oncology therapies prescribed the patient curcumin and polydatin, moderate physical activity, a balanced diet, and Qigong sessions. The patient underwent monitoring through haematochemical analysis, BIA, and a QoL questionnaire, with follow-up every four months. Results: Between 4 and 12 months, fat mass (FM) and body mass index (BMI) markedly decreased, whereas fat-free mass (FFM), total body water (TBW), and skeletal muscle mass (SMM) increased progressively. Moreover, the improvements in the Na/K ratio and phase angle (PhA) suggest a shift toward better electrolyte and fluid balance and enhanced cellular integrity and membrane function. Equally outstanding were her psychological benefits in terms of mood, sleep, anxiety, and melancholy. Conclusions: Patient progress in body composition, metabolic function, pain management, and psychological status measured during the 12-month follow-up demonstrates the potential benefits of an integrative approach to supportive cancer care. Full article
Show Figures

Figure 1

13 pages, 3341 KiB  
Article
Regulation of Electrochemical Activity via Controlled Integration of NiS2 over Co3O4 Nanomaterials for Hydrogen Evolution Reaction
by Mrunal Bhosale, Rutuja U. Amate, Pritam J. Morankar and Chan-Wook Jeon
Coatings 2025, 15(8), 887; https://doi.org/10.3390/coatings15080887 - 30 Jul 2025
Viewed by 144
Abstract
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and [...] Read more.
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and subsequent thermal treatment method. Detailed characterization via physicochemical techniques confirmed the successful formation of a hybrid Co3O4–NiS2 heterostructure with tunable compositional and morphological characteristics. Among the synthesized catalysts (Co–Ni–1, Co–Ni–2, and Co–Ni–3), the Co–Ni–2 sample demonstrated optimal structural integration, displaying interconnected nanosheet morphologies and balanced elemental distribution. Remarkably, Co–Ni–2 achieved exceptional HER performance in 1 M KOH electrolyte, requiring an ultralow overpotential of only 84 mV at 10 mA cm−2 and exhibiting a favorable Tafel slope of 67.5 mV dec−1. Electrochemical impedance spectroscopy and electrochemical surface area measurements further substantiated the superior electrocatalytic kinetics, rapid charge transport, and abundant active site accessibility in the optimized Co–Ni–2 composite. Additionally, Co–Ni–2 demonstrated outstanding durability with negligible activity decay over 5000 cycles. This study not only highlights the strategic synthesis of Co3O4–NiS2 nanostructures but also provides valuable insights for designing advanced, stable, and efficient non-noble electrocatalysts for sustainable hydrogen generation. Full article
Show Figures

Graphical abstract

12 pages, 3668 KiB  
Article
The Study on the Electrochemical Efficiency of Yttrium-Doped High-Entropy Perovskite Cathodes for Proton-Conducting Fuel Cells
by Bingxue Hou, Xintao Wang, Rui Tang, Wenqiang Zhong, Meiyu Zhu, Zanxiong Tan and Chengcheng Wang
Materials 2025, 18(15), 3569; https://doi.org/10.3390/ma18153569 - 30 Jul 2025
Viewed by 173
Abstract
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) [...] Read more.
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) optimization. This study introduces an yttrium-doped HEP to address these limitations. A comparative analysis of Ce0.2−xYxBa0.2Sr0.2La0.2Ca0.2CoO3−δ (x = 0, 0.2; designated as CBSLCC and YBSLCC) revealed that yttrium doping enhanced the ORR activity, reduced the thermal expansion coefficient (19.9 × 10−6 K−1, 30–900 °C), and improved the thermomechanical compatibility with the BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolytes. Electrochemical testing demonstrated a peak power density equal to 586 mW cm−2 at 700 °C, with a polarization resistance equaling 0.3 Ω cm2. Yttrium-induced lattice distortion promotes proton adsorption while suppressing detrimental Co spin-state transitions. These findings advance the development of durable, high-efficiency PCFC cathodes, offering immediate applications in clean energy systems, particularly for distributed power generation. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

17 pages, 751 KiB  
Review
The Role of Chloride in Cardiorenal Syndrome: A Practical Review
by Georgios Aletras, Maria Bachlitzanaki, Maria Stratinaki, Ioannis Petrakis, Theodora Georgopoulou, Yannis Pantazis, Emmanuel Foukarakis, Michael Hamilos and Kostas Stylianou
J. Clin. Med. 2025, 14(15), 5230; https://doi.org/10.3390/jcm14155230 - 24 Jul 2025
Viewed by 496
Abstract
Chloride, long considered a passive extracellular anion, has emerged as a key determinant in the pathophysiology and management of heart failure (HF) and cardiorenal syndrome. In contrast to sodium, which primarily reflects water balance and vasopressin activity, chloride exerts broader effects on neurohormonal [...] Read more.
Chloride, long considered a passive extracellular anion, has emerged as a key determinant in the pathophysiology and management of heart failure (HF) and cardiorenal syndrome. In contrast to sodium, which primarily reflects water balance and vasopressin activity, chloride exerts broader effects on neurohormonal activation, acid–base regulation, renal tubular function, and diuretic responsiveness. Its interaction with With-no-Lysine (WNK) kinases and chloride-sensitive transporters underscores its pivotal role in electrolyte and volume homeostasis. Hypochloremia, frequently observed in HF patients treated with loop diuretics, is independently associated with adverse outcomes, diuretic resistance, and arrhythmic risk. Conversely, hyperchloremia—often iatrogenic—may contribute to renal vasoconstriction and hyperchloremic metabolic acidosis. Experimental data also implicate chloride dysregulation in myocardial electrical disturbances and an increased risk of sudden cardiac death. Despite mounting evidence of its clinical importance, serum chloride remains underappreciated in contemporary risk assessment models and treatment algorithms. This review synthesizes emerging evidence on chloride’s role in HF, explores its diagnostic and therapeutic implications, and advocates for its integration into individualized care strategies. Future studies should aim to prospectively validate these associations, evaluate chloride-guided therapeutic interventions, and assess whether incorporating chloride into prognostic models can improve risk stratification and outcomes in patients with heart failure and cardiorenal syndrome. Full article
(This article belongs to the Special Issue New Insights into Cardiorenal Metabolic Syndrome)
Show Figures

Graphical abstract

14 pages, 4216 KiB  
Article
Redox-Active Anthraquinone-1-Sulfonic Acid Sodium Salt-Loaded Polyaniline for Dual-Functional Electrochromic Supercapacitors
by Yi Wang, Enkai Lin, Ze Wang, Tong Feng and An Xie
Gels 2025, 11(8), 568; https://doi.org/10.3390/gels11080568 - 23 Jul 2025
Viewed by 200
Abstract
Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling [...] Read more.
Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling simultaneous energy storage and real-time visual monitoring. In this study, we report a flexible dual-functional EESD constructed using polyaniline (PANI) films doped with anthraquinone-1-sulfonic acid sodium salt (AQS), coupled with a redox-active PVA-based gel electrolyte also incorporating AQS. The incorporation of AQS into both the polymer matrix and the gel electrolyte introduces synergistic redox activity, facilitating bidirectional Faradaic reactions at the film–electrolyte interface and within the bulk gel phase. The resulting vertically aligned PANI-AQS nanoneedle films provide high surface area and efficient ion pathways, while the AQS-doped gel electrolyte contributes to enhanced ionic conductivity and electrochemical stability. The device exhibits rapid and reversible color switching from light green to deep black (within 2 s), along with a high areal capacitance of 194.2 mF·cm−2 at 1 mA·cm−2 and 72.1% capacitance retention over 5000 cycles—representing a 31.5% improvement over undoped systems. These results highlight the critical role of redox-functionalized gel electrolytes in enhancing both the energy storage and optical performance of EESDs, offering a scalable strategy for multifunctional, gel-based electrochemical systems in wearable and smart electronics. Full article
(This article belongs to the Special Issue Smart Gels for Sensing Devices and Flexible Electronics)
Show Figures

Graphical abstract

8 pages, 971 KiB  
Article
Mechanism of Topotactic Reduction-Oxidation Between Mg-Doped SrMoO3 Perovskites and SrMoO4 Scheelites, Utilized as Anode Materials for Solid Oxide Fuel Cells
by Vanessa Cascos, M. T. Fernández-Díaz and José Antonio Alonso
Materials 2025, 18(15), 3424; https://doi.org/10.3390/ma18153424 - 22 Jul 2025
Viewed by 210
Abstract
Recently, we have described SrMo1-xMgxO3-δ perovskites (x = 0.1, 0.2) as excellent anode materials for solid oxide fuel cells (SOFCs), with mixed ionic and electronic conduction (MIEC) properties. After depositing on the solid electrolyte, they were annealed for [...] Read more.
Recently, we have described SrMo1-xMgxO3-δ perovskites (x = 0.1, 0.2) as excellent anode materials for solid oxide fuel cells (SOFCs), with mixed ionic and electronic conduction (MIEC) properties. After depositing on the solid electrolyte, they were annealed for sintering at high temperatures (typically 1000 °C), giving rise to oxidized scheelite-type phases, with SrMo1-xMgxO4-δ (x = 0.1, 0.2) stoichiometry. To obtain the active perovskite phases, they were reduced again in the working anode conditions, under H2 atmosphere. Therefore, there must be an excellent reversibility between the oxidized Sr(Mo, Mg)O4-δ scheelite and the reduced Sr(Mo, Mg)O3-δ perovskite phases. This work describes the topotactical oxidation, by annealing at 400 °C in air, of the SrMo0.9Mg0.1O3-δ perovskite oxide. The characterization by X-ray diffraction (XRD) and neutron powder diffraction (NPD) was carried out in order to determine the crystal structure features. The scheelite oxides are tetragonal, space group I41/a (No. 88), whereas the perovskites are cubic, s.g. Pm-3m (No. 221). The Rietveld refinement of the scheelite phase from NPD data after annealing the perovskite at 400 °C and cooling it down slowly to RT evidences the absence of intermediate phases between perovskite and scheelite oxides, as well as the presence of oxygen vacancies in both oxidized and reduced phases, essential for their performance as MIEC oxides. The topotactical relationship between both crystal structures is discussed. Full article
Show Figures

Figure 1

22 pages, 4859 KiB  
Article
Engineered Ceramic Composites from Electrolytic Manganese Residue and Fly Ash: Fabrication Optimization and Additive Modification Mechanisms
by Zhaohui He, Shuangna Li, Zhaorui Li, Di Zhang, Guangdong An, Xin Shi, Xin Sun and Kai Li
Sustainability 2025, 17(14), 6647; https://doi.org/10.3390/su17146647 - 21 Jul 2025
Viewed by 402
Abstract
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite [...] Read more.
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite with 85 g FA exhibits the highest mechanical strength, lowest porosity, and minimal water absorption, the formulation consisting of 45 wt% EMR, 40 wt% FA, and 15 wt% kaolin is identified as a balanced composition that achieves an effective compromise between mechanical performance and solid waste utilization efficiency. Sintering temperature studies revealed temperature-dependent property enhancement, with controlled sintering at 1150 °C preventing the over-firing phenomena observed at 1200 °C while promoting phase evolution. XRD-SEM analyses confirmed accelerated anorthite formation and the morphological transformations of FA spherical particles under thermal activation. Additive engineering demonstrated that 8 wt% CaO addition enhanced structural densification through hydrogrossular crystallization, whereas Na2SiO3 induced sodium-rich calcium silicate phases that suppressed anorthite development. Contrastingly, ZrO2 facilitated zircon nucleation, while TiO2 enabled progressive performance enhancement through amorphous phase modification. This work establishes fundamental phase–structure–property relationships and provides actionable engineering parameters for sustainable ceramic production from industrial solid wastes. Full article
Show Figures

Figure 1

19 pages, 5968 KiB  
Article
Investigation of Electrical Discharge Processes During Electrolytic–Plasma Nitrocarburizing
by Bauyrzhan Rakhadilov, Laila Sulyubayeva, Almasbek Maulit and Temirlan Alimbekuly
Materials 2025, 18(14), 3381; https://doi.org/10.3390/ma18143381 - 18 Jul 2025
Viewed by 352
Abstract
In this study, the process of electrolytic–plasma nitrocarburizing (EPNC) of 20-grade steel was investigated using various electrolytes and temperature regimes. At the first stage, optical spectral analysis of plasma emission during EPNC was carried out with spectral registration in the range of 275–850 [...] Read more.
In this study, the process of electrolytic–plasma nitrocarburizing (EPNC) of 20-grade steel was investigated using various electrolytes and temperature regimes. At the first stage, optical spectral analysis of plasma emission during EPNC was carried out with spectral registration in the range of 275–850 nm, which allowed the identification of active components (Hα, CN, Fe I, O I lines, etc.) and the calculation of electron density. Additionally, the EPNC process was recorded using a high-speed camera (1500 frames per second), which made it possible to visually evaluate the dynamics of arc and glow discharges under varying electrolyte compositions. At the next stage, the influence of temperature regimes (650 °C, 750 °C, and 850 °C) on the formation of the hardened layer was studied. Using SEM and EDS methods, the morphology, phase zones, and the distribution of chemical elements were determined. Microhardness measurements along the depth and friction tests were carried out. It was found that a temperature of 750 °C provides the best balance between the uniformity of chemical composition, high microhardness (~800 HV), and a minimal coefficient of friction (~0.48). The obtained results confirm the potential of the selected EPNC regime for improving the performance characteristics of 20-grade steel. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

20 pages, 8022 KiB  
Article
Corrosion Response of Steel to Penetration of Chlorides in DC-Treated Hardened Portland Cement Mortar
by Milan Kouřil, Jan Saksa, Vojtěch Hybášek, Ivona Sedlářová, Jiří Němeček, Martina Kohoutková and Jiří Němeček
Materials 2025, 18(14), 3365; https://doi.org/10.3390/ma18143365 - 17 Jul 2025
Viewed by 230
Abstract
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete [...] Read more.
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete or mortar, coupled with the migration of ions, concentration changes, and resulting phase changes, may alter its chloride penetration resistance and, subsequently, the time until rebar corrosion activation. Porosity changes in hardened Portland cement mortar were studied by means of mercury intrusion porosimetry (MIP) and electrochemical impedance spectroscopy (EIS), and alterations in the mortar surface phase composition were observed by means of X-ray diffraction (XRD). In order to innovatively investigate the impact of DC treatment on the properties of the mortar–electrolyte interface, the cathode-facing mortar surface and the anode-facing mortar surface were analyzed separately. The corrosion of steel coupons embedded in DC-treated hardened mortar was monitored by means of the free corrosion potential (Eoc) and polarization resistance (Rp). The results showed that the DC treatment affected the surface porosity of the hardened Portland cement mortar at the nanoscale. Up to two-thirds of the small pores (0.001–0.01 µm) were replaced by medium-sized pores (0.01–0.06 µm), which may be significant for chloride ingress. Although the porosity and phase composition alterations were confirmed using other techniques (EIS and XRD), corrosion tests revealed that they did not significantly affect the time until the corrosion activation of the steel coupons in the mortar. Full article
Show Figures

Figure 1

30 pages, 4943 KiB  
Article
Influence of Methyl Jasmonate and Short-Term Water Deficit on Growth, Redox System, Proline and Wheat Germ Agglutinin Contents of Roots of Wheat Seedlings
by Alsu R. Lubyanova
Int. J. Mol. Sci. 2025, 26(14), 6871; https://doi.org/10.3390/ijms26146871 - 17 Jul 2025
Viewed by 177
Abstract
Drought is a serious environmental problem that limits the yield of wheat around the world. Using biochemical and microscopy methods, it was shown that methyl jasmonate (MeJA) has the ability to induce the oxidative stress tolerance in roots of wheat plants due to [...] Read more.
Drought is a serious environmental problem that limits the yield of wheat around the world. Using biochemical and microscopy methods, it was shown that methyl jasmonate (MeJA) has the ability to induce the oxidative stress tolerance in roots of wheat plants due to the regulation of antioxidant enzymes activity, proline (Pro), and wheat germ agglutinin (WGA) accumulation. During the first hours of 12% polyethylene glycol (PEG) exposure, stress increased the superoxide radical (O2•−) and the hydrogen peroxide (H2O2) accumulation, the activity of superoxide dismutase (SOD), total peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT), the percent of dead cells (PDC), malondialdehyde accumulation (MDA), and electrolyte leakage (EL) of wheat roots as compared to the control. Stress enhanced proline (Pro) and wheat germ agglutinin (WGA) contents in roots and the plant’s nutrient medium, as well as decreased the mitotic index (MI) of cells of root tips in comparison to the control. During PEG exposure, 10−7 M MeJA pretreatment increased the parameter of MI, declined O2•− and H2O2 generation, PDC, MDA, and EL parameters as compared to MeJA-untreated stressed seedlings. During 1 day of drought, MeJA pretreatment additionally increased the activity of SOD, total POD, APX, CAT, Pro, and WGA accumulation in wheat roots in comparison to MeJA-untreated stressed plants. During stress, MeJA pretreatment caused a decrease in Pro exudation into the growth medium, while WGA content in the medium was at the control level. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant)
Show Figures

Figure 1

16 pages, 1759 KiB  
Article
Integrated Analysis of Phenotypic, Physiological, and Biochemical Traits in Betula platyphylla Sukaczev Under Cold Stress Conditions
by Faujiah Nurhasanah Ritonga, Syamsudin Ahmad Slamet, Laswi Irmayanti, Nelly Anna, Pebriandi and Su Chen
Forests 2025, 16(7), 1176; https://doi.org/10.3390/f16071176 - 16 Jul 2025
Viewed by 275
Abstract
Betula platyphylla Sukaczev (white birch) is a cold-tolerant tree species native to northeastern Asia, valued for its ecological adaptability and economic utility. While its responses to various abiotic stresses have been studied, the physiological and biochemical mechanisms underlying its cold stress tolerance remain [...] Read more.
Betula platyphylla Sukaczev (white birch) is a cold-tolerant tree species native to northeastern Asia, valued for its ecological adaptability and economic utility. While its responses to various abiotic stresses have been studied, the physiological and biochemical mechanisms underlying its cold stress tolerance remain insufficiently explored. In this study, we investigated the effects of prolonged cold exposure (6 °C for up to 27 days) on key physiological and biochemical traits of B. platyphylla seedlings, including plant height, chlorophyll content, electrolyte leakage (EL), malondialdehyde (MDA), proline levels, and antioxidant enzyme activities (SOD, CAT, POD). Cold stress resulted in visible phenotypic changes, reduced growth, and significant declines in chlorophyll content, suggesting inhibited photosynthesis. EL and MDA levels increased with exposure duration, indicating progressive membrane damage and oxidative stress. In response, antioxidant enzyme activities and proline accumulation were significantly enhanced, reflecting a coordinated defense strategy. Correlation analyses further revealed strong associations among antioxidant enzymes, MDA, proline, and EL under cold stress. These findings advance our understanding of the adaptive responses of B. platyphylla to low-temperature stress and provide a physiological and biochemical basis for future breeding programs aimed at improving cold tolerance. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

Back to TopTop