ijms-logo

Journal Browser

Journal Browser

Abiotic Stress in Plant

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: closed (20 April 2025) | Viewed by 6164

Special Issue Editor


E-Mail Website
Guest Editor
Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
Interests: abiotic stress; ROS; redox; antioxidants; phytohormones; ethylene; plant stress eco-physiology

Special Issue Information

Dear Colleagues,

Plants are subjected to a multitude of environmental challenges, which ultimately impact their growth and development, and consequently affect crop yields. In the initial stages of environmental stress, an uncontrolled production of reactive oxygen species (ROS) results in oxidative stress, which ultimately leads to cell death. To cope with the environmental constraints, plants develop a highly sensitive defence mechanism which enables them to sense and respond to these constraints via enzymatic and non-enzymatic defence mechanisms, in close collaboration with phytohormones. This Special Issue aims to foster a deeper understanding of the mechanisms underlying plant responses to abiotic stress. Further research in this field is thus required at the molecular, cellular, physiological, epigenetic, hormonal signalling, morphological, yield and final ecological levels. This Special Issue of the International Journal of Molecular Sciences (IJMS) welcomes the latest research contributions on plant responses to abiotic stress and proposals for novel solutions to enhance the adaptability of plants to environmental stress.

Dr. Riyazuddin Riyazuddin
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic stress
  • ROS
  • redox
  • antioxidants
  • phytohormones
  • ethylene
  • plant stress eco-physiology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 2357 KiB  
Article
Identification of Advantaged Genes for Low-Nitrogen-Tolerance-Related Traits in Rice Using a Genome-Wide Association Study
by Zhiyuan Zhang, Laiyuan Zhai, Yuzhuo Liu, Lin Tian, Shuangbing Zhu, Congcong Shen, Juqing Jia, Kai Chen and Jianlong Xu
Int. J. Mol. Sci. 2025, 26(12), 5749; https://doi.org/10.3390/ijms26125749 - 16 Jun 2025
Viewed by 81
Abstract
Nitrogen is a crucial element that impacts rice yield and its constituent factors. The effects of reduced nitrogen levels on yield constitute is a complex quantitative trait that is controlled by multiple genes, and its genetic basis requires further exploration. In this study, [...] Read more.
Nitrogen is a crucial element that impacts rice yield and its constituent factors. The effects of reduced nitrogen levels on yield constitute is a complex quantitative trait that is controlled by multiple genes, and its genetic basis requires further exploration. In this study, 562 MAGIC line population and 284 germplasm varieties were used for genome-wide association analysis (GWAS) and haplotype analysis, aiming to detect quantitative trait loci (QTL) and candidate genes associated with tolerance to low nitrogen levels. The ratio of effective panicle number per plant (REPN), total number of grains per panicle (RTGN), seed setting rate (RSSR), thousand grain weight (RTGW), biomass (RBM), harvest index (RHI), and grain yield per plant (RGY) of low to normal nitrogen conditions were measured in this study. The RBM and RHI were directly closely related to RGY, while the RSSR indirectly and positively affected RGY through RHI, and the REPN and RTGN mainly indirectly and positively affected RGY through RBM. LOC_Os06g06440 was the most likely gene affecting low-nitrogen-tolerance-related traits in rice within the region, ranging from 2.898 Mb to 3.046 Mb (148 kb) on chromosome 6, and the haplotype AA, with a significantly larger mean RGY of 0.95 and 1.53 in the MAGIC and germplasm varieties, respectively, was the advanced allele of LOC_Os06g06440. Nine xian (indica) varieties (IRIS_313-11624, IRIS_313-10932, CX382, B067, B249, IRIS_313-8215, IRIS_313-10544, B052, and B233) carrying the superior haplotype (AA) of LOC_Os06g06440 and having a higher RGY were selected for the molecular marker-assisted selection of low nitrogen tolerance in rice. These results will enhance our knowledge of the genetic basis of tolerance to low levels of nitrogen and provide valuable information for improving tolerance to low levels of nitrogen in rice-breeding programs. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant)
Show Figures

Figure 1

16 pages, 4630 KiB  
Article
Metabolomic Analysis of the Responses of Bryophyte Tortella tortuosa (Hedw.) Limpr. to Cadmium (Cd) Stress
by Yongqi Zhu, Dongmei Lin, Qiuge Li, Mengjie An and Jie Lv
Int. J. Mol. Sci. 2025, 26(7), 2856; https://doi.org/10.3390/ijms26072856 - 21 Mar 2025
Viewed by 300
Abstract
In recent years, there have been many studies on the response of plants to heavy metal stress, but the metabolic changes in bryophytes, pioneer plants quickly responding to environmental changes, under exogenous cadmium (Cd) stress have yet to be explored. In this indoor [...] Read more.
In recent years, there have been many studies on the response of plants to heavy metal stress, but the metabolic changes in bryophytes, pioneer plants quickly responding to environmental changes, under exogenous cadmium (Cd) stress have yet to be explored. In this indoor experiment, the responses in the metabolome of bryophyte Tortella tortuosa (Hedw.) Limpr. to different Cd exposure levels (0 (CK), 5 (T1), and 10 (T2) mg·L−1) were analyzed. The results showed that the number of differentially accumulated metabolites (DAMs) secreted by T. tortuosa increased with the increase in the Cd concentration, and the biosynthesis of cofactors, D-Amino acid metabolism, Arginine biosynthesis, ATP-binding cassette transporters (ABC transporters), and biosynthesis of alkaloids derived from shikimate pathway were the main pathways enriched by DAMs. The relative abundances of malic acid, N-Formylkynurenine, L-Glutamine, L-Histidine, LL-2,6-Diaminopimelic acid, and fusaric acid in the T2 treatment increased by 16.06%, 62.51%, 14.51%, 11.92%, 21.37%, and 35.79%, respectively (p < 0.05), compared with those of the CK, and the correlation analysis results showed that the above DAMs were closely related to the changes in plant antioxidant enzyme activity and Cd concentration. These results indicate that the secretion of amino acid (N-Formylkynurenine, L-Histidine) and organic acids (isocitric acid, LL-2,6-Diaminopimelic acid, malic acid) through the metabolic pathways, including biosynthesis of amino acids, biosynthesis of cofactors, glyoxylate and dicarboxylate metabolism, and ABC transporters, is the metabolic mechanism of T. tortuosa to resist exogenous Cd stress. This study will provide a reference for the monitoring and remediation of heavy metal pollution. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant)
Show Figures

Figure 1

18 pages, 3503 KiB  
Article
Cloning and Functional Analysis of Glyoxalase I Gene BrGLYI 13 in Brassica rapa L.
by Xiaojia Song, Feng Zhang, Xiaolei Tao, Yapeng Li, Tingting Fan, Junyan Wu, Li Ma, Lijun Liu, Yuanyuan Pu, Wangtian Wang, Gang Yang and Wancang Sun
Int. J. Mol. Sci. 2025, 26(6), 2737; https://doi.org/10.3390/ijms26062737 - 18 Mar 2025
Viewed by 423
Abstract
Glyoxalase I (GLYI) is a key enzyme that detoxifies methylglyoxal, a toxic byproduct of glycolysis, and is essential for plant pollination. However, the genome-wide identification and functional analysis of GLYI in Brassica rapa L. (B. rapa) remain limited. This study identified [...] Read more.
Glyoxalase I (GLYI) is a key enzyme that detoxifies methylglyoxal, a toxic byproduct of glycolysis, and is essential for plant pollination. However, the genome-wide identification and functional analysis of GLYI in Brassica rapa L. (B. rapa) remain limited. This study identified 17 BrGLYI genes (BrGLYI1BrGLYI17) from the B. rapa genome. The self-compatible line 039-1 and the self-incompatible line GAU-28-5 were used as experimental materials, and Real-Time Quantitative Reverse Transcription PCR (RT-qPCR) was performed to examine the effect of BrGLYI genes on self-compatibility in winter B. rapa. Preliminary results showed that BrGLYI13 exhibited significant tissue specificity, with higher expression in the flowers of 039-1 compared to GAU-28-5. The open reading frame of BrGLYI13 (852 bp) was cloned from both 039-1 and GAU-28-5 cDNA, with no base mutations observed between the two lines. RT-qPCR revealed higher BrGLYI13 expression in the stigma of 039-1 compared to GAU-28-5. Based on the functional conservation and sequence homology, BrGLYI13 is speculated to play a similar role to that of AtGLYI3 in methylglyoxal detoxification and stress response. Furthermore, the knockout of AtGLYI3 resulted in reduced silique lengths and seed numbers. These findings suggest that BrGLYI13 is involved in the self-compatibility response in B. rapa and promotes the silique length and seed number in the Arabidopsis mutant, providing a basis for further research on the mechanisms of self-compatibility in B. rapa. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant)
Show Figures

Figure 1

26 pages, 9843 KiB  
Article
Label-Free Proteomics Reveals the Response of Oat (Avena sativa L.) Seedling Root Respiratory Metabolism to Salt Stress
by Xiaojing Chen, Baoping Zhao, Junzhen Mi, Zhongshan Xu and Jinghui Liu
Int. J. Mol. Sci. 2025, 26(6), 2630; https://doi.org/10.3390/ijms26062630 - 14 Mar 2025
Cited by 1 | Viewed by 542
Abstract
Soil salinity is among the crucial factors influencing agricultural productivity of crops, including oat. The respiratory metabolic pathways are of great significance for plants to adapt to salt stress, but current research is limited and there are few reports on salt-tolerant crops such [...] Read more.
Soil salinity is among the crucial factors influencing agricultural productivity of crops, including oat. The respiratory metabolic pathways are of great significance for plants to adapt to salt stress, but current research is limited and there are few reports on salt-tolerant crops such as oat, which is necessary to conduct in-depth research. In this study, we conducted a pot experiment to determine the effects of salt stress on oat root growth and respiratory metabolism. Three salt stress levels—control (CK), moderate, and severe—were applied to compare the salt tolerance of the salt-tolerant cultivar Bai2 and the salt-sensitive cultivar Bai5. We selected oat roots at the seedling stage as the research focus and analyzed fresh root samples using an Oxytherm liquid-phase oxygen electrode, a digital scanner, and proteomics. The results showed that with an increased concentration of salt stress, the dry and fresh weight, root–shoot ratio, total root length, root surface area, root volume, and average diameter of the two oat cultivars showed a decreasing trend. Compared with CK, the total root respiration rate of Bai2 under moderate and severe stress decreased by 15.6% and 28%, respectively, and that of Bai5 decreased by 70.4% and 79.0%, respectively. After quantitative analysis of 18 oat root samples from the 2 cultivars using the label-free method, 7174 differential proteins were identified and 63 differential proteins were obtained, which involved 7 functional categories. In total, 111 differential proteins were specifically expressed in the root of the salt-tolerant cultivar Bai2, involving 12 functional categories. Through interaction network analysis, the proteins differentially expressed between the salt treatment and CK groups of the salt-tolerant cultivar Bai2 were analyzed. In total, five types of differentially expressed proteins interacting with each other were detected; these mainly involved antioxidant enzymes, pyruvate metabolism, glycolysis, tricarboxylic acid cycle, and energy metabolism pathways. Salt stress promoted the respiration rate of oat root glycolysis. The respiration rate of the tricarboxylic acid pathway decreased with increased salt stress concentration, while the respiration rate of the pentose phosphate pathway increased. Compared with CK, following moderate and severe salt stress treatment, alcohol dehydrogenase activity in Bai2 increased by 384% and 145%, respectively, while that of Bai5 increased by 434% and 157%, respectively. At increased salt stress concentrations, Bai2 mainly used pyruvate–ethanol fermentation for anaerobic respiration, while Bai5 mainly used pyruvate–lactic acid fermentation for anaerobic respiration. This significant discovery revealed for the first time from the perspective of respiratory metabolism that different salt-tolerant oat cultivars adapt to salt stress in different ways to maintain normal growth and development. The experimental results provide new insights into plant adaptation to salt stress from the perspective of respiratory metabolism. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant)
Show Figures

Figure 1

18 pages, 3388 KiB  
Article
The Molecular Mechanism Regulating Flavonoid Production in Rhododendron chrysanthum Pall. Against UV-B Damage Is Mediated by RcTRP5
by Fushuai Gong, Jinhao Meng, Hongwei Xu and Xiaofu Zhou
Int. J. Mol. Sci. 2024, 25(24), 13383; https://doi.org/10.3390/ijms252413383 - 13 Dec 2024
Cited by 2 | Viewed by 802
Abstract
Elevated levels of reactive oxygen species (ROS) are caused by ultraviolet B radiation (UV-B) stress. In response, plants strengthen their cell membranes, impeding photosynthesis. Additionally, UV-B stress initiates oxidative stress within the antioxidant defense system and alters secondary metabolism, particularly by increasing the [...] Read more.
Elevated levels of reactive oxygen species (ROS) are caused by ultraviolet B radiation (UV-B) stress. In response, plants strengthen their cell membranes, impeding photosynthesis. Additionally, UV-B stress initiates oxidative stress within the antioxidant defense system and alters secondary metabolism, particularly by increasing the quantity of UV-absorbing compounds such as flavonoids. The v-myb avian myeloblastosis viral oncogene homolog (MYB) transcription factor (TF) may participate in a plant’s response to UV-B damage through its regulation of flavonoid biosynthesis. In this study, we discovered that the photosynthetic activity of Rhododendron chrysanthum Pall. (R. chrysanthum) decreased when assessing parameters of chlorophyll (PSII) fluorescence parameters under UV-B stress. Concurrently, antioxidant system enzyme expression increased under UV-B exposure. A multi-omics data analysis revealed that acetylation at the K68 site of the RcTRP5 (telomeric repeat binding protein of Rhododendron chrysanthum Pall.) transcription factor was upregulated. This acetylation modification of RcTRP5 activates the antioxidant enzyme system, leading to elevated expression levels of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). Upregulation is also observed at the K95 site of the chalcone isomerase (CHI) enzyme and the K178 site of the anthocyanidin synthase (ANS) enzyme. We hypothesize that RcTRP5 influences acetylation modifications of CHI and ANS in flavonoid biosynthesis, thereby indirectly regulating flavonoid production. This study demonstrates that R. chrysanthum can be protected from UV-B stress by accumulating flavonoids. This could serve as a useful strategy for enhancing the plant’s flavonoid content and provide a valuable reference for research on the metabolic regulation mechanisms of other secondary substances. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant)
Show Figures

Figure 1

22 pages, 19546 KiB  
Article
Alterations in the Rice Coleoptile Metabolome During Elongation Under Submergence Stress
by Vladislav V. Yemelyanov, Roman K. Puzanskiy, Ekaterina M. Bogdanova, Sergey A. Vanisov, Anastasia A. Kirpichnikova, Maria O. Biktasheva, Zhanna M. Mukhina, Alexey L. Shavarda and Maria F. Shishova
Int. J. Mol. Sci. 2024, 25(24), 13256; https://doi.org/10.3390/ijms252413256 - 10 Dec 2024
Cited by 1 | Viewed by 998
Abstract
Plants known as obligate aerobes developed different mechanisms to overcome the damage incurred under oxygen limitation. One of the survival strategies to have commonly appeared in hydrophytic plants is the escape strategy, which accelerates plant axial organs’ growth in order to escape hypoxic [...] Read more.
Plants known as obligate aerobes developed different mechanisms to overcome the damage incurred under oxygen limitation. One of the survival strategies to have commonly appeared in hydrophytic plants is the escape strategy, which accelerates plant axial organs’ growth in order to escape hypoxic conditions as soon as possible. The present study aimed to distinguish the alterations in coleoptile elongation, viability and metabolic profiles in coleoptiles of slow- and fast-growing rice varieties. All the parameters were tested at 3, 5 and 7 days after sowing, to highlight changes during seedling development in normal and submerged conditions. The obtained results indicated that coleoptile elongation correlated with higher resistance to oxygen deprivation. GS-MS-based metabolic profiling indicated that coleoptiles of the fast-growing cultivar accumulated higher amounts of sugar phosphates, disaccharides, fatty acid derivatives and sterols, which are important for maintaining growth, membrane stability and viability. The slow-growing variety was characterized by a greater abundance of carboxylates, including lactate and phosphoric acid, indicating an energy crisis and cytosol acidification, leading to cell damage and low tolerance. Therefore, a metabolomics approach could be used for phenotyping (chemotyping) in the large-scale screening of newly developed varieties with higher tolerance to oxygen deprivation. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant)
Show Figures

Graphical abstract

15 pages, 4267 KiB  
Article
Comprehensive Analysis of the OASTL Gene Family in Potato (Solanum tuberosum L.) and Its Expression Under Abiotic Stress
by Ting Tian, Jinyong Zhu, Zhitao Li, Weilu Wang, Minmin Bao, Xiaoqiang Qiu, Panfeng Yao, Zhenzhen Bi, Chao Sun, Yuanming Li, Zhen Liu and Yuhui Liu
Int. J. Mol. Sci. 2024, 25(23), 13170; https://doi.org/10.3390/ijms252313170 - 7 Dec 2024
Viewed by 1046
Abstract
O-acetylserine (thiol) lyase is a pivotal enzyme in plant cysteine biosynthesis, which is crucial for promoting plant growth, development, and resisting abiotic stress. However, the related studies on the potato OASTL gene family (StOASTL) have not been reported. In the present study, we [...] Read more.
O-acetylserine (thiol) lyase is a pivotal enzyme in plant cysteine biosynthesis, which is crucial for promoting plant growth, development, and resisting abiotic stress. However, the related studies on the potato OASTL gene family (StOASTL) have not been reported. In the present study, we identified 11 members of the StOASTL gene family, conducting a thorough analysis encompassing chromosome distribution, protein physicochemical properties, gene structure, protein-conserved motifs, and gene replication events. Phylogenetic scrutiny delineated these 11 StOASTLs into five distinct subfamilies. Using RNA-seq from the Potato Genome Sequencing Consortium (PGSC), we investigated the expression profile of StOASTLs in different tissues of DM (double-monoploid) potato and under abiotic/biotic stress, hormone treatment, and biostimulant treatment. The results showed that one of the StOASTLs (Soltu09G024390) was differentially expressed under different abiotic stresses and hormone treatments. Our findings showcased the differential response of one StOASTL (Soltu09G024390) to a spectrum of abiotic stresses and hormone treatments. Soltu09G024390 was earmarked as a candidate gene and successfully cloned. Functional validation through yeast stress assays demonstrated that the heterologous expression of Soltu09G024390 bolstered yeast tolerance to salt and cadmium stresses. This study provides a theoretical basis for revealing the role of the StOASTL family in potato response to abiotic stress and valuable insights for further study of the biological functions of StOASTL. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant)
Show Figures

Figure 1

16 pages, 4249 KiB  
Article
Exogenous Calcium Enhances Castor Tolerance to Saline–Alkaline Stress by Regulating Antioxidant Enzyme Activity and Activating Ca2+ and ROS Signaling Crosstalk
by Fei Hao, Zhigang Cui, Xuan Dong, Yan Gao, Rongjin Wang, Hui Zhang and Guolin Lin
Int. J. Mol. Sci. 2024, 25(23), 12717; https://doi.org/10.3390/ijms252312717 - 26 Nov 2024
Cited by 4 | Viewed by 1073
Abstract
Saline–alkaline stress is a major factor limiting agricultural development, with calcium (Ca2+) playing a role in regulating plant tolerance through multiple signaling pathways. However, the specific mechanisms by which Ca2+ mediates saline–alkaline stress tolerance at the molecular level remain incompletely [...] Read more.
Saline–alkaline stress is a major factor limiting agricultural development, with calcium (Ca2+) playing a role in regulating plant tolerance through multiple signaling pathways. However, the specific mechanisms by which Ca2+ mediates saline–alkaline stress tolerance at the molecular level remain incompletely understood. This study investigates the effects of exogenous Ca2+ application on enhancing plant tolerance to saline–alkaline stress, focusing on its impact on the antioxidant system and Ca2+ and reactive oxygen species (ROS) signaling pathways. Through physiological assays and transcriptomic analyses, we evaluated oxidative damage markers, antioxidant enzyme activities, and the expression of key Ca2+ and ROS signaling genes. The results showed that saline–alkaline stress significantly elevated ROS levels, which led to increased membrane lipid peroxidation and induced upregulation of antioxidant response elements in castor roots. Exogenous calcium treatment reduced ROS accumulation by increasing superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and decreasing malondialdehyde (MDA) levels, demonstrating a marked improvement in the antioxidant system. Transcriptomic analysis identified CAT2 (LOC107261240) as the primary target gene associated with increased CAT activity in response to exogenous calcium. Additionally, the upregulation of specific Ca2+ channels, Ca2+ sensors, ROS receptors, and antioxidant-related genes with calcium treatment highlights the critical role of Ca2+–ROS signaling crosstalk in enhancing stress tolerance. Protein–protein interaction analysis identified APX3 and other hub genes involved in Ca2+–ROS signaling transduction and the regulation of antioxidant activity. These findings enhance our understanding of calcium’s complex regulatory roles in plant abiotic stress responses, offering new theoretical insights for improving crop resilience in agriculture. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant)
Show Figures

Graphical abstract

Back to TopTop