Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,296)

Search Parameters:
Keywords = electrode membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 5131 KiB  
Review
Coating Metal–Organic Frameworks (MOFs) and Associated Composites on Electrodes, Thin Film Polymeric Materials, and Glass Surfaces
by Md Zahidul Hasan, Tyeaba Tasnim Dipti, Liu Liu, Caixia Wan, Li Feng and Zhongyu Yang
Nanomaterials 2025, 15(15), 1187; https://doi.org/10.3390/nano15151187 - 2 Aug 2025
Viewed by 288
Abstract
Metal–Organic Frameworks (MOFs) have emerged as advanced porous crystalline materials due to their highly ordered structures, ultra-high surface areas, fine-tunable pore sizes, and massive chemical diversity. These features, arising from the coordination between an almost unlimited number of metal ions/clusters and organic linkers, [...] Read more.
Metal–Organic Frameworks (MOFs) have emerged as advanced porous crystalline materials due to their highly ordered structures, ultra-high surface areas, fine-tunable pore sizes, and massive chemical diversity. These features, arising from the coordination between an almost unlimited number of metal ions/clusters and organic linkers, have resulted in significant interest in MOFs for applications in gas storage, catalysis, sensing, energy, and biomedicine. Beyond their stand-alone properties and applications, recent research has increasingly explored the integration of MOFs with other substrates, particularly electrodes, polymeric thin films, and glass surfaces, to create synergistic effects that enhance material performance and broaden application potential. Coating MOFs onto these substrates can yield significant benefits, including, but not limited to, improved sensitivity and selectivity in electrochemical sensors, enhanced mechanical and separation properties in membranes, and multifunctional coatings for optical and environmental applications. This review provides a comprehensive and up-to-date summary of recent advances (primarily from the past 3–5 years) in MOF coating techniques, including layer-by-layer assembly, in situ growth, and electrochemical deposition. This is followed by a discussion of the representative applications arising from MOF-substrate coating and an outline of key challenges and future directions in this rapidly evolving field. This article aims to serve as a focused reference point for researchers interested in both fundamental strategies and applied developments in MOF surface coatings. Full article
Show Figures

Figure 1

20 pages, 3586 KiB  
Article
Enhanced NiFe2O4 Catalyst Performance and Stability in Anion Exchange Membrane Water Electrolysis: Influence of Iron Content and Membrane Selection
by Khaja Wahab Ahmed, Aidan Dobson, Saeed Habibpour and Michael Fowler
Molecules 2025, 30(15), 3228; https://doi.org/10.3390/molecules30153228 - 1 Aug 2025
Viewed by 237
Abstract
Anion exchange membrane (AEM) water electrolysis is a potentially inexpensive and efficient source of hydrogen production as it uses effective low-cost catalysts. The catalytic activity and performance of nickel iron oxide (NiFeOx) catalysts for hydrogen production in AEM water electrolyzers were [...] Read more.
Anion exchange membrane (AEM) water electrolysis is a potentially inexpensive and efficient source of hydrogen production as it uses effective low-cost catalysts. The catalytic activity and performance of nickel iron oxide (NiFeOx) catalysts for hydrogen production in AEM water electrolyzers were investigated. The NiFeOx catalysts were synthesized with various iron content weight percentages, and at the stoichiometric ratio for nickel ferrite (NiFe2O4). The catalytic activity of NiFeOx catalyst was evaluated by linear sweep voltammetry (LSV) and chronoamperometry for the oxygen evolution reaction (OER). NiFe2O4 showed the highest activity for the OER in a three-electrode system, with 320 mA cm−2 at 2 V in 1 M KOH solution. NiFe2O4 displayed strong stability over a 600 h period at 50 mA cm−2 in a three-electrode setup, with a degradation rate of 15 μV/h. In single-cell electrolysis using a X-37 T membrane, at 2.2 V in 1 M KOH, the NiFe2O4 catalyst had the highest activity of 1100 mA cm−2 at 45 °C, which increased with the temperature to 1503 mA cm−2 at 55 °C. The performance of various membranes was examined, and the highest performance of the tested membranes was determined to be that of the Fumatech FAA-3-50 and FAS-50 membranes, implying that membrane performance is strongly correlated with membrane conductivity. The obtained Nyquist plots and equivalent circuit analysis were used to determine cell resistances. It was found that ohmic resistance decreases with an increase in temperature from 45 °C to 55 °C, implying the positive effect of temperature on AEM electrolysis. The FAA-3-50 and FAS-50 membranes were determined to have lower activation and ohmic resistances, indicative of higher conductivity and faster membrane charge transfer. NiFe2O4 in an AEM water electrolyzer displayed strong stability, with a voltage degradation rate of 0.833 mV/h over the 12 h durability test. Full article
(This article belongs to the Special Issue Water Electrolysis)
Show Figures

Figure 1

15 pages, 1619 KiB  
Article
Reducing Energy Penalty in Wastewater Treatment: Fe-Cu-Modified MWCNT Electrodes for Low-Voltage Electrofiltration of OMC
by Lu Yu, Jun Zeng, Xiu Fan, Fengxiang Li and Tao Hua
Energies 2025, 18(15), 4077; https://doi.org/10.3390/en18154077 - 1 Aug 2025
Viewed by 177
Abstract
Pseudo-persistent organic pollutants, such as pharmaceuticals, personal care products (PPCPs), and organic dyes, are a major issue in current environmental engineering. Considering the limitations of traditional wastewater treatment plant methods and degradation technologies for organic pollutants, the search for new technologies more suitable [...] Read more.
Pseudo-persistent organic pollutants, such as pharmaceuticals, personal care products (PPCPs), and organic dyes, are a major issue in current environmental engineering. Considering the limitations of traditional wastewater treatment plant methods and degradation technologies for organic pollutants, the search for new technologies more suitable for treating these new types of pollutants has become a research hotspot in recent years. Membrane filtration, adsorption, advanced oxidation, and electrochemical advanced oxidation technologies can effectively treat new organic pollutants. The electro-advanced oxidation process based on sulfate radicals is renowned for its non-selectivity, high efficiency, and environmental friendliness, and it can improve the dewatering performance of sludge after wastewater treatment. Therefore, in this study, octyl methoxycinnamate (OMC) was selected as the target pollutant. A new type of electrochemical filtration device based on the advanced oxidation process of sulfate radicals was designed, and a new type of modified carbon nanotube material electrode was synthesized to enhance its degradation effect. In a mixed system of water and acetonitrile, the efficiency of the electrochemical filtration device loaded with the modified electrode for degrading OMC is 1.54 times that at room temperature. The experimental results confirmed the superiority and application prospects of the self-designed treatment scheme for organic pollutants, providing experience and a reference for the future treatment of PPCP pollution. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

24 pages, 738 KiB  
Review
Photocuring in Lithium-Ion Battery Fabrication: Advances Towards Integrated Manufacturing
by Zihao Li, Yanlong Li, Mengting Chen, Weishan Li and Xiaoming Wei
Batteries 2025, 11(8), 282; https://doi.org/10.3390/batteries11080282 - 23 Jul 2025
Viewed by 386
Abstract
Photocuring, including photopolymerization and photocrosslinking, has emerged as a transformative manufacturing paradigm that enables the precise, rapid, and customizable fabrication of advanced battery components. This review first introduces the principles of photocuring and vat photopolymerization and their unique advantages of high process efficiency, [...] Read more.
Photocuring, including photopolymerization and photocrosslinking, has emerged as a transformative manufacturing paradigm that enables the precise, rapid, and customizable fabrication of advanced battery components. This review first introduces the principles of photocuring and vat photopolymerization and their unique advantages of high process efficiency, non-contact fabrication, ambient-temperature processing, and robust interlayer bonding. It then systematically summarizes photocured battery components, involving electrolytes, membranes, anodes, and cathodes, highlighting their design strategies. This review examines the impact of photocured materials on the battery’s properties, such as its conductivity, lithium-ion transference number, and mechanical strength, while examining how vat-photopolymerization-derived 3D architectures optimize ion transport and electrode–electrolyte integration. Finally, it discusses current challenges and future directions for photocuring-based battery manufacturing, emphasizing the need for specialized energy storage resins and scalable processes to bridge lab-scale innovations with industrial applications. Full article
Show Figures

Figure 1

12 pages, 1879 KiB  
Article
Chemical-Free Rapid Lysis of Blood Cells in a Microfluidic Device Utilizing Ion Concentration Polarization
by Suhyeon Kim, Seungbin Yoon, Hyoryung Nam, Hyeonsu Woo, Woonjae Choi, Geon Hwee Kim and Geunbae Lim
Appl. Sci. 2025, 15(15), 8127; https://doi.org/10.3390/app15158127 - 22 Jul 2025
Viewed by 208
Abstract
Blood is a widely used sample for diagnosing diseases such as malaria and diabetes. While diagnostic techniques have advanced, sample preparation remains labor-intensive, requiring steps like mixing and centrifugation. Microfluidic technologies have automated parts of this process, including cell lysis, yet challenges persist. [...] Read more.
Blood is a widely used sample for diagnosing diseases such as malaria and diabetes. While diagnostic techniques have advanced, sample preparation remains labor-intensive, requiring steps like mixing and centrifugation. Microfluidic technologies have automated parts of this process, including cell lysis, yet challenges persist. Electrical lysis offers a chemical-free, continuous approach, but lysing small cells like red blood cells requires high electric fields, which can damage electrodes and cause system failures. Here, we present a microfluidic device utilizing ion concentration polarization (ICP) for rapid blood cell lysis at 75 V. Fluorescence imaging confirmed the formation of an ion depletion region near the Nafion® nanochannel membrane, where the electric field was concentrated across the entire microchannel width. This phenomenon enabled the efficient trapping and lysis of blood cells under these conditions. Continuous blood injection achieved a lysis time of 0.3 s with an efficiency exceeding 99.4%. Moreover, lysed cell contents accumulated near the Nafion membrane, forming a concentrated lysate. This approach eliminates the need for high-voltage circuits or chemical reagents, offering a simple yet effective method for blood cell lysis. The proposed device is expected to advance lab-on-a-chip and point-of-care diagnostics by enabling rapid and continuous sample processing. Full article
Show Figures

Figure 1

19 pages, 4583 KiB  
Article
Glutathione and Magnetic Nanoparticle-Modified Nanochannels for the Detection of Cadmium (II) in Cereal Grains
by Wei Hu, Xinyue Xiang, Donglei Jiang, Na Zhang and Lifeng Wang
Magnetochemistry 2025, 11(7), 61; https://doi.org/10.3390/magnetochemistry11070061 - 21 Jul 2025
Viewed by 249
Abstract
We developed a novel and portable magnetic nanochannel electrochemical sensor for the sensitive detection of cadmium ions (Cd2+), which pose serious risks to food safety and human health. The sensor was fabricated by co-modifying an anodic aluminum oxide (AAO) nanochannel membrane [...] Read more.
We developed a novel and portable magnetic nanochannel electrochemical sensor for the sensitive detection of cadmium ions (Cd2+), which pose serious risks to food safety and human health. The sensor was fabricated by co-modifying an anodic aluminum oxide (AAO) nanochannel membrane with a composite of glutathione (GSH) and ferric oxide nanoparticles (Fe3O4), denoted as GSH@Fe3O4. This modified membrane was then integrated with a screen-printed carbon electrode (SPCE) to construct the GSH@Fe3O4/GSH@AAO/SPCE sensing platform. The performance of the sensor was evaluated using differential pulse voltammetry (DPV), which demonstrated a strong linear correlation between the peak current response and the concentration of Cd2+ in the range of 5–120 μg/L. The calibration equation was IDPV(μA) = −0.31 + 0.98·CCd2+(μg/L), with an excellent correlation coefficient (R2 = 0.999, n = 3). The calculated limit of detection (LOD) was as low as 0.1 μg/L, indicating the high sensitivity of the system. These results confirm the successful construction of the GSH@Fe3O4/GSH@AAO/SPCE portable nanochannel sensor. This innovative sensing platform provides a rapid, sensitive, and user-friendly approach for the on-site monitoring of heavy metal contamination in agricultural products, especially grains. Full article
Show Figures

Figure 1

22 pages, 7389 KiB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 344
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

37 pages, 5333 KiB  
Review
The Potential of Microbial Fuel Cells as a Dual Solution for Sustainable Wastewater Treatment and Energy Generation: A Case Study
by Shajjadur Rahman Shajid, Monjur Mourshed, Md. Golam Kibria and Bahman Shabani
Energies 2025, 18(14), 3725; https://doi.org/10.3390/en18143725 - 14 Jul 2025
Viewed by 404
Abstract
Microbial fuel cells (MFCs) are bio-electrochemical systems that harness microorganisms to convert organic pollutants in wastewater directly into electricity, offering a dual solution for sustainable wastewater treatment and renewable energy generation. This paper presents a holistic techno-economic and environmental feasibility assessment of large-scale [...] Read more.
Microbial fuel cells (MFCs) are bio-electrochemical systems that harness microorganisms to convert organic pollutants in wastewater directly into electricity, offering a dual solution for sustainable wastewater treatment and renewable energy generation. This paper presents a holistic techno-economic and environmental feasibility assessment of large-scale MFC deployment in Dhaka’s industrial zone, Bangladesh, as a relevant case study. Here, treating 100,000 cubic meters of wastewater daily would require a capital investment of approximately USD 500 million, with a total project cost ranging between USD 307.38 million and 1.711 billion, depending on system configurations. This setup has an estimated theoretical energy recovery of 478.4 MWh/day and a realistic output of 382 MWh/day, translating to a per-unit energy cost of USD 0.2–1/kWh. MFCs show great potential for treating wastewater and addressing energy challenges. However, this paper explores remaining challenges, including high capital costs, electrode and membrane inefficiencies, and scalability issues. Full article
(This article belongs to the Special Issue A Circular Economy Perspective: From Waste to Energy)
Show Figures

Figure 1

17 pages, 913 KiB  
Review
Cell Membrane Capacitance (Cm) Measured by Bioimpedance Spectroscopy (BIS): A Narrative Review of Its Clinical Relevance and Biomarker Potential
by Steven Brantlov, Leigh C. Ward, Søren Isidor, Christian Lodberg Hvas, Charlotte Lock Rud and Lars Jødal
Sensors 2025, 25(14), 4362; https://doi.org/10.3390/s25144362 - 12 Jul 2025
Viewed by 464
Abstract
Cell membrane capacitance (Cm) is a potential biomarker that reflects the structural and functional integrity of cell membranes. It is essential for physiological processes such as signal transduction, ion transport, and cellular homeostasis. In clinical practice, Cm can be [...] Read more.
Cell membrane capacitance (Cm) is a potential biomarker that reflects the structural and functional integrity of cell membranes. It is essential for physiological processes such as signal transduction, ion transport, and cellular homeostasis. In clinical practice, Cm can be determined using bioimpedance spectroscopy (BIS), a non-invasive technique for analysing the intrinsic electrical properties of biological tissues across a range of frequencies. Cm may be relevant in various clinical fields, where high capacitance is associated with healthy and intact membranes, while low capacitance indicates cellular damage or disease. Despite its promise as a prognostic indicator, several knowledge gaps limit the broader clinical application of Cm. These include variability in measurement techniques (e.g., electrode placement, frequency selection), the lack of standardised measurement protocols, uncertainty on how Cm is related to pathology, and the relatively low amount of Cm research. By addressing these gaps, Cm may become a valuable tool for examining cellular health, early disease detection, and evaluating treatment efficacy in clinical practice. This review explores the fundamental principles of Cm measured with the BIS technique, its mathematical basis and relationship to the biophysical Cole model, and its potential clinical applications. It identifies current gaps in our knowledge and outlines future research directions to enhance the understanding and use of Cm. For example, Cm has shown promise in identifying membrane degradation in sepsis, predicting malnutrition in anorexia nervosa, and as a prognostic factor in cancer. Full article
(This article belongs to the Special Issue Biomedical Imaging, Sensing and Signal Processing)
Show Figures

Figure 1

11 pages, 1422 KiB  
Article
Towards Precision Nutrition: A Novel Smartphone-Connected Biosensor for Point-of-Care Detection of β-Hydroxybutyrate in Human Blood and Saliva
by Cristina Tortolini, Massimiliano Caprio, Daniele Gianfrilli, Andrea Lenzi and Riccarda Antiochia
Sensors 2025, 25(14), 4336; https://doi.org/10.3390/s25144336 - 11 Jul 2025
Viewed by 380
Abstract
Precision nutrition is an emerging approach that tailors dietary recommendations based on an individual’s unique genetic, metabolic, microbiome, and lifestyle factors. β-hydroxybutyrate (β-HB) is a key ketone body produced during fat metabolism, especially in states of fasting, low-carbohydrate intake, or prolonged exercise. Therefore, [...] Read more.
Precision nutrition is an emerging approach that tailors dietary recommendations based on an individual’s unique genetic, metabolic, microbiome, and lifestyle factors. β-hydroxybutyrate (β-HB) is a key ketone body produced during fat metabolism, especially in states of fasting, low-carbohydrate intake, or prolonged exercise. Therefore, monitoring β-HB levels provides valuable insights into an individual’s metabolic state, making it an essential biomarker for precision and personalized nutrition. A smartphone-connected electrochemical biosensor for single-use, rapid, low-cost, accurate, and selective detection of β-HB in whole blood and saliva at the Point-of-Care (POC) is reported. A graphite screen-printed carbon electrode modified with potassium ferricyanide (Fe(III)GSPE) was used as an electrode platform for the deposition of β-hydroxybutyrate dehydrogenase (HBDH), nicotinamide adenine dinucleotide oxidized form (NAD+), and chitosan nanoparticles (ChitNPs). An outer poly(vinyl) chloride (PVC) diffusion-limiting membrane was used to protect the modified electrode. The biosensor showed a linear range in the clinically relevant range, between 0.4 and 8 mM, with a detection limit (LOD) of 0.1 mM. The biosensor was tested on human blood and saliva samples, and the results were compared to those obtained with a commercial ketone meter, showing excellent agreement. Full article
(This article belongs to the Special Issue Feature Papers in Biomedical Sensors 2025)
Show Figures

Figure 1

20 pages, 2436 KiB  
Article
Advanced Hybrid Nanocatalysts for Green Hydrogen: Carbon-Supported MoS2 and ReS2 as Noble Metal Alternatives
by Maria Jarząbek-Karnas, Zuzanna Bojarska, Patryk Klemczak, Łukasz Werner and Łukasz Makowski
Int. J. Mol. Sci. 2025, 26(14), 6640; https://doi.org/10.3390/ijms26146640 - 10 Jul 2025
Viewed by 515
Abstract
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. [...] Read more.
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. Due to the high cost and limited availability of noble metals, there is growing interest in developing alternative, low-cost catalytic materials. In recent years, two-dimensional transition metal dichalcogenides (2D TMDCs), such as molybdenum disulfide (MoS2) and rhenium disulfide (ReS2), have attracted considerable attention due to their promising electrochemical properties for hydrogen evolution reactions (HERs). These materials exhibit unique properties, such as a high surface area or catalytic activity localized at the edges of the layered structure, which can be further enhanced through defect engineering or phase modulation. To increase the catalytically active surface area, the investigated materials were deposited on a carbon-based support—Vulcan XC-72R—selected for its high electrical conductivity and large specific surface area. This study investigated the physicochemical and electrochemical properties of six catalyst samples with varying MoS2 and ReS2 to carbon support ratios. Among the composites analyzed, the best sample on MoS2 (containing the most carbon soot) and the best sample on ReS2 (containing the least carbon soot) were selected. These were then used as cathode catalysts in an experimental PEM electrolyzer setup. The results confirmed satisfactory catalytic activity of the tested materials, indicating their potential as alternatives to conventional noble metal-based catalysts and providing a foundation for further research in this area. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

19 pages, 5124 KiB  
Article
Gradient Silica Loading: Performance Analysis of PEMFCs Under Temperature-Humidity Variations
by Qiang Bai, Chuangyu Hsieh, Zhenghong Liu, Qipeng Chen and Fangbor Weng
Batteries 2025, 11(7), 259; https://doi.org/10.3390/batteries11070259 - 10 Jul 2025
Viewed by 303
Abstract
Fuel cells, as one of the most promising alternatives to lithium-ion batteries for portable power systems, still face significant challenges. A critical issue is their substantial performance degradation under low-humidity conditions. To address this, researchers commonly add silica to components. This study employs [...] Read more.
Fuel cells, as one of the most promising alternatives to lithium-ion batteries for portable power systems, still face significant challenges. A critical issue is their substantial performance degradation under low-humidity conditions. To address this, researchers commonly add silica to components. This study employs a control variable method to systematically investigate the impact of four parameters—gas stoichiometry, temperature, humidity, and silica content—on fuel cell performance. Initially, the effects of gas stoichiometry, temperature, and humidity on performance were examined. Subsequently, hydrophilic silica was incorporated into the membrane electrode assembly (MEA) to assess its potential for improving performance in low-humidity environments. Experimental results reveal that under 100% humidification, silica addition had a minimal impact on performance, particularly at high temperatures where performance improved by only 2.5%. This is attributed to increased water production at elevated temperatures, which—when combined with silica’s water retention properties—exacerbates flooding. However, when humidity was reduced to 50%, silica incorporation significantly enhanced performance. At high temperatures, silica addition resulted in a 126.2% performance improvement, demonstrating its efficacy as a rational strategy under low-humidity conditions. Full article
(This article belongs to the Special Issue Challenges, Progress, and Outlook of High-Performance Fuel Cells)
Show Figures

Figure 1

16 pages, 2609 KiB  
Article
Comparative Life Cycle and Techno-Economic Assessment of Constructed Wetland, Microbial Fuel Cell, and Their Integration for Wastewater Treatment
by Nicholas Miwornunyuie, Samuel O. Alamu, Guozhu Mao, Nihed Benani, James Hunter and Gbekeloluwa Oguntimein
Clean Technol. 2025, 7(3), 57; https://doi.org/10.3390/cleantechnol7030057 - 10 Jul 2025
Viewed by 426
Abstract
This study systematically compares the environmental and economic performance of three wastewater treatment systems: constructed wetlands (CWs), microbial fuel cells (MFCs), and their integration (CW–MFC). Lab-scale units of each system were constructed using a multi-media matrix (gravel, zeolite, and granular activated carbon), composite [...] Read more.
This study systematically compares the environmental and economic performance of three wastewater treatment systems: constructed wetlands (CWs), microbial fuel cells (MFCs), and their integration (CW–MFC). Lab-scale units of each system were constructed using a multi-media matrix (gravel, zeolite, and granular activated carbon), composite native wetland species (Juncus effusus, Iris sp., and Typha angustifolia), carbon-based electrodes (graphite), and standard inoculum for CW and CW–MFC. The MFC system employed carbon-based electrodes and proton-exchange membrane. The experimental design included a parallel operation of all systems treating domestic wastewater under identical hydraulic and organic loading rates. Environmental impacts were quantified across construction and operational phases using life cycle assessment (LCA) with GaBi software 9.2, employing TRACI 2021 and ReCiPe 2016 methods, while techno-economic analysis (TEA) evaluated capital and operational costs. The key results indicate that CW demonstrates the lowest global warming potential (142.26 kg CO2-eq) due to its reliance on natural biological processes. The integrated CW–MFC system achieved enhanced pollutant removal (82.8%, 87.13%, 78.13%, and 90.3% for COD, NO3, TN, and TP) and bioenergy generation of 2.68 kWh, balancing environmental benefits with superior treatment efficiency. In contrast, the stand-alone MFC shows higher environmental burdens, primarily due to energy-intensive material requirements and fabrication processes. TEA results highlight CW as the most cost-effective solution (USD 627/m3), with CW–MFC emerging as a competitive alternative when considering environmental benefits and operational efficiencies (USD 718/m3). This study highlights the potential of hybrid systems, such as CW–MFC, to advance sustainable wastewater treatment technologies by minimizing environmental impacts and enhancing resource recovery, supporting their broader adoption in future water management strategies. Future research should focus on optimizing materials and energy use to improve scalability and feasibility. Full article
(This article belongs to the Collection Water and Wastewater Treatment Technologies)
Show Figures

Figure 1

18 pages, 2455 KiB  
Article
Chemical Stability of PFSA Membranes in Heavy-Duty Fuel Cells: Fluoride Emission Rate Model
by Luke R. Johnson, Xiaohua Wang, Calita Quesada, Xiaojing Wang, Rangachary Mukundan and Rajesh Ahluwalia
Electrochem 2025, 6(3), 25; https://doi.org/10.3390/electrochem6030025 - 4 Jul 2025
Viewed by 412
Abstract
Laboratory data from in-cell tests at and near open circuit potentials (OCV) and ex-situ H2O2 vapor exposure tests are used to develop a fluoride emission rate (FER) model for a state-of-the-art 12-µm thin, low equivalent weight, long-chain perfluorosulfonic acid (PFSA) [...] Read more.
Laboratory data from in-cell tests at and near open circuit potentials (OCV) and ex-situ H2O2 vapor exposure tests are used to develop a fluoride emission rate (FER) model for a state-of-the-art 12-µm thin, low equivalent weight, long-chain perfluorosulfonic acid (PFSA) ionomer membrane that is mechanically reinforced with expanded PTFE and chemically stabilized with 2 mol% cerium as an anti-oxidant. The anode FER at OCV linearly correlates with O2 crossover from the cathode and the high yield of H2O2 at anode potentials, as observed in rotating ring disk electrode (RRDE) studies. The cathode FER may be linked to the energetic formation of reactive hydroxyl radicals (·OH) from the decomposition of H2O2 produced as an intermediate in the two-electron ORR pathway at high cathode potentials. Both anode and cathode FERs are significantly enhanced at low relative humidity and high temperatures. The modeled FER is strongly influenced by the gradients in water activity and cerium concentration that develops in operating fuel cells. Membrane stability maps are constructed to illustrate the relationship between the cell voltage, temperature, and relative humidity for FER thresholds that define H2 crossover failure by chemical degradation over a specified lifetime. Full article
Show Figures

Figure 1

25 pages, 4500 KiB  
Article
Cost-Effective Bimetallic Catalysts for Green H2 Production in Anion Exchange Membrane Water Electrolyzers
by Sabrina Campagna Zignani, Marta Fazio, Mariarosaria Pascale, Chiara Alessandrello, Claudia Triolo, Maria Grazia Musolino and Saveria Santangelo
Nanomaterials 2025, 15(13), 1042; https://doi.org/10.3390/nano15131042 - 4 Jul 2025
Viewed by 454
Abstract
Green hydrogen production from water electrolysis (WE) is one of the most promising technologies to realize a decarbonized future and efficiently utilize intermittent renewable energy. Among the various WE technologies, the emerging anion exchange membrane (AEMWE) technology shows the greatest potential for producing [...] Read more.
Green hydrogen production from water electrolysis (WE) is one of the most promising technologies to realize a decarbonized future and efficiently utilize intermittent renewable energy. Among the various WE technologies, the emerging anion exchange membrane (AEMWE) technology shows the greatest potential for producing green hydrogen at a competitive price. To achieve this goal, simple methods for the large-scale synthesis of efficient and low-cost electrocatalysts are needed. This paper proposes a very simple and scalable process for the synthesis of nanostructured NiCo- and NiFe-based electrode materials for a zero-gap AEMWE full cell. For the preparation of the cell anode, oxides with different Ni molar fractions (0.50 or 0.85) are synthesized by the sol–gel method, followed by calcination in air at different temperatures (400 or 800 °C). To fabricate the cell cathode, the oxides are reduced in a H2/Ar atmosphere. Electrochemical testing reveals that phase purity and average crystal size significantly influence cell performance. Highly pure and finely grained electrocatalysts yield higher current densities at lower overpotentials. The best performing membrane electrode assembly exhibits a current density of 1 A cm−2 at 2.15 V during a steady-state 150 h long stability test with 1 M KOH recirculating through the cell, the lowest series resistance at any cell potential (1.8 or 2.0 V), and the highest current density at the cut-off voltage (2.2 V) both at the beginning (1 A cm−2) and end of tests (1.78 A cm−2). The presented results pave the way to obtain, via simple and scalable techniques, cost-effective catalysts for the production of green hydrogen aimed at a wider market penetration by AEMWE. Full article
Show Figures

Figure 1

Back to TopTop