Gradient Silica Loading: Performance Analysis of PEMFCs Under Temperature-Humidity Variations
Abstract
1. Introduction
2. Materials and Methods
2.1. Single Cell Structure
2.1.1. Gas Diffusion Layer (GDL)
2.1.2. Catalyst Layer
2.1.3. Membrane Electrode Assembly (MEA)
2.1.4. PEM
2.1.5. Graphite Flow Plate
2.1.6. Collector Plate
2.1.7. End Plate
2.2. Catayst Coated Membrane CCM
2.2.1. Silica Preparation
2.2.2. The Specific Process of CCM
- (1)
- Mix the catalyst with 5 wt% Nafion solution and then mix isopropyl alcohol solvent and deionized water. The ratio of catalyst to Nafion content is 2:1. Then place it in an ultrasonic oscillator as shown in Figure 1 for two hours to allow the slurry to be evenly distributed.
- (2)
- First, clean the automatic spraying machine pipeline with isopropyl alcohol, then open the air pressure bottle and set the heating plate temperature to 80 °C.
- (3)
- After the heating plate reaches the set temperature, the slurry is placed in the automatic spraying machine for positioning testing to determine whether the slurry can be sprayed normally.
- (4)
- Set the spraying parameters and do path testing to determine the correctness of the spraying position.
- (5)
- After spraying, place the MEA in a circulation oven and bake for eight hours.
- (6)
- Use protective paper for hot pressing to complete the production of the MEA.
2.2.3. Catalyst Layer Weight Detection
2.3. Fuel Cell Assembly Process
- (1)
- Clean bipolar plates and graphite flow field plates with industrial-grade ethanol;
- (2)
- Assemble end plates and current collector plates, insert ten M6 fixation bolts through mounting holes, and apply helical PTFE tape wraps for electrical insulation between electrodes;
- (3)
- Stack the end plates, current collector plates, graphite flow channel plates, membrane electrode groups, graphite flow channel plates, current collector plates, and end plates in sequence and tighten them with nuts, preload is 2 MPa.
2.4. Activation and AC Impedance
2.5. Calculation of Relative Humidity
2.6. Gas Stoichiometry
3. Results
3.1. Performance Changes in Nafion Membranes of Different Weights Under Different Humidification
3.1.1. Performance Changes Under Different Nafion and Humidification at 65 °C
3.1.2. Performance Changes Under Different Nafion and Humidification at 80 °C
3.1.3. Performance Changes Under Different Nafion and Humidification at 85 °C
3.2. Added SiO2 to Improve Moisturizing Ability
3.2.1. Fuel Cell Performance After Adding SiO2 at 65 °C
3.2.2. Fuel Cell Performance After Adding SiO2 at 80 °C
3.2.3. Fuel Cell Performance After Adding SiO2 at 85 °C
3.3. Comprehensive Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klosok-Bazan, I.; Gono, M.; Svehlakova, H. Water for Green Hydrogen Production. In Proceedings of the 2024 24th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 15–17 May 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, C.; Liu, G.; Qin, Y.; Zhuang, Y. Analysis of a combined proton exchange membrane fuel cell and organic Rankine cycle system for waste heat recovery. Int. J. Green Energy 2020, 18, 271–281. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Z.; Ni, M. Modeling of a novel SOFC-PEMFC hybrid system coupled with thermal swing adsorption for H2 purification: Parametric and exergy analyses. Energy Convers. Manag. 2018, 174, 802–813. [Google Scholar] [CrossRef]
- Hou, Q.; Ge, P.; Lu, G.; Zhang, H. A novel PEMFC-CHP system for methanol reforming as fuel purified by hydrogen permeation alloy membrane. Case Stud. Therm. Eng. 2022, 36, 102176. [Google Scholar] [CrossRef]
- Mubin, A.N.A.; Bahrom, M.H.; Azri, M.; Ibrahim, Z.; Rahim, N.A.; Raihan, S.R.S. Analysis performance of proton exchange membrane fuel cell (PEMFC). IOP Conf. Ser. Mater. Sci. Eng. 2017, 210, 012052. [Google Scholar] [CrossRef]
- Oksuztepe, E.; Bayrak, Z.U.; Kaya, U. Effect of flight level to maximum power utilization for PEMFC/supercapacitor hybrid UAV with switched reluctance motor thruster. Int. J. Hydrogen Energy 2023, 48, 11003–11016. [Google Scholar] [CrossRef]
- Oh, T.H. Conceptual design of small unmanned aerial vehicle with proton exchange membrane fuel cell system for long endurance mission. Energy Convers. Manag. 2018, 176, 349–356. [Google Scholar] [CrossRef]
- Bayrak, Z.U.; Kaya, U.; Oksuztepe, E. Investigation of PEMFC performance for cruising hybrid powered fixed-wing electric UAV in different temperatures. Int. J. Hydrogen Energy 2020, 45, 7036–7045. [Google Scholar] [CrossRef]
- Lee, H.F.; Wang, P.C.; Chen-Yang, Y.W. An electrospun hygroscopic and electron-conductive core-shell silica@ carbon nanofiber for microporous layer in proton-exchange membrane fuel cell. J. Solid State Electrochem. 2019, 23, 971–984. [Google Scholar] [CrossRef]
- Vani, R.; Sundara, R.; Haridoss, P. Analysis of crosslinked polyvinyl alcohol membranes with silica fillers in polymer electrolyte membrane fuel cells. Mater. Res. Express 2019, 6, 105526. [Google Scholar]
- Li, J.; Xu, G.; Luo, X.; Xiong, J.; Liu, Z.; Cai, W. Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application. Appl. Energy 2018, 213, 408–414. [Google Scholar] [CrossRef]
- Kuo, Y.J.; Lin, H.L. Effects of mesoporous fillers on properties of polybenzimidazole composite membranes for high-temperature polymer fuel cells. Int. J. Hydrogen Energy 2018, 43, 4448–4457. [Google Scholar] [CrossRef]
- Xu, G.; Wei, Z.; Li, S.; Li, J.; Yang, Z.; Grigoriev, S.A. In-situ sulfonation of targeted silica-filled Nafion for high-temperature PEM fuel cell application. Int. J. Hydrogen Energy 2019, 44, 29711–29716. [Google Scholar] [CrossRef]
- Son, B.; Oh, K.; Park, S.; Lee, T.G.; Lee, D.H.; Kwon, O. Study of morphological characteristics on hydrophilicity enhanced SiO2/Nafion composite membranes by using multimode atomic force microscopy. Int. J. Energy Res. 2019, 43, 4157–4169. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, R.; Zhong, Y.; Jiang, F.; Hu, M.; Yu, Q. Nafion/IL intermediate temperature proton exchange membranes improved by mesoporous hollow silica spheres. Fuel Cells 2018, 18, 389–396. [Google Scholar] [CrossRef]
- Lee, G.; Kim, J.; Park, J.; Jeon, Y.; Park, J.; Shul, Y.-G. Nano-Composite Filler of Heteropolyacid-Imidazole Modified Mesoporous Silica for High Temperature PEMFC at Low Humidity. Nanomaterials 2022, 12, 1230. [Google Scholar] [CrossRef] [PubMed]
- Seck, S.; Magana, S.; Prébé, A.; Buvat, P.; Bigarré, J.; Chauveau, J.; Améduri, B.; Gérard, J.-F.; Bounor-Legaré, V. New fluorinated polymer-based nanocomposites via combination of sol-gel chemistry and reactive extrusion for polymer electrolyte membranes fuel cells (PEMFCs). Mater. Chem. Phys. 2020, 252, 123004. [Google Scholar] [CrossRef]
- Choi, E.; Jang, S.; Kim, S.M. Patterned mesoporous TiO2 microplates embedded in Nafion® membrane for high temperature/low relative humidity polymer electrolyte membrane fuel cell operation. Renew. Energy 2021, 180, 203–212. [Google Scholar]
- Lee, C.; Na, H.; Jeon, Y.; Hwang, H.J.; Kim, H.-J.; Mochida, I.; Yoon, S.-H.; Park, J.-I.; Shul, Y.-G. Poly (ether imide) nanofibrous web composite membrane with SiO2/heteropolyacid ionomer for durable and high-temperature polymer electrolyte membrane (PEM) fuel cells. J. Ind. Eng. Chem. 2019, 74, 7–13. [Google Scholar] [CrossRef]
- Hwang, S.; Lee, H.G.; Jeong, Y.G.; Choi, C.; Hwang, I.; Song, S.; Nam, S.Y.; Lee, J.H.; Kim, K. Polymer electrolyte membranes containing functionalized organic/inorganic composite for polymer electrolyte membrane fuel cell applications. Int. J. Mol. Sci. 2022, 23, 14252. [Google Scholar] [CrossRef]
- Charradi, K.; Ahmed, Z.; Aranda, P.; Chtourou, R. Silica/montmorillonite nanoarchitectures and layered double hydroxide-SPEEK based composite membranes for fuel cells applications. Appl. Clay Sci. 2019, 174, 77–85. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X. AI-based proton exchange membrane fuel cell inlet relative humidity control. IEEE Access 2021, 9, 158496–158507. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, S.; Li, K.; Zhou, J.; Zhang, C.; Wang, G.; Zhang, T. An Effective Force-Temperature-Humidity Coupled Modeling for PEMFC Performance Parameter Matching by Using CFD and FEA Co-Simulation. Sustainability 2022, 14, 14416. [Google Scholar] [CrossRef]
- Hou, S.; Ye, Y.; Liao, S.; Ren, J.; Wang, H.; Yang, P.; Du, K.; Li, J.; Peng, H. Enhanced low-humidity performance in a proton exchange membrane fuel cell by developing a novel hydrophilic gas diffusion layer. Int. J. Hydrogen Energy 2020, 45, 937–944. [Google Scholar] [CrossRef]
- Xie, Z.; Tian, L.; Zhang, W.; Ma, Q.; Xing, L.; Xu, Q.; Khotseng, L.; Su, H. Enhanced low-humidity performance of proton exchange membrane fuel cell by incorporating phosphoric acid-loaded covalent organic framework in anode catalyst layer. Int. J. Hydrogen Energy 2021, 46, 10903–10912. [Google Scholar] [CrossRef]
- Zhao, J.; Tu, Z.; Chan, S.H. In-situ measurement of humidity distribution and its effect on the performance of a proton exchange membrane fuel cell. Energy 2022, 239, 122270. [Google Scholar] [CrossRef]
- Wang, B.; Lin, R.; Liu, D.; Xu, J.; Feng, B. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method. Int. J. Hydrogen Energy 2019, 44, 13737–13743. [Google Scholar] [CrossRef]
- Shao, Y.; Xu, L.; Hu, Z.; Xu, L.; Zhang, X.; Zhao, G.; Li, J.; Ouyang, M. Mechanistic investigation on the voltage collapse of polymer electrolyte membrane fuel cell under high-temperature and low-humidity conditions. J. Power Sources 2023, 581, 233520. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Bi, G.; Liu, X.; Wang, L.; Wan, Y.; Sun, H. Modeling and Experimental Investigation of the Anode Inlet Relative Humidity Effect on a PEM Fuel Cell. Energies 2022, 15, 4532. [Google Scholar] [CrossRef]
- Daricik, F.; Topcu, A.; Tüccar, G.; Aydin, K. Effects of Fibre Orientations and Flow Channel Patterns on the Durability of Composite Bipolar Plates Used in PEMFCs. In Proceedings of the 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, 15–17 April 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Thongsuros, S.; Wattanutchariya, W.; Passadee, N. Optimization of polymer composite forming parameters for bipolar plate fabrication. In Proceedings of the 2011 IEEE International Conference on Quality and Reliability, Bangkok, Thailand, 14–17 September 2011; pp. 62–66. [Google Scholar] [CrossRef]
- Munakata, H.; Chiba, H.; Kanamura, K. Enhancement on proton conductivity of inorganic–organic composite electrolyte membrane by addition of sulfonic acid group. Solid State Ion. 2005, 176, 2445–2450. [Google Scholar] [CrossRef]
- Chen, J.; Qin, N.; Fan, R.; Jin, L.; Zheng, J.; Ming, P.; Zhang, C.; Zheng, J.P. Fumed silica additives enables tunable wettability of the resin for improved composite bipolar plate. Compos. Sci. Technol. 2024, 258, 110882. [Google Scholar] [CrossRef]
- Lee, Y.; Kwak, S.H.; Kim, S.; Son, H.J.; Kim, J.Y.; Kim, H.Y.; Joo, S.H. Mesoporous Silica-Stabilized Ceria Antioxidants for Enhancing PEMFC Durability. ChemElectroChem 2025, 12, e202500056. [Google Scholar] [CrossRef]
- Xu, G.; Ke, A.; Ji, F.; Liu, Y.; Zhao, Z.; Lv, R.; Huang, B.; Li, J.; Deng, C.; Sun, Y.; et al. Non-destructively incorporating ceria in Nafion membrane as hydroxyl radical scavenging agent for long-term PEMFC application. Fuel 2024, 361, 130706. [Google Scholar] [CrossRef]
- Cosenza, A.; Delafontaine, L.; Ly, A.; Wang, H.; Murphy, E.; Liu, Y.; Specchia, S.; Atanassov, P. Novel acid-free process intensification for the synthesis of non-precious metal-nitrogen-carbon electrocatalysts for oxygen reduction reaction. J. Power Sources 2023, 556, 232382. [Google Scholar] [CrossRef]
- Matsui, T.; Fujinaga, T.; Shimizu, R.; Ozeki, T.; Muroyama, H.; Eguchi, K. Degradation Behavior of Solid Oxide Fuel Cells Operated at High Fuel Utilization. J. Electrochem. Soc. 2021, 168, 104509. [Google Scholar] [CrossRef]
- Yagizatli, Y.; Ulas, B.; Sahin, A.; Ar, I. Preparation and Characterization of SPEEK–PVA Blend Membrane Additives with Colloidal Silica for Proton Exchange Membrane Fuel Cell. J. Polym. Environ. 2024, 32, 4699–4715. [Google Scholar] [CrossRef]
References | Temperature | Humidity |
---|---|---|
Yanpo Song [22] | 70 °C | 30–90% RH |
Zhiming Zhang [23] | 60–80 °C | - |
Sanying Hou [24] | 60 °C | 50% RH |
Zheng Xie [25] | 60 °C | 38% RH |
Bohan Wang [27] | 65 °C | - |
Yangbin Shao [28] | 80–85 °C | 10–20% RH |
Lu Zhang [29] | 60 °C | 25–100% RH |
Humidity | Performance (mA/cm2) | Performance Improvement | |||
---|---|---|---|---|---|
SiO2 (0 wt%) | SiO2 (2 wt%) | SiO2 (3 wt%) | SiO2 (5 wt%) | ||
100% | 559.12 (65 °C) | 646.73 (65 °C) | 531.6 (65 °C) | 444.37 (65 °C) | 15.7% |
577.56 (80 °C) | 617.52 (80 °C) | 514.57 (80 °C) | 430.08 (80 °C) | 6.9% | |
601.68 (85 °C) | 616.80 (85 °C) | 507.59 (80 °C) | 596.44 (80 °C) | 2.5% | |
50% | 311.43 (65 °C) | 497.00 (65 °C) | 401.94 (65 °C) | 195.77 (65 °C) | 59.6% |
197.23 (80 °C) | 366.00 (80 °C) | 233.22 (65 °C) | 282.35 (65 °C) | 85.6% | |
170.79 (85 °C) | 386.28 (85 °C) | 251.49 (85 °C) | 278.03 (85 °C) | 126.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Q.; Hsieh, C.; Liu, Z.; Chen, Q.; Weng, F. Gradient Silica Loading: Performance Analysis of PEMFCs Under Temperature-Humidity Variations. Batteries 2025, 11, 259. https://doi.org/10.3390/batteries11070259
Bai Q, Hsieh C, Liu Z, Chen Q, Weng F. Gradient Silica Loading: Performance Analysis of PEMFCs Under Temperature-Humidity Variations. Batteries. 2025; 11(7):259. https://doi.org/10.3390/batteries11070259
Chicago/Turabian StyleBai, Qiang, Chuangyu Hsieh, Zhenghong Liu, Qipeng Chen, and Fangbor Weng. 2025. "Gradient Silica Loading: Performance Analysis of PEMFCs Under Temperature-Humidity Variations" Batteries 11, no. 7: 259. https://doi.org/10.3390/batteries11070259
APA StyleBai, Q., Hsieh, C., Liu, Z., Chen, Q., & Weng, F. (2025). Gradient Silica Loading: Performance Analysis of PEMFCs Under Temperature-Humidity Variations. Batteries, 11(7), 259. https://doi.org/10.3390/batteries11070259