Photocuring in Lithium-Ion Battery Fabrication: Advances Towards Integrated Manufacturing
Abstract
1. Introduction
Maximum Printing Speed (mm3/h) | Horizontal Resolution (μm) | Layer Thickness (μm) | |
---|---|---|---|
SLA | ~105 | 1–50 | 10–200 |
DLP | ~106 | 10–50 | 1–100 |
TPL | ~104 | 0.1–1 | 0.1–5 |
- (1)
- VPP can achieve spatial resolutions far exceeding other 3D printing methods [24]. The featured high precision enables it to fabricate microscale battery structures and microbatteries [25]. Furthermore, the technology delivers outstanding surface quality with submicron-level roughness [26], minimizing inter-track and interlayer gaps.
- (2)
- VPP uniquely enables the fabrication of complex 3D battery architectures. Unlike material jetting techniques that are limited to thin 2D deposits, or material extrusion methods that are restricted by nozzle dimensions and toolpaths, VPP enables the fabrication of complex geometries, including hollow cavities, cantilevered features, overhanging elements, interpenetrating networks, and structures embedded within or beneath light-permeable substrates, which empowers the creation of optimized electrode and electrolyte designs where tailored porosity and the maximized surface area directly enhance ion transport kinetics and electrochemical performance.
- (3)
- VPP can achieve exceptional interlayer bonding through photopolymerization and photocrosslinking, forming robust covalent bonds between successive layers of both identical and dissimilar materials. Unlike physically stacked layers in fused filament fabrication or selective laser sintering, both of which are prone to delamination under mechanical or electrochemical stress, VPP’s chemical bonding ensures the seamless integration of battery components at the molecular level. This results in structurally monolithic batteries, which are critical for streamlining the fabrication process and minimizing interfacial resistance in battery electrodes and electrolytes.
- (4)
- VPP is a nozzle-free approach that additionally avoids common reliability issues associated with extrusion techniques, such as nozzle clogging and material dragging when processing particle-loaded inks or high-viscosity suspensions [27].
2. Electrolytes
2.1. Influence of Plasticizers
2.2. SPEs with a PVDF-HFP Matrix
2.3. Gel Polymer Electrolytes with Ionic Liquids
2.4. Single-Ion-Conducting Polymer Electrolytes
2.5. Organic–Inorganic Hybrid Electrolytes
2.6. 3D Electrolytes
2.7. In Situ Photocured SPEs
3. Membranes
4. Anodes
5. Cathodes
6. Other Battery Components
7. Conclusions
- (1)
- Most commercially available photocurable resins lack intrinsic electrochemical activity, necessitating post-processing to convert them into functional battery materials, which adds complexity and may compromise structural integrity. Limitations in materials currently restrict demonstrations primarily to the laboratory scale.
- (2)
- Multi-material integration remains challenging due to the incompatibility of post-processing protocols, solvents’ non-orthogonality, and disparities in curing rates. Current studies focus solely on photocuring single battery components such as the electrolyte or electrodes, while batteries incorporating multiple photocured components, let alone fully photocured batteries, remain entirely unexplored.
- (3)
- While VPP excels in prototyping, its processing speed and applicability to large-scale production are significantly constrained, which is primarily due to the relatively small area that can be simultaneously processed by light. Laser-based techniques such as SLA and TPL are particularly limited by throughput and thus may be more suitable for the microbattery industry.
Author Contributions
Funding
Conflicts of Interest
References
- Li, Z.; Wei, X.; Yang, Z. Pulsed Laser 3D-Micro/Nanostructuring of Materials for Electrochemical Energy Storage and Conversion. Prog. Mater. Sci. 2023, 133, 101052. [Google Scholar] [CrossRef]
- Long, J.W.; Dunn, B.; Rolison, D.R.; White, H.S. 3D Architectures for Batteries and Electrodes. Adv. Energy Mater. 2020, 10, 2002457. [Google Scholar] [CrossRef]
- Shaju, A.; Ummer, R.P.; Thomas, S.; Kandasubramanian, B. Novel Approaches in 3D Printing Techniques for the Development of High-Performance Micro-Batteries. J. Electron. Mater. 2025, 54, 1531–1552. [Google Scholar] [CrossRef]
- Narita, K.; Saccone, M.A.; Sun, Y.; Greer, J.R. Additive Manufacturing of 3D Batteries: A Perspective. J. Mater. Res. 2022, 37, 1535–1546. [Google Scholar] [CrossRef]
- Mottaghi, M.; Pearce, J.M. A Review of 3D Printing Batteries. Batteries 2024, 10, 110. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, W.; Zhang, X.; Yuan, Y.; Wang, C.; Ye, Y.; Huang, Y.; Qiu, Z.; Tang, Y. Overview on the Applications of Three-Dimensional Printing for Rechargeable Lithium-Ion Batteries. Appl. Energy 2020, 257, 114002. [Google Scholar] [CrossRef]
- Mu, Y.; Chu, Y.; Pan, L.; Wu, B.; Zou, L.; He, J.; Han, M.; Zhao, T.; Zeng, L. 3D Printing Critical Materials for Rechargeable Batteries: From Materials, Design and Optimization Strategies to Applications. Int. J. Extrem. Manuf. 2023, 5, 042008. [Google Scholar] [CrossRef]
- Huo, S.; Sheng, L.; Su, B.; Xue, W.; Wang, L.; Xu, H.; He, X. 3D Printing Manufacturing of Lithium Batteries: Prospects and Challenges toward Practical Applications. Adv. Mater. 2024, 36, 2310396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhu, L.; Li, Z.; Wang, S.; Shi, J.; Tang, W.; Li, N.; Yang, J. The Recent Development of Vat Photopolymerization: A Review. Addit. Manuf. 2021, 48, 102423. [Google Scholar] [CrossRef]
- Shah, M.; Ullah, A.; Azher, K.; Rehman, A.U.; Juan, W.; Aktürk, N.; Tüfekci, C.S.; Salamci, M.U. Vat Photopolymerization-Based 3D Printing of Polymer Nanocomposites: Current Trends and Applications. RSC Adv. 2023, 13, 1456–1496. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhang, M.; Peng, S.; Pan, R.; Liu, Y. Introduction to Vat Polymerization 3D Printing Technologies. In Vat Photopolymerization Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–28. ISBN 978-0-443-15487-4. [Google Scholar]
- Huang, J.; Qin, Q.; Wang, J. A Review of Stereolithography: Processes and Systems. Processes 2020, 8, 1138. [Google Scholar] [CrossRef]
- Chaudhary, R.; Fabbri, P.; Leoni, E.; Mazzanti, F.; Akbari, R.; Antonini, C. Additive Manufacturing by Digital Light Processing: A Review. Prog. Addit. Manuf. 2023, 8, 331–351. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Q.; Wang, S.; Tao, J.; Gou, M. Digital Light Processing Based Three-Dimensional Printing for Medical Applications. IJB 2019, 6, 242. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Kim, M. Advances in Materials and Technologies for Digital Light Processing 3D Printing. Nano Converg. 2024, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, W.; Ladika, D.; Yu, H.; Gailevičius, D.; Wang, H.; Pan, C.; Nair, P.N.S.; Ke, Y.; Mori, T.; et al. Two-Photon Polymerization Lithography for Optics and Photonics: Fundamentals, Materials, Technologies, and Applications. Adv. Funct. Mater. 2023, 33, 2214211. [Google Scholar] [CrossRef]
- Lee, K.-S.; Kim, R.H.; Yang, D.-Y.; Park, S.H. Advances in 3D Nano/Microfabrication Using Two-Photon Initiated Polymerization. Prog. Polym. Sci. 2008, 33, 631–681. [Google Scholar] [CrossRef]
- Al Rashid, A.; Ahmed, W.; Khalid, M.Y.; Koç, M. Vat Photopolymerization of Polymers and Polymer Composites: Processes and Applications. Addit. Manuf. 2021, 47, 102279. [Google Scholar] [CrossRef]
- Kafle, A.; Luis, E.; Silwal, R.; Pan, H.M.; Shrestha, P.L.; Bastola, A.K. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers 2021, 13, 3101. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, R.; Vitale, A. Vat Photopolymerization. In High Resolution Manufacturing from 2D to 3D/4D Printing; Springer International Publishing: Cham, Switzerland, 2022; pp. 17–46. ISBN 978-3-031-13778-5. [Google Scholar]
- Mo, X.; Ouyang, L.; Xiong, Z.; Zhang, T. Advances in Digital Light Processing of Hydrogels. Biomed. Mater. 2022, 17, 042002. [Google Scholar] [CrossRef] [PubMed]
- Graça, A.; Bom, S.; Martins, A.M.; Ribeiro, H.M.; Marto, J. Vat-Based Photopolymerization 3D Printing: From Materials to Topical and Transdermal Applications. Asian J. Pharm. Sci. 2024, 19, 100940. [Google Scholar] [CrossRef] [PubMed]
- Pagac, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, J.; Zhang, Y.; Kristiansen, P.M.; Islam, A.; Gilchrist, M.; Zhang, N. Advances in Precision Microfabrication through Digital Light Processing: System Development, Material and Applications. Virtual Phys. Prototyp. 2023, 18, e2248101. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, S.; Wu, Z.-S. Photolithographic Microfabrication of Microbatteries for On-Chip Energy Storage. Nano-Micro Lett. 2025, 17, 105. [Google Scholar] [CrossRef] [PubMed]
- Golhin, A.P.; Tonello, R.; Frisvad, J.R.; Grammatikos, S.; Strandlie, A. Surface Roughness of As-Printed Polymers: A Comprehensive Review. Int. J. Adv. Manuf. Technol. 2023, 127, 987–1043. [Google Scholar] [CrossRef]
- Li, J.; Boyer, C.; Zhang, X. 3D Printing Based on Photopolymerization and Photocatalysts: Review and Prospect. Macromol. Mater. Eng. 2022, 307, 2200010. [Google Scholar] [CrossRef]
- Tao, R.; Gu, Y.; Du, Z.; Lyu, X.; Li, J. Advanced Electrode Processing for Lithium-Ion Battery Manufacturing. Nat. Rev. Clean Technol. 2025, 1, 116–131. [Google Scholar] [CrossRef]
- Yin, G. Advancements in Insulation Technologies for Electric Vehicle Battery Cells—A Review. IEEE Trans. Dielect. Electr. Insul. 2025. [Google Scholar] [CrossRef]
- Somers, P.; Münchinger, A.; Maruo, S.; Moser, C.; Xu, X.; Wegener, M. The Physics of 3D Printing with Light. Nat. Rev. Phys. 2023, 6, 99–113. [Google Scholar] [CrossRef]
- Topa-Skwarczyńska, M.; Ortyl, J. Photopolymerization Shrinkage: Strategies for Reduction, Measurement Methods and Future Insights. Polym. Chem. 2023, 14, 2145–2158. [Google Scholar] [CrossRef]
- Baumers, M.; Wildman, R.; Tuck, C.; Dickens, P.; Hague, R. Modeling Build Time, Process Energy Consumption and Cost of Material Jetting-Based Additive Manufacturing. Print Fabr. 2015, 31, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Sartini, M.; Favi, C.; Mandolini, M. Rapid Investment Casting: A Techno-Economic Analysis for Evaluating VAT Photopolymerisation Processes. Int. J. Adv. Manuf. Technol. 2024, 134, 5717–5739. [Google Scholar] [CrossRef]
- Medellin, A.; Du, W.; Miao, G.; Zou, J.; Pei, Z.; Ma, C. Vat Photopolymerization 3D Printing of Nanocomposites: A Literature Review. J. Micro Nano-Manuf. 2019, 7, 031006. [Google Scholar] [CrossRef]
- Lyu, Z.; Lim, G.J.H.; Koh, J.J.; Li, Y.; Ma, Y.; Ding, J.; Wang, J.; Hu, Z.; Wang, J.; Chen, W.; et al. Design and Manufacture of 3D-Printed Batteries. Joule 2021, 5, 89–114. [Google Scholar] [CrossRef]
- Subedi, S.; Liu, S.; Wang, W.; Naser Shovon, S.M.A.; Chen, X.; Ware, H.O.T. Multi-Material Vat Photopolymerization 3D Printing: A Review of Mechanisms and Applications. npj Adv. Manuf. 2024, 1, 9. [Google Scholar] [CrossRef]
- Wang, S.-H.; Kuo, P.-L.; Hsieh, C.-T.; Teng, H. Design of Poly(Acrylonitrile)-Based Gel Electrolytes for High-Performance Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 19360–19370. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J. Gel Polymer Electrolyte with Improved Adhesion Property Based on Poly(4-Hydroxybutyl Acrylate) for Lithium-Ion Batteries. Chem. Eng. J. 2023, 474, 145673. [Google Scholar] [CrossRef]
- Langevin, S.A.; Tan, B.; Freeman, A.W.; Gagnon, J.C.; Hoffman, C.M.; Logan, M.W.; Maranchi, J.P.; Gerasopoulos, K. UV-Cured Gel Polymer Electrolytes with Improved Stability for Advanced Aqueous Li-Ion Batteries. Chem. Commun. 2019, 55, 13085–13088. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Lin, X.; Liu, J.; Yu, J.; Wu, J.; Law, H.M.; Wang, Z.; Ciucci, F. In Situ Formation of Poly(Butyl Acrylate)-Based Non-Flammable Elastic Quasi-Solid Electrolyte for Dendrite-Free Flexible Lithium Metal Batteries with Long Cycle Life for Wearable Devices. Energy Storage Mater. 2021, 34, 629–639. [Google Scholar] [CrossRef]
- Fan, H.; Li, H.; Fan, L.-Z.; Shi, Q. Preparation and Electrochemical Properties of Gel Polymer Electrolytes Using Triethylene Glycol Diacetate-2-Propenoic Acid Butyl Ester Copolymer for High Energy Density Lithium-Ion Batteries. J. Power Sources 2014, 249, 392–396. [Google Scholar] [CrossRef]
- Kim, Y. The Effect of Plasticizers on Transport and Electrochemical Properties of PEO-Based Electrolytes for Lithium Rechargeable Batteries. Solid State Ion. 2002, 149, 29–37. [Google Scholar] [CrossRef]
- Ha, H.-J.; Kwon, Y.H.; Kim, J.Y.; Lee, S.-Y. A Self-Standing, UV-Cured Polymer Networks-Reinforced Plastic Crystal Composite Electrolyte for a Lithium-Ion Battery. Electrochim. Acta 2011, 57, 40–45. [Google Scholar] [CrossRef]
- He, R.; Echeverri, M.; Ward, D.; Zhu, Y.; Kyu, T. Highly Conductive Solvent-Free Polymer Electrolyte Membrane for Lithium-Ion Batteries: Effect of Prepolymer Molecular Weight. J. Membr. Sci. 2016, 498, 208–217. [Google Scholar] [CrossRef]
- Feng, C.; Kyu, T. Role of Dinitrile Plasticizer Chain Lengths in Electrochemical Performance of Highly Conductive Polymer Electrolyte Membrane for Lithium Ion Battery. Electrochim. Acta 2020, 330, 135320. [Google Scholar] [CrossRef]
- Qi, S.; Li, S.; Zou, W.; Zhang, W.; Wang, X.; Du, L.; Liu, S.; Zhao, J. Enabling Scalable Polymer Electrolyte with Synergetic Ion Conductive Channels via a Two Stage Rheology Tuning UV Polymerization Strategy. Small 2022, 18, 2202013. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Zhao, B.; Wang, Q.; Bai, Y.; Cheng, Z.; Cong, Z.; Lu, Y.; Ji, F.; Shen, F.; Wang, P.-F.; et al. A Thin Composite Polymer Electrolyte with High Room-Temperature Conductivity Enables Mass Production for Solid-State Lithium-Metal Batteries. Energy Storage Mater. 2022, 47, 288–296. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Wang, Y.; Liu, Q.; Chen, Q.; Chen, M. Advances and Prospects of PVDF Based Polymer Electrolytes. J. Energy Chem. 2022, 64, 62–84. [Google Scholar] [CrossRef]
- Song, M.-K.; Cho, J.-Y.; Cho, B.W.; Rhee, H.-W. Characterization of UV-Cured Gel Polymer Electrolytes for Rechargeable Lithium Batteries. J. Power Sources 2002, 110, 209–215. [Google Scholar] [CrossRef]
- Çakmakçı, E.; Uğur, M.H.; Güngör, A. UV-Cured Polypropylene Mesh-Reinforced Composite Polymer Electrolyte Membranes. e-Polymers 2015, 15, 103–110. [Google Scholar] [CrossRef]
- Kim, J.I.; Choi, Y.G.; Ahn, Y.; Kim, D.; Park, J.H. Optimized Ion-Conductive Pathway in UV-Cured Solid Polymer Electrolytes for All-Solid Lithium/Sodium Ion Batteries. J. Membr. Sci. 2021, 619, 118771. [Google Scholar] [CrossRef]
- Stepniak, I. Compatibility of Poly(bisAEA4)-LiTFSI–MPPipTFSI Ionic Liquid Gel Polymer Electrolyte with Li 4 Ti 5 O 12 Lithium Ion Battery Anode. J. Power Sources 2014, 247, 112–116. [Google Scholar] [CrossRef]
- Stepniak, I.; Andrzejewska, E.; Dembna, A.; Galinski, M. Characterization and Application of N-Methyl-N-Propylpiperidinium Bis(Trifluoromethanesulfonyl)Imide Ionic Liquid–Based Gel Polymer Electrolyte Prepared in Situ by Photopolymerization Method in Lithium Ion Batteries. Electrochim. Acta 2014, 121, 27–33. [Google Scholar] [CrossRef]
- Porthault, H.; Piana, G.; Cesbron, M.; Armel, V.; Bazin, A.; Franger, S.; Oukassi, S. Photo-Initiated Cross-Linking of a Methacrylate/Ionic Liquid Based Gel Polymer Electrolyte: Effect of the Curing Sequence on the Electrochemical Properties. J. Phys. Chem. C 2019, 123, 18171–18179. [Google Scholar] [CrossRef]
- Lee, K.; Shang, Y.; Bobrin, V.A.; Kuchel, R.; Kundu, D.; Corrigan, N.; Boyer, C. 3D Printing Nanostructured Solid Polymer Electrolytes with High Modulus and Conductivity. Adv. Mater. 2022, 34, 2204816. [Google Scholar] [CrossRef] [PubMed]
- Siddiquee, Z.; Lee, H.; Xu, W.; Kyu, T.; Jákli, A. Plasticized Ionic Liquid Crystal Elastomer Emulsion-Based Polymer Electrolyte for Lithium-Ion Batteries. Batteries 2025, 11, 106. [Google Scholar] [CrossRef]
- Lu, F.; Gao, X.; Wu, A.; Sun, N.; Shi, L.; Zheng, L. Lithium-Containing Zwitterionic Poly(Ionic Liquid)s as Polymer Electrolytes for Lithium-Ion Batteries. J. Phys. Chem. C 2017, 121, 17756–17763. [Google Scholar] [CrossRef]
- Trigo López, M.; Reglero Ruiz, J.A.; Pablos, J.L.; Ciurduc, D.E.; Corrales, T.; García, F.C.; García, J.M. Photopolymerization of Ionic Liquids in Flexible Microporous Aramids for Ion Conductive Solid Polyelectrolytes. J. Photochem. Photobiol. A Chem. 2022, 422, 113571. [Google Scholar] [CrossRef]
- Yu, Y.; Lu, F.; Sun, N.; Wu, A.; Pan, W.; Zheng, L. Single Lithium-Ion Polymer Electrolytes Based on Poly(Ionic Liquid)s for Lithium-Ion Batteries. Soft Matter 2018, 14, 6313–6319. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Pan, H.; Lin, W.; Tu, W.; Zhang, H. UV-Induced Semi-Interpenetrating Polymer Electrolyte Membrane for Elevated-Temperature All-Solid-State Lithium-Ion Batteries. Mater. Chem. Phys. 2019, 236, 121781. [Google Scholar] [CrossRef]
- Guan, T.; Rong, Z.; Cheng, F.; Zhang, W.; Chen, J. UV-Cured Interpenetrating Networks of Single-Ion Conducting Polymer Electrolytes for Rechargeable Lithium Metal Batteries. ACS Appl. Energy Mater. 2020, 3, 12532–12539. [Google Scholar] [CrossRef]
- Sutton, P.; Airoldi, M.; Porcarelli, L.; Olmedo-Martínez, J.L.; Mugemana, C.; Bruns, N.; Mecerreyes, D.; Steiner, U.; Gunkel, I. Tuning the Properties of a UV-Polymerized, Cross-Linked Solid Polymer Electrolyte for Lithium Batteries. Polymers 2020, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Zuo, C.; Zhou, B.; Jo, Y.H.; Li, S.; Chen, G.; Li, S.; Luo, W.; He, D.; Zhou, X.; Xue, Z. Facile Fabrication of a Hybrid Polymer Electrolyte via Initiator-Free Thiol–Ene Photopolymerization for High-Performance All-Solid-State Lithium Metal Batteries. Polym. Chem. 2020, 11, 2732–2739. [Google Scholar] [CrossRef]
- Zuo, C.; Chen, G.; Zhang, Y.; Gan, H.; Li, S.; Yu, L.; Zhou, X.; Xie, X.; Xue, Z. Poly(ε-Caprolactone)-Block-Poly(Ethylene Glycol)-Block-Poly(ε-Caprolactone)-Based Hybrid Polymer Electrolyte for Lithium Metal Batteries. J. Membr. Sci. 2020, 607, 118132. [Google Scholar] [CrossRef]
- Hu, J.; Wang, W.; Peng, H.; Guo, M.; Feng, Y.; Xue, Z.; Ye, Y.; Xie, X. Flexible Organic–Inorganic Hybrid Solid Electrolytes Formed via Thiol–Acrylate Photopolymerization. Macromolecules 2017, 50, 1970–1980. [Google Scholar] [CrossRef]
- Lv, F.; Liu, K.; Wang, Z.; Zhu, J.; Zhao, Y.; Yuan, S. Ultraviolet-Cured Polyethylene Oxide-Based Composite Electrolyte Enabling Stable Cycling of Lithium Battery at Low Temperature. J. Colloid Interface Sci. 2021, 596, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.M.; Jun, S.J.; Lee, J.; Ryu, M.-H.; Shin, H.; Jung, K.-N. UV-Cured Polymer Solid Electrolyte Reinforced Using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries. J. Electrochem. Sci. Technol. 2023, 14, 85–95. [Google Scholar] [CrossRef]
- Karuppiah, D.; Komissarenko, D.; Thakur, T.; Yüzbasi, N.S.; Clemens, F.; Reisacher, E.; Kaya, P.; Pikul, J.; Blugan, G. Vat Photopolymerization of Tantalum-Doped Li7 La3 Zr2 O12 Electrolytes: A New Frontier in Solid-State Battery Design. J. Mater. Chem. A 2025, 13, 387–398. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Qin, Y.; Zhang, D.; Song, Z.; Ding, S. Local Electric Field Effect of Montmorillonite in Solid Polymer Electrolytes for Lithium Metal Batteries. Nano Energy 2021, 90, 106490. [Google Scholar] [CrossRef]
- Bae, M.; Ahn, S.; You, S.; Kim, J.; Kim, D.; Kim, H.; Kim, H.-I.; Park, J. Expanded Illite Filler in UV-Curable Polymer Electrolytes for All-Solid-State Li-Ion Batteries. Coatings 2024, 14, 1158. [Google Scholar] [CrossRef]
- Zhu, T.; Hao, X.; Cao, Y.; Li, T.; Li, Y.; Wang, W. Ultraviolet-Cured Heat-Resistant and Stretchable Gel Polymer Electrolytes for Flexible and Safe Semi-Solid Lithium-Ion Batteries. J. Power Sources 2024, 613, 234944. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, Y.; Ma, C.; Chen, Z.; Su, Q.; Zhu, C.; Gao, Y.; Ma, R.; Li, C. Flexible Nanocomposite Polymer Electrolyte Based on UV-Cured Polyurethane Acrylate for Lithium Metal Batteries. ACS Sustain. Chem. Eng. 2021, 9, 5631–5641. [Google Scholar] [CrossRef]
- Wang, S.; Bai, M.; Liu, C.; Li, G.; Lu, X.; Cai, H.; Liu, C.; Lai, W.-Y. Highly Stretchable Multifunctional Polymer Ionic Conductor with High Conductivity Based on Organic-Inorganic Dual Networks. Chem. Eng. J. 2022, 440, 135824. [Google Scholar] [CrossRef]
- Zehbe, K.; Lange, A.; Taubert, A. Stereolithography Provides Access to 3D Printed Ionogels with High Ionic Conductivity. Energy Fuels 2019, 33, 12885–12893. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, R.; He, Z.; Zhao, K.; Pan, L. Printing 3D Gel Polymer Electrolyte in Lithium-Ion Microbattery Using Stereolithography. J. Electrochem. Soc. 2017, 164, A1852–A1857. [Google Scholar] [CrossRef]
- Yu, R.; Li, S.; Chen, G.; Zuo, C.; Zhou, B.; Ni, M.; Peng, H.; Xie, X.; Xue, Z. Monochromatic “Photoinitibitor”-Mediated Holographic Photopolymer Electrolytes for Lithium-Ion Batteries. Adv. Sci. 2019, 6, 1900205. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, S.; Nie, L.; Sun, Z.; Wu, X.; Liu, W. Stereolithography Three-Dimensional Printing Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. Nano Lett. 2020, 20, 7136–7143. [Google Scholar] [CrossRef] [PubMed]
- Maurel, A.; Fernandez, C.A.; Schiaffino, E.M.; Mahmud, M.S.; Delgado Ramos, K.L.; Lin, Y.; MacDonald, E.; Merrill, L.C.; Cardenas, J.A.; Martinez, A.C. Vat Photopolymerization Three-Dimensional Printing of PEGDA/LiClO4 Solid Polymer Electrolytes with Optimised Accuracy and Electrochemical-Mechanical Performance. Virtual Phys. Prototyp. 2025, 20, e2499480. [Google Scholar] [CrossRef]
- Martinez, A.C.; Schiaffino, E.M.; Aranzola, A.P.; Fernandez, C.A.; Seol, M.-L.; Sherrard, C.G.; Jones, J.; Huddleston, W.H.; Dornbusch, D.A.; Sreenivasan, S.T.; et al. Multiprocess 3D Printing of Sodium-Ion Batteries via Vat Photopolymerization and Direct Ink Writing. J. Phys. Energy 2023, 5, 045010. [Google Scholar] [CrossRef]
- Rahman, M.S.; Shiblee, M.N.I.; Ahmed, K.; Khosla, A.; Ogawa, J.; Kawakami, M.; Furukawa, H. Flexible and Conductive 3D Printable Polyvinylidene Fluoride and Poly(N, N-dimethylacrylamide) Based Gel Polymer Electrolytes. Macromol. Mater. Eng. 2020, 305, 2000262. [Google Scholar] [CrossRef]
- Norjeli, M.F.; Tamchek, N.; Osman, Z.; Mohd Noor, I.S.; Kufian, M.Z.; Ghazali, M.I.B.M. Additive Manufacturing Polyurethane Acrylate via Stereolithography for 3D Structure Polymer Electrolyte Application. Gels 2022, 8, 589. [Google Scholar] [CrossRef] [PubMed]
- Zekoll, S.; Marriner-Edwards, C.; Hekselman, A.K.O.; Kasemchainan, J.; Kuss, C.; Armstrong, D.E.J.; Cai, D.; Wallace, R.J.; Richter, F.H.; Thijssen, J.H.J.; et al. Hybrid Electrolytes with 3D Bicontinuous Ordered Ceramic and Polymer Microchannels for All-Solid-State Batteries. Energy Environ. Sci. 2018, 11, 185–201. [Google Scholar] [CrossRef]
- Vijayakumar, V. In Situ Polymerization Process: An Essential Design Tool for Lithium Polymer Batteries. Energy Environ. Sci. 2021, 14, 2708–2788. [Google Scholar] [CrossRef]
- Yuan, J.; Dong, R.; Li, Y.; Liu, Y.; Zheng, Z.; Liu, Y.; Sun, Y.; Zhong, B.; Wu, Z.; Guo, X. An Integrated Cathode and Solid Electrolyte via in Situ Polymerization with Significantly Reduced Interface Resistance. Chem. Commun. 2021, 57, 13004–13007. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Yang, S.; Shi, Z.; Fan, Q.; Liu, Z.; Liu, L. Knitting a Sweater with UV-Induced in Situ Polymerization of Poly(Pyrrole-Co-Citral Nitrile) on Ni-Rich Layer Oxide Cathode Materials for Lithium Ion Batteries. J. Power Sources 2022, 520, 230768. [Google Scholar] [CrossRef]
- Cui, M.; Sun, H.; Xue, Z.; Li, Q.; Zhang, T.; Kang, Q. A PVDF-HFP-Based Gel Polymer Electrolyte onto Air Cathode by UV-Curing for Lithium–Oxygen Batteries. ACS Appl. Energy Mater. 2024, 7, 11233–11239. [Google Scholar] [CrossRef]
- Nara, H.; Yokoshima, T.; Mikuriya, H.; Tsuda, S.; Momma, T.; Osaka, T. The Potential for the Creation of a High Areal Capacity Lithium-Sulfur Battery Using a Metal Foam Current Collector. J. Electrochem. Soc. 2017, 164, A5026–A5030. [Google Scholar] [CrossRef]
- Ahn, S.; Mikuriya, H.; Kojima, E.; Osaka, T. Synthesis of Li Conductive Polymer Layer on 3D Structured S Cathode by Photo-Polymerization for Li–S Batteries. J. Electrochem. Soc. 2022, 169, 030546. [Google Scholar] [CrossRef]
- Xie, C.; Rong, M.; Guo, Q.; Wei, Z.; Chen, Z.; Huang, Q.; Zheng, Z. UV-Permeable 3D Li Anodes for In Situ Fabrication of Interface-Gapless Flexible Solid-State Lithium Metal Batteries. Adv. Mater. 2024, 36, 2406368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.S.; Jow, T.R.; Amine, K.; Henriksen, G.L. LiPF6–EC–EMC Electrolyte for Li-Ion Battery. J. Power Sources 2002, 107, 18–23. [Google Scholar] [CrossRef]
- Sheidaei, A.; Xiao, X.; Huang, X.; Hitt, J. Mechanical Behavior of a Battery Separator in Electrolyte Solutions. J. Power Sources 2011, 196, 8728–8734. [Google Scholar] [CrossRef]
- Chan, P.K.; Rey, A.D. Polymerization-Induced Phase Separation. 1. Droplet Size Selection Mechanism. Macromolecules 1996, 29, 8934–8941. [Google Scholar] [CrossRef]
- Chan, P.K.; Rey, A.D. Polymerization-Induced Phase Separation. 2. Morphological Analysis. Macromolecules 1997, 30, 2135–2143. [Google Scholar] [CrossRef]
- Dong, Z.; Cui, H.; Zhang, H.; Wang, F.; Zhan, X.; Mayer, F.; Nestler, B.; Wegener, M.; Levkin, P.A. 3D Printing of Inherently Nanoporous Polymers via Polymerization-Induced Phase Separation. Nat. Commun. 2021, 12, 247. [Google Scholar] [CrossRef] [PubMed]
- Deore, B.; Sampson, K.L.; Lacelle, T.; Kredentser, N.; Lefebvre, J.; Young, L.S.; Hyland, J.; Amaya, R.E.; Tanha, J.; Malenfant, P.R.L.; et al. Direct Printing of Functional 3D Objects Using Polymerization-Induced Phase Separation. Nat. Commun. 2021, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Ihrner, N.; Johannisson, W.; Sieland, F.; Zenkert, D.; Johansson, M. Structural Lithium Ion Battery Electrolytes via Reaction Induced Phase-Separation. J. Mater. Chem. A 2017, 5, 25652–25659. [Google Scholar] [CrossRef]
- Emilsson, S.; Lindbergh, G.; Johansson, M. Tuneable and Efficient Manufacturing of Li-Ion Battery Separators Using Photopolymerization-Induced Phase Separation. J. Mater. Chem. A 2024, 12, 30442–30453. [Google Scholar] [CrossRef]
- Manly, A.J.; Tenhaeff, W.E. One-Step Fabrication of Robust Lithium Ion Battery Separators by Polymerization-Induced Phase Separation. J. Mater. Chem. A 2022, 10, 10557–10568. [Google Scholar] [CrossRef]
- Manly, A.J.; Tenhaeff, W.E. Mechanically and Thermally Robust Microporous Copolymer Separators for Lithium Ion Batteries. Electrochim. Acta 2022, 425, 140705. [Google Scholar] [CrossRef]
- Maurel, A.; Martinez, A.C.; Grugeon, S.; Panier, S.; Dupont, L.; Cortes, P.; Sherrard, C.G.; Small, I.; Sreenivasan, S.T.; Macdonald, E. Toward High Resolution 3D Printing of Shape-Conformable Batteries via Vat Photopolymerization: Review and Perspective. IEEE Access 2021, 9, 140654–140666. [Google Scholar] [CrossRef]
- Wang, C.; Taherabadi, L.; Jia, G.; Madou, M.; Yeh, Y.; Dunn, B. C-MEMS for the Manufacture of 3D Microbatteries. Electrochem. Solid-State Lett. 2004, 7, A435. [Google Scholar] [CrossRef]
- Narita, K.; Citrin, M.A.; Yang, H.; Xia, X.; Greer, J.R. 3D Architected Carbon Electrodes for Energy Storage. Adv. Energy Mater. 2021, 11, 2002637. [Google Scholar] [CrossRef]
- Wang, M.; Xia, Y.; Wang, X.; Xiao, Y.; Liu, R.; Wu, Q.; Qiu, B.; Metwalli, E.; Xia, S.; Yao, Y.; et al. Silicon Oxycarbide/Carbon Nanohybrids with Tiny Silicon Oxycarbide Particles Embedded in Free Carbon Matrix Based on Photoactive Dental Methacrylates. ACS Appl. Mater. Interfaces 2016, 8, 13982–13992. [Google Scholar] [CrossRef]
- Ali, S.; Jaffer, S.; Maitlo, I.; Shehzad, F.K.; Wang, Q.; Ali, S.; Akram, M.Y.; He, Y.; Nie, J. Photo Cured 3D Porous Silica-Carbon (SiO2–C) Membrane as Anode Material for High Performance Rechargeable Li-Ion Batteries. J. Alloys Compd. 2020, 812, 152127. [Google Scholar] [CrossRef]
- Ding, S.; Cheng, W.; Zhang, L.; Du, G.; Hao, X.; Nie, G.; Xu, B.; Zhang, M.; Su, Q.; Serra, C.A. Organic Molecule Confinement Reaction for Preparation of the Sn Nanoparticles@graphene Anode Materials in Lithium-Ion Battery. J. Colloid Interface Sci. 2021, 589, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, Y.-J.; Ji, Q.; Liang, S.; Ma, L.; Xu, Z.; Zuo, X.; Meng, J.-Q.; Zhu, J.; Müller-Buschbaum, P.; et al. In Situ Incorporation of Super-Small Metallic High Capacity Nanoparticles and Mesoporous Structures for High-Performance TiO2/SnO2/Sn/Carbon Nanohybrid Lithium-Ion Battery Anodes. Energy Technol. 2020, 8, 2000034. [Google Scholar] [CrossRef]
- Maurel, A.; Martinez, A.C.; Chavari, S.B.; Yelamanchi, B.; Seol, M.-L.; Dornbusch, D.A.; Huddleston, W.H.; Sreenivasan, S.T.; Sherrard, C.G.; MacDonald, E.; et al. 3D Printed TiO2 Negative Electrodes for Sodium-Ion and Lithium-Ion Batteries Using Vat Photopolymerization. J. Electrochem. Soc. 2023, 170, 100538. [Google Scholar] [CrossRef]
- Martinez, A.C.; Aranzola, A.P.; Schiaffino, E.; MacDonald, E.; Maurel, A. Additive Manufacturing of LiCoO2 Electrodes via Vat Photopolymerization for Lithium Ion Batteries. Energy Adv. 2024, 3, 1009–1018. [Google Scholar] [CrossRef]
- Yee, D.W.; Citrin, M.A.; Taylor, Z.W.; Saccone, M.A.; Tovmasyan, V.L.; Greer, J.R. Hydrogel-Based Additive Manufacturing of Lithium Cobalt Oxide. Adv. Mater. Technol. 2021, 6, 2000791. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.C.; Maurel, A.; Aranzola, A.P.; Grugeon, S.; Panier, S.; Dupont, L.; Hernandez-Viezcas, J.A.; Mummareddy, B.; Armstrong, B.L.; Cortes, P.; et al. Additive Manufacturing of LiNi1/3Mn1/3Co1/3O2 Battery Electrode Material via Vat Photopolymerization Precursor Approach. Sci. Rep. 2022, 12, 19010. [Google Scholar] [CrossRef] [PubMed]
- Saccone, M.A.; Greer, J.R. Understanding and Mitigating Mechanical Degradation in Lithium–Sulfur Batteries: Additive Manufacturing of Li2S Composites and Nanomechanical Particle Compressions. J. Mater. Res. 2021, 36, 3656–3666. [Google Scholar] [CrossRef]
- Gulzar, U.; Egorov, V.; Zhang, Y.; O’Dwyer, C. Recyclable 3D-Printed Aqueous Lithium-Ion Battery. Adv. Energy Sustain. Res. 2023, 4, 2300029. [Google Scholar] [CrossRef]
- Cohen, E.; Menkin, S.; Lifshits, M.; Kamir, Y.; Gladkich, A.; Kosa, G.; Golodnitsky, D. Novel Rechargeable 3D-Microbatteries on 3D-Printed-Polymer Substrates: Feasibility Study. Electrochim. Acta 2018, 265, 690–701. [Google Scholar] [CrossRef]
- Martinez, A.C.; Maurel, A.; Yelamanchi, B.; Talin, A.A.; Grugeon, S.; Panier, S.; Dupont, L.; Aranzola, A.; Schiaffino, E.; Sreenivasan, S.T.; et al. Combining 3D Printing of Copper Current Collectors and Electrophoretic Deposition of Electrode Materials for Structural Lithium-Ion Batteries. Adv. Manuf. 2025, 13, 462–475. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, Y.; Chen, M.; Li, W.; Wei, X. Photocuring in Lithium-Ion Battery Fabrication: Advances Towards Integrated Manufacturing. Batteries 2025, 11, 282. https://doi.org/10.3390/batteries11080282
Li Z, Li Y, Chen M, Li W, Wei X. Photocuring in Lithium-Ion Battery Fabrication: Advances Towards Integrated Manufacturing. Batteries. 2025; 11(8):282. https://doi.org/10.3390/batteries11080282
Chicago/Turabian StyleLi, Zihao, Yanlong Li, Mengting Chen, Weishan Li, and Xiaoming Wei. 2025. "Photocuring in Lithium-Ion Battery Fabrication: Advances Towards Integrated Manufacturing" Batteries 11, no. 8: 282. https://doi.org/10.3390/batteries11080282
APA StyleLi, Z., Li, Y., Chen, M., Li, W., & Wei, X. (2025). Photocuring in Lithium-Ion Battery Fabrication: Advances Towards Integrated Manufacturing. Batteries, 11(8), 282. https://doi.org/10.3390/batteries11080282