Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,778)

Search Parameters:
Keywords = electric field simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2330 KiB  
Article
Adaptive Differential Evolution Algorithm for Induced Polarization Parameters in Frequency-Domain Controlled-Source Electromagnetic Data
by Lei Zhou, Tianjun Cheng, Min Yao, Jianzhong Cheng, Xingbing Xie, Yurong Mao and Liangjun Yan
Minerals 2025, 15(7), 754; https://doi.org/10.3390/min15070754 - 18 Jul 2025
Abstract
The frequency-domain controlled-source electromagnetic method (CSEM) has been widely used in fields such as oil and gas and mineral resource exploration. In areas with a significant IP response, the CSEM signals will be modified by the IP response of the subsurface. Accurately extracting [...] Read more.
The frequency-domain controlled-source electromagnetic method (CSEM) has been widely used in fields such as oil and gas and mineral resource exploration. In areas with a significant IP response, the CSEM signals will be modified by the IP response of the subsurface. Accurately extracting resistivity and polarization information from CSEM signals may significantly improve the exploration interpretations. In this study, we replaced real resistivity with the Cole–Cole complex resistivity model in a forward simulation of the CSEM to obtain electric field responses that included both induced polarization and electromagnetic effects. Based on this, we used the adaptive differential evolution algorithm to perform a 1-d inversion of these data to extract both the resistivity and IP parameters. Inversion of the electric field responses from representative three-layer geoelectric models, as well as from a more realistic seven-layer model, showed that the inversions were able to effectively recover resistivity and polarization information from the modeled responses, validating our methodology. The electric field response of the real geoelectric model, with 20% random noise added, was then used to simulate actual measured CSEM signals, as well as subjected to multiple inversion tests. The results of these tests continued to accurately reflect the resistivity and polarization information of the model, confirming the applicability and reliability of the algorithm. These results have significant implications for the processing and interpretation of CSEM data when induced polarization effects merit consideration and are expected to promote the use of the CSEM in more fields. Full article
(This article belongs to the Special Issue Electromagnetic Inversion for Deep Ore Explorations)
Show Figures

Figure 1

19 pages, 5697 KiB  
Article
Mathematical Model of a Semiconductor Structure Based on Vanadium Dioxide for the Mode of a Conductive Phase
by Oleksii Kachura, Valeriy Kuznetsov, Mykola Tryputen, Vitalii Kuznetsov, Sergei Kolychev, Artur Rojek and Petro Hubskyi
Electronics 2025, 14(14), 2884; https://doi.org/10.3390/electronics14142884 - 18 Jul 2025
Abstract
This study presents a comprehensive mathematical model of a semiconductor structure based on vanadium dioxide (VO2), specifically in its conductive phase. The model was developed using the finite element method (FEM), enabling detailed simulation of the formation of a conductive [...] Read more.
This study presents a comprehensive mathematical model of a semiconductor structure based on vanadium dioxide (VO2), specifically in its conductive phase. The model was developed using the finite element method (FEM), enabling detailed simulation of the formation of a conductive channel under the influence of low-frequency alternating voltage (50 Hz). The VO2 structure under investigation exhibits pronounced electric field concentration at the surface, where the field strength reaches approximately 5 × 104 V/m, while maintaining a more uniform distribution of around 2 × 104 V/m within the bulk of the material. The simulation results were validated experimentally using a test circuit. Minor deviations—no greater than 8%—were observed between the simulated and measured current values, attributed to magnetic core saturation and modeling assumptions. A distinctive feature of the model is its ability to incorporate the nonlinear dependencies of VO2’s electrical properties on frequency. Analytical expressions were derived for the magnetic permeability and resistivity of VO2, demonstrating excellent agreement with experimental data. The coefficients of determination (R2) for the frequency dependence of magnetic permeability and resistance were found to be 0.9976 and 0.9999, respectively. The current version of the model focuses exclusively on the conductive phase and does not include the thermally induced metal–insulator phase transition characteristic of VO2. The study confirms that VO2-based structures exhibit high responsiveness and nonlinear switching behavior, making them suitable for applications in electronic surge protection, current limiting, and switching elements. The developed model provides a reliable and physically grounded tool for the design and optimization components based on VO2 in power electronics and protective circuitry. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
14 pages, 1722 KiB  
Article
Spectrum-Based Method for Detecting Seepage in Concrete Cracks of Dams
by Jinmao Tang, Yifan Xu, Zhenchao Liu, Xile Wang, Shuai Niu, Dongyang Han and Xiaobin Cao
Water 2025, 17(14), 2130; https://doi.org/10.3390/w17142130 - 17 Jul 2025
Abstract
Cracks and seepage in dam structures pose a serious risk to their safety, yet traditional inspection methods often fall short when it comes to detecting shallow or early-stage fractures. This study proposes a new approach that uses spectral response analysis to quickly identify [...] Read more.
Cracks and seepage in dam structures pose a serious risk to their safety, yet traditional inspection methods often fall short when it comes to detecting shallow or early-stage fractures. This study proposes a new approach that uses spectral response analysis to quickly identify signs of seepage in concrete dams. Researchers developed a three-layer model—representing the concrete, a seepage zone, and water—to better understand how cracks affect the way electrical signals behave, thereby inverting the state of the dam based on how electrical signals behave in actual engineering measurements. Through computer simulations and lab experiments, the team explored how changes in the resistivity and thickness of the seepage layer, along with the resistivity of surrounding water, influence key indicators like impedance and signal angle. The results show that the “spectrum-based method” can effectively detect seepage in concrete cracks of dams, and the measurement method of the “spectral quadrupole method” based on the “spectrum-based method” is highly sensitive to these variations, making it a promising tool for spotting early seepage. Field tests backed up the lab findings, confirming that this method is significantly better than traditional techniques at detecting cracks less than a meter deep and identifying early signs of water intrusion. It could provide dam inspectors with a more reliable way to monitor structural health and prevent potential failures. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

11 pages, 3627 KiB  
Article
The Influence of Traps on the Self-Heating Effect and THz Response of GaN HEMTs
by Huichuan Fan, Xiaoyun Wang, Xiaofang Wang and Lin Wang
Photonics 2025, 12(7), 719; https://doi.org/10.3390/photonics12070719 - 16 Jul 2025
Viewed by 91
Abstract
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum [...] Read more.
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum relaxation time and the carrier lifetime. A simulation-based exploration of this mechanism provides significant scientific value for enhancing device performance through self-heating mitigation and THz response optimization. An AlGaN/GaN heterojunction HEMT model was established, with trap concentrations ranging from 0 to 5×1017 cm3. The analysis reveals that traps significantly enhance channel current (achieving 3× gain at 1×1017 cm3) via new energy levels that prolong carrier lifetime. However, elevated trap concentrations (>1×1016 cm3) exacerbate self-heating-induced current collapse, reducing the min-to-max current ratio to 0.9158. In THz response characterization, devices exhibit a distinct DC component (Udc) under non-resonant detection (ωτ1). At a trap concentration of 1×1015 cm3, Udc peaks at 0.12 V when VgDC=7.8 V. Compared to trap-free devices, a maximum response attenuation of 64.89% occurs at VgDC=4.9 V. Furthermore, Udc demonstrates non-monotonic behavior with concentration, showing local maxima at 4×1015 cm3 and 7×1015 cm3, attributed to plasma wave damping and temperature-gradient-induced electric field variations. This research establishes trap engineering guidelines for GaN HEMTs: a concentration of 4×1015 cm3 optimally enhances conductivity while minimizing adverse impacts on both self-heating and the THz response, making it particularly suitable for high-sensitivity terahertz detectors. Full article
Show Figures

Figure 1

23 pages, 4585 KiB  
Article
Power Losses in the Multi-Turn Windings of High-Speed PMSM Electric Machine Armatures
by Oleksandr Makarchuk and Dariusz Całus
Energies 2025, 18(14), 3761; https://doi.org/10.3390/en18143761 - 16 Jul 2025
Viewed by 120
Abstract
This paper investigates the dependencies between the design parameters of the armature (stator) winding of a high-speed PMSM machine and the electrical losses in its windings resulting from eddy currents. In addition, the factors accounting for the occurrence of parasitic circulating currents, whose [...] Read more.
This paper investigates the dependencies between the design parameters of the armature (stator) winding of a high-speed PMSM machine and the electrical losses in its windings resulting from eddy currents. In addition, the factors accounting for the occurrence of parasitic circulating currents, whose presence in the phase windings is associated with the design specificity, are analyzed. Quantitative analysis is carried out by the application of a newly developed mathematical model for the calculation of fundamental and additional losses in a multi-turn coil enclosed in the slots of a ferromagnetic core. The analysis takes into account the actual design of the slot and the conductor, the variable arrangement of individual conductors in the slot, the core saturation and the presence of the excitation field—to represent the main factors that affect the process of additional losses in the slot of the electric machine. The verification of the mathematical model developed in this study was carried out by comparing the distribution of power losses in the slot section of the coil, consisting of several elementary conductors connected in parallel and located in a rectangular open slot, with an identical distribution derived on the basis of an analytical method from the classical circuit theory. For the purpose of confirming the results and conclusions derived from simulation studies, a number of physical experiments were carried out, consisting in determining the power losses in multi-turn coils of different designs. Recommendations have been developed to minimize additional losses by optimizing the arrangement of conductors within the slot, selecting the appropriate cross-sectional size of a single conductor and the saturation level of the tooth zone. Full article
Show Figures

Figure 1

35 pages, 10456 KiB  
Article
Amplified Westward SAPS Flows near Magnetic Midnight in the Vicinity of the Harang Region
by Ildiko Horvath and Brian C. Lovell
Atmosphere 2025, 16(7), 862; https://doi.org/10.3390/atmos16070862 - 15 Jul 2025
Viewed by 195
Abstract
Rare (only 10) observations, made in the southern topside ionosphere during 2015–2016, demonstrate the amplification of westward subauroral polarization streams (SAPS) up to 3000 m/s near the Harang region. The observed amplified SAPS flows were streaming antisunward after midnight and sunward at midnight, [...] Read more.
Rare (only 10) observations, made in the southern topside ionosphere during 2015–2016, demonstrate the amplification of westward subauroral polarization streams (SAPS) up to 3000 m/s near the Harang region. The observed amplified SAPS flows were streaming antisunward after midnight and sunward at midnight, where the dusk convection cell intruded dawnward. One SAPS event illustrates the elevated electron temperature (Te; ~5500 K) and the stable auroral red arc developed over Rothera. Three inner-magnetosphere SAPS events depict the Harang region’s earthward edge within the plasmasheet’s earthward edge, where the outward SAPS electric (E) field (within the downward Region 2 currents) and inward convection E field (within the upward Region 2 currents) converged. Under isotropic or weak anisotropic conditions, the hot zone was fueled by the interaction of auroral kilometric radiation waves and electron diamagnetic currents. Generated for the conjugate topside ionosphere, the SAMI3 simulations reproduced the westward SAPS flow in the deep electron density trough, where Te became elevated, and the dawnward-intruding westward convection flows. We conclude that the near-midnight westward SAPS flow became amplified because of the favorable conditions created near the Harang region by the convection E field reaching subauroral latitudes and the positive feedback mechanisms in the SAPS channel. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

31 pages, 2741 KiB  
Article
Power Flow Simulation and Thermal Performance Analysis of Electric Vehicles Under Standard Driving Cycles
by Jafar Masri, Mohammad Ismail and Abdulrahman Obaid
Energies 2025, 18(14), 3737; https://doi.org/10.3390/en18143737 - 15 Jul 2025
Viewed by 190
Abstract
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and [...] Read more.
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and a field-oriented control strategy with PI-based speed and current regulation. The framework is applied to four standard driving cycles—UDDS, HWFET, WLTP, and NEDC—to assess system performance under varied load conditions. The UDDS cycle imposes the highest thermal loads, with temperature rises of 76.5 °C (motor) and 52.0 °C (inverter). The HWFET cycle yields the highest energy efficiency, with PMSM efficiency reaching 92% and minimal SOC depletion (15%) due to its steady-speed profile. The WLTP cycle shows wide power fluctuations (−30–19.3 kW), and a motor temperature rise of 73.6 °C. The NEDC results indicate a thermal increase of 75.1 °C. Model results show good agreement with published benchmarks, with deviations generally below 5%, validating the framework’s accuracy. These findings underscore the importance of cycle-sensitive analysis in optimizing energy use and thermal management in EV powertrain design. Full article
Show Figures

Figure 1

16 pages, 2849 KiB  
Article
A Simulation Model for the Transient Characteristics of No-Insulation Superconducting Coils Based on T–A Formulation
by Zhihao He, Yingzhen Liu, Chenyi Yang, Jiannan Yang, Jing Ou, Chengming Zhang, Ming Yan and Liyi Li
Energies 2025, 18(14), 3669; https://doi.org/10.3390/en18143669 - 11 Jul 2025
Viewed by 256
Abstract
The no-insulation (NI) technique improves the stability and defect-tolerance of high-temperature superconducting (HTS) coils by enabling current redistribution, thereby reducing the risk of quenching. NI–HTS coils are widely applied in DC systems such as high-field magnets and superconducting field coils for electric machines. [...] Read more.
The no-insulation (NI) technique improves the stability and defect-tolerance of high-temperature superconducting (HTS) coils by enabling current redistribution, thereby reducing the risk of quenching. NI–HTS coils are widely applied in DC systems such as high-field magnets and superconducting field coils for electric machines. However, the presence of turn-to-turn contact resistance makes current distribution uneven, rendering traditional simulation methods unsuitable. To address this, a finite element method (FEM) based on the T–A formulation is proposed. This model solves coupled equations for the magnetic vector potential (A) and current vector potential (T), incorporating turn-to-turn contact resistance and anisotropic conductivity. The thin-strip approximation simplifies second-generation HTS materials as one-dimensional conductors, and a homogenization technique further reduces computational time by averaging the properties between turns, although it may limit the resolution of localized inter-turn effects. To verify the model’s accuracy, simulation results are compared against the H formulation, distributed circuit network (DCN) model, and experimental data. The proposed T–A model accurately reproduces key transient characteristics, including magnetic field evolution and radial current distribution, in both circular and racetrack NI coils. These results confirm the model’s potential as an efficient and reliable tool for transient electromagnetic analysis of NI–HTS coils. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

16 pages, 4582 KiB  
Article
Numerical Analysis of Electric Field in Oil-Immersed Current Transformer with Metallic Particles Inside Main Insulation
by Wei Lou, Bo Lu, Youxiang Pan, Zhou Han and Lujia Wang
Energies 2025, 18(14), 3628; https://doi.org/10.3390/en18143628 - 9 Jul 2025
Viewed by 212
Abstract
During the manufacturing process of oil-immersed current transformers, metallic particles may become embedded in the insulation wrapping, and the resulting electric field distortion is one of the primary causes of failure. Historically, the shape of metallic particles has often been simplified to a [...] Read more.
During the manufacturing process of oil-immersed current transformers, metallic particles may become embedded in the insulation wrapping, and the resulting electric field distortion is one of the primary causes of failure. Historically, the shape of metallic particles has often been simplified to a standard sphere, whereas in practice, these particles are predominantly irregular. In this study, ellipsoidal and flaky particles were selected to represent smooth and angular surfaces, respectively. Using COMSOL Multiphysics® (version 6.2) software, a three-dimensional simulation model of an oil-immersed inverted current transformer was developed, and the influence of defect position and size on electric field characteristics was analyzed. The results indicate that both types of defects cause electric field distortion, with longer particles exerting a greater influence on the electric field distribution. Under the voltage of a 220 kV system, elliptical particles (9 mm half shaft) lead to the maximum electric field intensity of main insulation of up to 45.1 × 106 V/m, while the maximum field strength of flaky particles (length 30 mm) is 28.9 × 106 V/m. Additionally, the closer the particles are to the inner side of the main insulation, the more significant their influence on the electric field distribution becomes. The findings provide a foundation for fault analysis and propagation studies related to the main insulation of current transformers. Full article
Show Figures

Figure 1

17 pages, 980 KiB  
Article
Non-Contact Current Measurement Method Based on Field-Source Inversion for DC Rectangular Busbars
by Qishuai Liang, Zhongchen Xia, Jiang Ye, Yufeng Wu, Jie Li, Zhao Zhang, Xiaohu Liu and Shisong Li
Energies 2025, 18(14), 3606; https://doi.org/10.3390/en18143606 - 8 Jul 2025
Viewed by 167
Abstract
With the widespread application of DC technology in data centers, renewable energy, electric transportation, and high-voltage direct current (HVDC) transmission, DC rectangular busbars are becoming increasingly important in power transmission systems due to their high current density and compact structure. However, space constraints [...] Read more.
With the widespread application of DC technology in data centers, renewable energy, electric transportation, and high-voltage direct current (HVDC) transmission, DC rectangular busbars are becoming increasingly important in power transmission systems due to their high current density and compact structure. However, space constraints make the deployment of conventional sensors challenging, highlighting the urgent need for miniaturized, non-contact current measurement technologies to meet the integration requirements of smart distribution systems. This paper proposes a field-source inversion-based contactless DC measurement method for rectangular busbars. The mathematical model of the magnetic field near the surface of the DC rectangular busbar is first established, incorporating the busbar eccentricity, rotation, and geomagnetic interference into the model framework. Subsequently, a magnetic field–current inversion model is constructed, and the DC measurement of the rectangular busbar is achieved by performing an inverse calculation. The effectiveness of the proposed method is validated by both simulation studies and physical experiments. Full article
(This article belongs to the Special Issue Electrical Equipment State Measurement and Intelligent Calculation)
Show Figures

Figure 1

13 pages, 2818 KiB  
Article
Leveling Method of Working Platform Based on PZT Electromechanical Coupling Effect
by Aiqun Xu, Jianhui Yuan and Jinxuan Gao
Micromachines 2025, 16(7), 796; https://doi.org/10.3390/mi16070796 - 8 Jul 2025
Viewed by 241
Abstract
Lead zirconate titanate (PZT) piezoelectric ceramics are widely used functional materials due to their strong and stable piezoelectric properties. A leveling method based on lead zirconate titanate piezoelectric ceramics is proposed for the high level of accuracy required in microelectromechanical fields such as [...] Read more.
Lead zirconate titanate (PZT) piezoelectric ceramics are widely used functional materials due to their strong and stable piezoelectric properties. A leveling method based on lead zirconate titanate piezoelectric ceramics is proposed for the high level of accuracy required in microelectromechanical fields such as aerospace, industrial robotics, biomedical, and photolithography. A leveling mechanism consisting of core components such as piezoelectric ceramic actuators and sensors is designed. The closed-loop leveling of the working platform is performed using the electromechanical coupling effect of the PZT piezoelectric material. Combined with the theory of the dielectric inverse piezoelectric effect in electric fields, a simulation is used to analyze the four force and deformation cases generated by the drive legs when the load is attached at different positions of the working platform, and the leveling is realized by applying the drive voltage to generate micro-motion displacement. Simulation and calculation results show that the leveling method can reduce the tilt angle of the working platform by 60% when the driving voltage is in the range of 10~150 V. The feasibility of the leveling method and the uniformity of the theoretical calculation and simulation are verified. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

20 pages, 7140 KiB  
Article
Preparation of Carbon Fiber Electrodes Modified with Silver Nanoparticles by Electroplating Method
by Yuhang Wang, Rui Li, Tianyuan Hou, Zhenming Piao, Yanxin Lv, Changsheng Liu and Yi Xin
Materials 2025, 18(13), 3201; https://doi.org/10.3390/ma18133201 - 7 Jul 2025
Viewed by 289
Abstract
To solve the problems of carbon fiber (CF) electrodes, including poor frequency response and large potential drift, CFs were subjected to a roughening pretreatment process combining thermal oxidation and electrochemical anodic oxidation and then modified with Ag nanoparticles (AgNPs) using electroplating to prepare [...] Read more.
To solve the problems of carbon fiber (CF) electrodes, including poor frequency response and large potential drift, CFs were subjected to a roughening pretreatment process combining thermal oxidation and electrochemical anodic oxidation and then modified with Ag nanoparticles (AgNPs) using electroplating to prepare a CF electric field sensor. The surface morphology of the as-prepared AgNP-CF electric field sensor was characterized via optical microscopy, scanning electron microscopy, XPS, and energy-dispersive spectroscopy, and its impedance, polarization drift, self-noise, and temperature drift values were determined. Results show that the surface modification of the AgNP-CF electric field sensor is uniform, and its specific surface area is considerably increased. The electrode potential drift, characteristic impedance, self-noise, and temperature drift are 52.1 µV/24 h, 3.6 Ω, 2.993 nV/√Hz@1 Hz, and less than 70 µV/°C, respectively. Additionally, the AgNP-CF electric field sensor demonstrates low polarization and high stability. In field and simulated ocean tests, the AgNP-CF electrode exhibits excellent performance in the field and underwater environments, which renders it promising for the measurement of the ocean and geoelectric fields owing to its advantages, such as low noise and high stability. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

14 pages, 2247 KiB  
Article
Design and Simulation of Optical Waveguide Digital Adjustable Delay Lines Based on Optical Switches and Archimedean Spiral Structures
by Ting An, Limin Liu, Guizhou Lv, Chunhui Han, Yafeng Meng, Sai Zhu, Yuandong Niu and Yunfeng Jiang
Photonics 2025, 12(7), 679; https://doi.org/10.3390/photonics12070679 - 5 Jul 2025
Viewed by 204
Abstract
In the field of modern optical communication, radar signal processing and optical sensors, true time delay technology, as a key means of signal processing, can achieve the accurate control of the time delay of optical signals. This study presents a novel design that [...] Read more.
In the field of modern optical communication, radar signal processing and optical sensors, true time delay technology, as a key means of signal processing, can achieve the accurate control of the time delay of optical signals. This study presents a novel design that integrates a 2 × 2 Multi-Mode Interference (MMI) structure with a Mach–Zehnder modulator on a silicon nitride–lithium niobate (SiN-LiNbO3) heterogeneous integrated optical platform. This configuration enables the selective interruption of optical wave paths. The upper path passes through an ultralow-loss Archimedes’ spiral waveguide delay line made of silicon nitride, where the five spiral structures provide delays of 10 ps, 20 ps, 40 ps, 80 ps, and 160 ps, respectively. In contrast, the lower path is straight through, without introducing an additional delay. By applying an electrical voltage, the state of the SiN-LiNbO3 switch can be altered, facilitating the switching and reconfiguration of optical paths and ultimately enabling the combination of various delay values. Simulation results demonstrate that the proposed optical true delay line achieves a discrete, adjustable delay ranging from 10 ps to 310 ps with a step size of 10 ps. The delay loss is less than 0.013 dB/ps, the response speed reaches the order of ns, and the 3 dB-EO bandwidth is broader than 67 GHz. In comparison to other optical switches optical true delay lines in terms of the parameters of delay range, minimum adjustable delay, and delay loss, the proposed optical waveguide digital adjustable true delay line, which is based on an optical switch and an Archimedes’ spiral structure, has outstanding advantages in response speed and delay loss. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Optics and Photonics)
Show Figures

Figure 1

23 pages, 4988 KiB  
Article
Research on the Optimization of the Electrode Structure and Signal Processing Method of the Field Mill Type Electric Field Sensor
by Wei Zhao, Zhizhong Li and Haitao Zhang
Sensors 2025, 25(13), 4186; https://doi.org/10.3390/s25134186 - 4 Jul 2025
Viewed by 188
Abstract
Aiming at the issues that the field mill type electric field sensor lacks an accurate and complete mathematical model, and its signal is weak and contains a large amount of harmonic noise, on the basis of establishing the mathematical model of the sensor’s [...] Read more.
Aiming at the issues that the field mill type electric field sensor lacks an accurate and complete mathematical model, and its signal is weak and contains a large amount of harmonic noise, on the basis of establishing the mathematical model of the sensor’s induction electrode, the finite element method was adopted to analyze the influence laws of parameters such as the thickness of the shielding electrode and the distance between the induction electrode and the shielding electrode on the sensor sensitivity. On this basis, the above parameters were optimized. A signal processing circuit incorporating a pre-integral transformation circuit, a differential amplification circuit, and a bias circuit was investigated, and a completed mathematical model of the input and output of the field mill type electric field sensor was established. An improved harmonic detection method combining fast Fourier transform and back propagation neural network (FFT-BP) was proposed, the learning rate, momentum factor, and excitation function jointly participated in the adjustment of the network, and the iterative search range of the algorithm was limited by the threshold interval, further improving the accuracy and rapidity of the sensor measurement. Experimental results indicate that within the simulated electric field intensity range of 0–20 kV/m in the laboratory, the measurement resolution of this system can reach 18.7 V/m, and the measurement linearity is more than 99%. The designed system is capable of measuring the atmospheric electric field intensity in real time, providing necessary data support for lightning monitoring and early warning. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 3092 KiB  
Article
Carbon Dioxide Gas Sensor Based on Terahertz Metasurface with Asymmetric Cross-Shaped Holes Empowered by Quasi-Bound States in the Continuum
by Kai He and Tian Ma
Sensors 2025, 25(13), 4178; https://doi.org/10.3390/s25134178 - 4 Jul 2025
Viewed by 259
Abstract
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped [...] Read more.
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped hole structure. A thorough analysis of the optical properties and the quasi-BIC response is conducted using the finite element method. Utilizing the symmetry-breaking theory, the symmetry of the metal metasurface is broken, allowing the excitation of double quasi-BIC resonance modes with a high quality factor and high sensitivity to be achieved. Analysis of the multipole power distribution diagram and the spatial distribution of the electric field at the two quasi-BIC resonances verifies that the two quasi-BIC resonances of the metasurface are excited by electric dipoles and electric quadrupoles, respectively. Further simulation analysis demonstrates that the refractive index sensitivities of the two quasi-BIC modes of the metasurface reach 404.5 GHz/RIU and 578.6 GHz/RIU, respectively. Finally, the functional material PHMB is introduced into the metasurface to achieve highly sensitive sensing and detection of CO2 gas concentrations. The proposed metallic metasurface structure exhibits significant advantages, including high sensitivity, ease of preparation, and a high Q-value, which renders it highly promising for a broad range of applications in the domains of terahertz biosensing and highly sensitive gas sensing. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

Back to TopTop