Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (541)

Search Parameters:
Keywords = electric distribution stations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2441 KiB  
Article
Reliability Enhancement of Puducherry Smart Grid System Through Optimal Integration of Electric Vehicle Charging Station–Photovoltaic System
by M. A. Sasi Bhushan, M. Sudhakaran, Sattianadan Dasarathan and V. Sowmya Sree
World Electr. Veh. J. 2025, 16(8), 443; https://doi.org/10.3390/wevj16080443 - 6 Aug 2025
Abstract
Distributed generation strengthens distribution network reliability by placing generators close to load centers. The integration of electric vehicle charging stations (EVCSs) with PV systems mitigates the effects of EV charging burden. In this research, the objective is to combineEVCSs with distributed generation (DG) [...] Read more.
Distributed generation strengthens distribution network reliability by placing generators close to load centers. The integration of electric vehicle charging stations (EVCSs) with PV systems mitigates the effects of EV charging burden. In this research, the objective is to combineEVCSs with distributed generation (DG) units in the Puducherry smart grid system to obtain optimized locations and enhance their reliability. To determine the right nodes for DGs and EVCSs in an uneven distribution network, the modified decision-making (MDM) algorithm and the model predictive control (MPC) approach are used. The Indian utility 29-node distribution network (IN29NDN), which is an unbalanced network, is used for testing. The effects of PV systems and EVCS units are studied in several settings and at various saturation levels. This study validates the correctness of its findings by evaluating the outcomes of proposed methodological approaches. DIgSILENT Power Factory is used to conduct the simulation experiments. The results show that optimizing the location of the DG unit and the size of the PV system can significantly minimize power losses and make a distribution network (DN) more reliable. Full article
Show Figures

Figure 1

17 pages, 3816 KiB  
Article
Charging Station Siting and Capacity Determination Based on a Generalized Least-Cost Model of Traffic Distribution
by Mingzhao Ma, Feng Wang, Lirong Xiong, Yuhonghao Wang and Wenxin Li
Algorithms 2025, 18(8), 479; https://doi.org/10.3390/a18080479 - 4 Aug 2025
Viewed by 164
Abstract
With the popularization of electric vehicles and the continuous expansion of the electric vehicle market, the construction and management of charging facilities for electric vehicles have become important issues in research and practice. In some remote areas, the charging stations are idle due [...] Read more.
With the popularization of electric vehicles and the continuous expansion of the electric vehicle market, the construction and management of charging facilities for electric vehicles have become important issues in research and practice. In some remote areas, the charging stations are idle due to low traffic flow, resulting in a waste of resources. Areas with high traffic flow may have fewer charging stations, resulting in long queues and road congestion. The purpose of this study is to optimize the location of charging stations and the number of charging piles in the stations based on the distribution of traffic flow, and to construct a bi-level programming model by analyzing the distribution of traffic flow. The upper-level planning model is the user-balanced flow allocation model, which is solved to obtain the optimal traffic flow allocation of the road network, and the output of the upper-level planning model is used as the input of the lower-layer model. The lower-level planning model is a generalized minimum cost model with driving time, charging waiting time, charging time, and the cost of electricity consumed to reach the destination of the trip as objective functions. In this study, an empirical simulation is conducted on the road network of Hefei City, Anhui Province, utilizing three algorithms—GA, GWO, and PSO—for optimization and sensitivity analysis. The optimized results are compared with the existing charging station deployment scheme in the road network to demonstrate the effectiveness of the proposed methodology. Full article
Show Figures

Figure 1

17 pages, 2085 KiB  
Article
Identification Method of Weak Nodes in Distributed Photovoltaic Distribution Networks for Electric Vehicle Charging Station Planning
by Xiaoxing Lu, Xiaolong Xiao, Jian Liu, Ning Guo, Lu Liang and Jiacheng Li
World Electr. Veh. J. 2025, 16(8), 433; https://doi.org/10.3390/wevj16080433 - 2 Aug 2025
Viewed by 252
Abstract
With the large-scale integration of high-penetration distributed photovoltaic (DPV) into distribution networks, its output volatility and reverse power flow characteristics are prone to causing voltage violations, necessitating the accurate identification of weak nodes to enhance operational reliability. This paper investigates the definition, quantification [...] Read more.
With the large-scale integration of high-penetration distributed photovoltaic (DPV) into distribution networks, its output volatility and reverse power flow characteristics are prone to causing voltage violations, necessitating the accurate identification of weak nodes to enhance operational reliability. This paper investigates the definition, quantification criteria, and multi-indicator comprehensive determination methods for weak nodes in distribution networks. A multi-criteria assessment method integrating voltage deviation rate, sensitivity analysis, and power margin has been proposed. This method quantifies the node disturbance resistance and comprehensively evaluates the vulnerability of voltage stability. Simulation validation based on the IEEE 33-node system demonstrates that the proposed method can effectively identify the distribution patterns of weak nodes under different penetration levels (20~80%) and varying numbers of DPV access points (single-point to multi-point distributed access scenarios). The study reveals the impact of increased penetration and dispersed access locations on the migration characteristics of weak nodes. The research findings provide a theoretical basis for the planning of distribution networks with high-penetration DPV, offering valuable insights for optimizing the siting of volatile loads such as electric vehicle (EV) charging stations while considering both grid safety and the demand for distributed energy accommodation. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

20 pages, 13715 KiB  
Article
Dynamic Reconfiguration for Energy Management in EV and RES-Based Grids Using IWOA
by Hossein Lotfi, Mohammad Hassan Nikkhah and Mohammad Ebrahim Hajiabadi
World Electr. Veh. J. 2025, 16(8), 412; https://doi.org/10.3390/wevj16080412 - 23 Jul 2025
Viewed by 211
Abstract
Effective energy management is vital for enhancing reliability, reducing operational costs, and supporting the increasing penetration of electric vehicles (EVs) and renewable energy sources (RESs) in distribution networks. This study presents a dynamic reconfiguration strategy for distribution feeders that integrates EV charging stations [...] Read more.
Effective energy management is vital for enhancing reliability, reducing operational costs, and supporting the increasing penetration of electric vehicles (EVs) and renewable energy sources (RESs) in distribution networks. This study presents a dynamic reconfiguration strategy for distribution feeders that integrates EV charging stations (EVCSs), RESs, and capacitors. The goal is to minimize both Energy Not Supplied (ENS) and operational costs, particularly under varying demand conditions caused by EV charging in grid-to-vehicle (G2V) and vehicle-to-grid (V2G) modes. To improve optimization accuracy and avoid local optima, an improved Whale Optimization Algorithm (IWOA) is employed, featuring a mutation mechanism based on Lévy flight. The model also incorporates uncertainties in electricity prices and consumer demand, as well as a demand response (DR) program, to enhance practical applicability. Simulation studies on a 95-bus test system show that the proposed approach reduces ENS by 16% and 20% in the absence and presence of distributed generation (DG) and EVCSs, respectively. Additionally, the operational cost is significantly reduced compared to existing methods. Overall, the proposed framework offers a scalable and intelligent solution for smart grid integration and distribution network modernization. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

22 pages, 3283 KiB  
Article
Optimal Configuration of Distributed Pumped Storage Capacity with Clean Energy
by Yongjia Wang, Hao Zhong, Xun Li, Wenzhuo Hu and Zhenhui Ouyang
Energies 2025, 18(15), 3896; https://doi.org/10.3390/en18153896 - 22 Jul 2025
Viewed by 232
Abstract
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering [...] Read more.
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering the maximization of the investment benefit of distributed pumped storage as the upper goal, a configuration scheme of the installed capacity is formulated. Second, under the two-part electricity price mechanism, combined with the basin hydraulic coupling relationship model, the operation strategy optimization of distributed pumped storage power stations and small hydropower stations is carried out with the minimum operation cost of the clean energy system as the lower optimization objective. Finally, the bi-level optimization model is solved by combining the alternating direction multiplier method and CPLEX solver. This study demonstrates that distributed pumped storage implementation enhances seasonal operational performance, improving clean energy utilization while reducing industrial electricity costs. A post-implementation analysis revealed monthly operating cost reductions of 2.36, 1.72, and 2.13 million RMB for wet, dry, and normal periods, respectively. Coordinated dispatch strategies significantly decreased hydropower station water wastage by 82,000, 28,000, and 52,000 cubic meters during corresponding periods, confirming simultaneous economic and resource efficiency improvements. Full article
Show Figures

Figure 1

38 pages, 1945 KiB  
Review
Grid Impacts of Electric Vehicle Charging: A Review of Challenges and Mitigation Strategies
by Asiri Tayri and Xiandong Ma
Energies 2025, 18(14), 3807; https://doi.org/10.3390/en18143807 - 17 Jul 2025
Viewed by 850
Abstract
Electric vehicles (EVs) offer a sustainable solution for reducing carbon emissions in the transportation sector. However, their increasing widespread adoption poses significant challenges for local distribution grids, many of which were not designed to accommodate the heightened and irregular power demands of EV [...] Read more.
Electric vehicles (EVs) offer a sustainable solution for reducing carbon emissions in the transportation sector. However, their increasing widespread adoption poses significant challenges for local distribution grids, many of which were not designed to accommodate the heightened and irregular power demands of EV charging. Components such as transformers and distribution networks may experience overload, voltage imbalances, and congestion—particularly during peak periods. While upgrading grid infrastructure is a potential solution, it is often costly and complex to implement. The unpredictable nature of EV charging behavior further complicates grid operations, as charging demand fluctuates throughout the day. Therefore, efficient integration into the grid—both for charging and potential discharging—is essential. This paper reviews recent studies on the impacts of high EV penetration on distribution grids and explores various strategies to enhance grid performance during peak demand. It also examines promising optimization methods aimed at mitigating negative effects, such as load shifting and smart charging, and compares their effectiveness across different grid parameters. Additionally, the paper discusses key challenges related to impact analysis and proposes approaches to improve them in order to achieve better overall grid performance. Full article
Show Figures

Figure 1

22 pages, 3812 KiB  
Article
Optimal Collaborative Scheduling Strategy of Mobile Energy Storage System and Electric Vehicles Considering SpatioTemporal Characteristics
by Liming Sun and Tao Yu
Processes 2025, 13(7), 2242; https://doi.org/10.3390/pr13072242 - 14 Jul 2025
Cited by 1 | Viewed by 296
Abstract
The widespread adoption of electric vehicles introduces significant challenges to power grid stability due to uncoordinated large-scale charging and discharging behaviors. By addressing these challenges, mobile energy storage systems emerge as a flexible resource. To maximize the synergistic potential of jointly scheduling electric [...] Read more.
The widespread adoption of electric vehicles introduces significant challenges to power grid stability due to uncoordinated large-scale charging and discharging behaviors. By addressing these challenges, mobile energy storage systems emerge as a flexible resource. To maximize the synergistic potential of jointly scheduling electric vehicles and mobile energy storage systems, this study develops a collaborative scheduling model incorporating the prediction of geographically and chronologically varying distributions of electric vehicles. Non-dominated sorting genetic algorithm-III is then applied to solve this model. Validation through case studies, conducted on the IEEE-69 bus system and an actual urban road network in southern China, demonstrates the model’s efficacy. Case studies reveal that compared to the initial disordered state, the optimized strategy yields a 122.6% increase in profits of the electric vehicle charging station operator, a 44.7% reduction in costs to the electric vehicle user, and a 62.5% decrease in voltage deviation. Furthermore, non-dominated sorting genetic algorithm-III exhibits superior comprehensive performance in multi-objective optimization when benchmarked against two alternative algorithms. Full article
(This article belongs to the Topic Advances in Power Science and Technology, 2nd Edition)
Show Figures

Figure 1

30 pages, 6991 KiB  
Article
A Hybrid EV Charging Approach Based on MILP and a Genetic Algorithm
by Syed Abdullah Al Nahid and Junjian Qi
Energies 2025, 18(14), 3656; https://doi.org/10.3390/en18143656 - 10 Jul 2025
Viewed by 354
Abstract
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a [...] Read more.
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a centralized day-ahead optimal scheduling mechanism and EV shifting process based on mixed-integer linear programming (MILP) and (2) a distributed control strategy based on a genetic algorithm (GA) that dynamically adjusts the charging rate in real-time grid scenarios. The MILP minimizes energy imbalance at overloaded slots by reallocating EVs based on supply–demand mismatch. By combining full and minimum charging strategies with MILP-based shifting, the method significantly reduces network stress due to EV charging. The centralized model schedules time slots using valley-filling and EV-specific constraints, and the local GA-based distributed control adjusts charging currents based on minimum energy, system availability, waiting time, and a priority index (PI). This PI enables user prioritization in both the EV shifting process and power allocation decisions. The method is validated using demand data on a radial feeder with residential and commercial load profiles. Simulation results demonstrate that the proposed hybrid EV charging framework significantly improves grid-level efficiency and user satisfaction. Compared to the baseline without EV integration, the average-to-peak demand ratio is improved from 61% to 74% at Station-A, from 64% to 80% at Station-B, and from 51% to 63% at Station-C, highlighting enhanced load balancing. The framework also ensures that all EVs receive energy above their minimum needs, achieving user satisfaction scores of 88.0% at Stations A and B and 81.6% at Station C. This study underscores the potential of hybrid charging schemes in optimizing energy utilization while maintaining system reliability and user convenience. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

46 pages, 9390 KiB  
Article
Multi-Objective Optimization of Distributed Generation Placement in Electric Bus Transit Systems Integrated with Flash Charging Station Using Enhanced Multi-Objective Grey Wolf Optimization Technique and Consensus-Based Decision Support
by Yuttana Kongjeen, Pongsuk Pilalum, Saksit Deeum, Kittiwong Suthamno, Thongchai Klayklueng, Supapradit Marsong, Ritthichai Ratchapan, Krittidet Buayai, Kaan Kerdchuen, Wutthichai Sa-nga-ngam and Krischonme Bhumkittipich
Energies 2025, 18(14), 3638; https://doi.org/10.3390/en18143638 - 9 Jul 2025
Viewed by 489
Abstract
This study presents a comprehensive multi-objective optimization framework for optimal placement and sizing of distributed generation (DG) units in electric bus (E-bus) transit systems integrated with a high-power flash charging infrastructure. An enhanced Multi-Objective Grey Wolf Optimizer (MOGWO), utilizing Euclidean distance-based Pareto ranking, [...] Read more.
This study presents a comprehensive multi-objective optimization framework for optimal placement and sizing of distributed generation (DG) units in electric bus (E-bus) transit systems integrated with a high-power flash charging infrastructure. An enhanced Multi-Objective Grey Wolf Optimizer (MOGWO), utilizing Euclidean distance-based Pareto ranking, is developed to minimize power loss, voltage deviation, and voltage violations. The framework incorporates realistic E-bus operation characteristics, including a 31-stop, 62 km route, 600 kW pantograph flash chargers, and dynamic load profiles over a 90 min simulation period. Statistical evaluation on IEEE 33-bus and 69-bus distribution networks demonstrates that MOGWO consistently outperforms MOPSO and NSGA-II across all DG deployment scenarios. In the three-DG configuration, MOGWO achieved minimum power losses of 0.0279 MW and 0.0179 MW, and voltage deviations of 0.1313 and 0.1362 in the 33-bus and 69-bus systems, respectively, while eliminating voltage violations. The proposed method also demonstrated superior solution quality with low variance and faster convergence, requiring under 7 h of computation on average. A five-method compromise solution strategy, including TOPSIS and Lp-metric, enabled transparent and robust decision-making. The findings confirm the proposed framework’s effectiveness and scalability for enhancing distribution system performance under the demands of electric transit electrification and smart grid integration. Full article
Show Figures

Figure 1

18 pages, 4682 KiB  
Article
Optimizing EV Charging Station Carrying Capacity Considering Coordinated Multi-Flexibility Resources
by Yalu Fu, Yushen Gong, Chao Shi, Chaoming Zheng, Guangzeng You and Wencong Xiao
World Electr. Veh. J. 2025, 16(7), 381; https://doi.org/10.3390/wevj16070381 - 7 Jul 2025
Viewed by 348
Abstract
The rapid growth of electric vehicles (EVs) poses significant challenges to the safe operation of charging stations and distribution networks. Variations in charging power across different EV manufacturers lead to substantial load fluctuations at charging stations. In some tourist cities in China, charging [...] Read more.
The rapid growth of electric vehicles (EVs) poses significant challenges to the safe operation of charging stations and distribution networks. Variations in charging power across different EV manufacturers lead to substantial load fluctuations at charging stations. In some tourist cities in China, charging loads can surge at specific times, yet existing research mainly focuses on optimizing station location and basic capacity configuration, neglecting sudden peak load management. To address this, we propose a method that enhances charging station carrying capacity (CSCC) by coordinating multi-flexibility resources. This method optimizes the configuration of soft open points (SOPs) to enable flexible interconnections between feeders and incorporates elastic load scheduling for data centers. An optimization model is developed to coordinate these flexible resources, thereby improving the CSCC. Case studies demonstrate that this approach effectively increases CSCC at lower costs, facilitates the utilization of renewable energy, and enhances the overall system economy. The results validate the feasibility and effectiveness of the proposed approach, offering new insights for urban grid planning and EV charging stations optimization. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

16 pages, 3186 KiB  
Article
AI-Driven Framework for Secure and Efficient Load Management in Multi-Station EV Charging Networks
by Md Sabbir Hossen, Md Tanjil Sarker, Marran Al Qwaid, Gobbi Ramasamy and Ngu Eng Eng
World Electr. Veh. J. 2025, 16(7), 370; https://doi.org/10.3390/wevj16070370 - 2 Jul 2025
Viewed by 503
Abstract
This research introduces a comprehensive AI-driven framework for secure and efficient load management in multi-station electric vehicle (EV) charging networks, responding to the increasing demand and operational difficulties associated with widespread EV adoption. The suggested architecture has three main parts: a Smart Load [...] Read more.
This research introduces a comprehensive AI-driven framework for secure and efficient load management in multi-station electric vehicle (EV) charging networks, responding to the increasing demand and operational difficulties associated with widespread EV adoption. The suggested architecture has three main parts: a Smart Load Balancer (SLB), an AI-driven intrusion detection system (AIDS), and a Real-Time Analytics Engine (RAE). These parts use advanced machine learning methods like Support Vector Machines (SVMs), autoencoders, and reinforcement learning (RL) to make the system more flexible, secure, and efficient. The framework uses federated learning (FL) to protect data privacy and make decisions in a decentralized way, which lowers the risks that come with centralizing data. The framework makes load distribution 23.5% more efficient, cuts average wait time by 17.8%, and predicts station-level demand with 94.2% accuracy, according to simulation results. The AI-based intrusion detection component has precision, recall, and F1-scores that are all over 97%, which is better than standard methods. The study also finds important gaps in the current literature and suggests new areas for research, such as using graph neural networks (GNNs) and quantum machine learning to make EV charging infrastructures even more scalable, resilient, and intelligent. Full article
Show Figures

Figure 1

24 pages, 4175 KiB  
Article
Joint Planning of Renewable Energy and Electric Vehicle Charging Stations Based on a Carbon Pricing Optimization Mechanism
by Shanli Wang, Bing Fang, Jiayi Zhang, Zewei Chen, Mingzhe Wen, Huanxiu Xiao and Mengyao Jiang
Energies 2025, 18(13), 3462; https://doi.org/10.3390/en18133462 - 1 Jul 2025
Viewed by 285
Abstract
The integration of renewable energy and electric vehicle (EV) charging stations into distribution systems presents critical challenges, including the inherent variability of renewable generation, the complex behavioral patterns of EV users, and the need for effective carbon emission mitigation. To address these challenges, [...] Read more.
The integration of renewable energy and electric vehicle (EV) charging stations into distribution systems presents critical challenges, including the inherent variability of renewable generation, the complex behavioral patterns of EV users, and the need for effective carbon emission mitigation. To address these challenges, this paper proposes a novel distribution system planning method based on the carbon pricing optimization mechanism. First, to address the strong randomness and volatility of renewable energy, a prediction model for renewable energy output considering climatic conditions is established to characterize the output features of wind and solar power. Subsequently, a charging station model is constructed based on the behavioral characteristics of electric vehicle users. Then, an optimized carbon trading price mechanism incorporating the carbon price growth rate is introduced into the carbon emission cost accounting. Based on this, a joint planning model for the power and transportation systems is developed, aiming to minimize the total economic cost while accounting for renewable energy integration and electric vehicle charging station deployment. In the case study, the proposed model is validated using the actual operational data of a specific region and a modified IEEE 33-node system, demonstrating the rationality and effectiveness of the model. Full article
(This article belongs to the Special Issue Artificial Intelligence in Energy Sector)
Show Figures

Figure 1

25 pages, 9001 KiB  
Article
Analysis of the Impact of Electromobility on the Distribution Grid
by Tomislav Kovačević, Ružica Kljajić, Hrvoje Glavaš and Milan Kljajin
World Electr. Veh. J. 2025, 16(7), 358; https://doi.org/10.3390/wevj16070358 - 27 Jun 2025
Viewed by 323
Abstract
This paper analyzes the impact of electromobility on distribution grids and voltage stability. In line with current legislation and the European Commission’s plans for the future of electromobility, the aim is to increase the share of electric vehicles to 50% by 2050. However, [...] Read more.
This paper analyzes the impact of electromobility on distribution grids and voltage stability. In line with current legislation and the European Commission’s plans for the future of electromobility, the aim is to increase the share of electric vehicles to 50% by 2050. However, achieving this target can be challenging due to the characteristics and features of the electric vehicle charging stations and the associated charging methods, which can lead to constraints within the network. The analysis includes the integration of single-phase and three-phase chargers on a radial feeder, as well as the determination of the maximum number of vehicles that can be accommodated on a given feeder without compromising voltage stability. Five scenarios are evaluated using the DigSilent software package to gain a better understanding of the impact of electromobility on the distribution grid. Full article
Show Figures

Figure 1

12 pages, 938 KiB  
Proceeding Paper
Energy Management of Charging Stations for Electric Vehicles
by Todor Stoilov, Krasimira Stoilova and Denis Chikurtev
Eng. Proc. 2025, 100(1), 2; https://doi.org/10.3390/engproc2025100002 - 26 Jun 2025
Viewed by 287
Abstract
The energy distribution between several charging stations for electric vehicles (EVs) is considered. An optimization problem is defined that aims to minimize the service time for EV charging. The charging sequence is evaluated and determined in view of the energy capacity constraint that [...] Read more.
The energy distribution between several charging stations for electric vehicles (EVs) is considered. An optimization problem is defined that aims to minimize the service time for EV charging. The charging sequence is evaluated and determined in view of the energy capacity constraint that is allocated to the set of stations. Empirical simulations and comparisons are performed to prove the “shorter EV charging capacity first” charging policy. Full article
Show Figures

Figure 1

34 pages, 9572 KiB  
Article
Data Siting and Capacity Optimization of Photovoltaic–Storage–Charging Stations Considering Spatiotemporal Charging Demand
by Dandan Hu, Doudou Yang and Zhi-Wei Liu
Energies 2025, 18(13), 3306; https://doi.org/10.3390/en18133306 - 24 Jun 2025
Viewed by 324
Abstract
To address the charging demand challenges brought about by the widespread adoption of electric vehicles, integrated photovoltaic–storage–charging stations (PSCSs) enhance energy utilization efficiency and economic viability by combining photovoltaic (PV) power generation with an energy storage system (ESS). This paper proposes a two-stage [...] Read more.
To address the charging demand challenges brought about by the widespread adoption of electric vehicles, integrated photovoltaic–storage–charging stations (PSCSs) enhance energy utilization efficiency and economic viability by combining photovoltaic (PV) power generation with an energy storage system (ESS). This paper proposes a two-stage data-driven holistic optimization model for the siting and capacity allocation of charging stations. In the first stage, the location and number of charging piles are determined by analyzing the spatiotemporal distribution characteristics of charging demand using ST-DBSCAN and K-means clustering methods. In the second stage, charging load results from the first stage, photovoltaic generation forecast, and electricity price are jointly considered to minimize the operator’s total cost determined by the capacity of PV and ESS, which is solved by the genetic algorithm. To validate the model, we leverage large-scale GPS trajectory data from electric taxis in Shenzhen as a data-driven source of spatiotemporal charging demand. The research results indicate that the spatiotemporal distribution characteristics of different charging demands determine whether a charging station can become a PSCS and the optimal capacity of PV and battery within the station, rather than a fixed configuration. Stations with high demand volatility can achieve a balance between economic benefits and user satisfaction by appropriately lowering the peak instantaneous satisfaction rate (set between 70 and 80%). Full article
Show Figures

Figure 1

Back to TopTop